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1. ABSTRACT 
 

Infection by a human papillomavirus (HPV) 
may result in a variety of clinical conditions ranging 
from benign warts to invasive cancer depending on the 
viral type. The HPV E2 protein represses transcription of 
the E6 and E7 genes in integrated papillomavirus 
genomes and together with the E1 protein is required for 
viral replication. E2 proteins bind with high affinity to 
palindromic DNA sequences consisting of two highly 
conserved four base pair sequences flanking a variable 
'spacer' of identical length. The E2 proteins directly 
contact the conserved DNA but not the spacer DNA. 
However, variation in naturally occurring spacer 
sequences results in differential protein binding affinity. 
This discrimination in binding is dependent on their 
sensitivity to the unique conformational and/or dynamic 
properties of the spacer DNA in a process termed 
'indirect readout'. This article explores the structure of 
the E2 proteins and their interaction with DNA and other 
proteins, the effects of ions on affinity and specificity, 
and the phylogenetic and biophysical nature of this core  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

viral protein. We have analyzed the sequence conservation 
and electrostatic features of three-dimensional models of 
the DNA binding domains of 146 papillomavirus types and 
variants with the goal of identifying characteristics that 
associated with risk of virally caused malignancy. The 
amino acid sequence, three-dimensional structure, and the 
electrostatic features of E2 protein DNA binding domain 
showed high conservation among all papillomavirus types. 
This indicates that the specific interactions between the E2 
protein and its binding sites on DNA have been 
conserved throughout PV evolution. Analysis of the E2 
protein’s transactivation domain showed that unlike the 
DNA binding domain, the transactivation domain does 
not have extensive surfaces of highly conserved residues. 
Rather, the regions of high conservation are localized to 
small surface patches. The invariance of the E2 DNA 
binding domain structure, electrostatics and sequence 
suggests that it may be a suitable target for the development 
of vaccines effective against a broad spectrum of HPV 
types. 
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2. INTRODUCTION  
 

Human papillomaviruses (HPVs) are small, 
double-stranded DNA viruses that infect cutaneous and 
mucosal epithelial tissues. Worldwide screenings for 
papillomaviruses have identified over 120 viral types, about 
one third of which infect the epithelium of the genital tract 
(1-4). The viral types associated with development of 
anogenital cancers, including those of the cervix, are 
denoted ‘high risk’ while ‘low risk’ viruses induce benign 
genital warts or cause minimal or no cytological effects (5). 
The taxonomy used to classify the relationship among the 
different papillomaviruses has been based on the L1 open 
reading frame (ORF) DNA sequence (1). A new 
papillomaviruses type is recognized if the L1 ORF differs 
by more than 10% from its closest relative. DNA sequence 
differences of 2 - 10% and < 2% differences in sequence 
identity define a subtype and a variant, respectively (6). 
The papillomavirus types have recently been reclassified 
into species, groups and higher order taxonomy (1).  

 
Of the viral types associated with cancer, HPV16 

is associated with half of all cervical cancers. At least 
twenty four variant lineages of HPV16 have been 
identified; these variants are divided broadly into European 
and Non-European lineages. Studies investigating HPV16 
variants and risk for cancer of the cervix and their precursor 
high grade lesions indicate an increased risk of disease 
associated with the non-European variants (7-9). For 
instance, an epidemiological study of 10,000 women in 
Costa Rica revealed that those infected with Non-European 
HPV16 variants were eleven times more likely than those 
infected with the prototype HPV16 to be diagnosed with 
CIN3/cervical cancer (7). 

 
The important role played by the E2 protein in 

papillomavirus life cycle and human infection is supported 
by epidemiological, evolutionary and clinical studies (1, 7, 
10-13). The HPV E2 protein represses the transcription of 
the E6 and E7 genes in integrated papillomavirus genomes 
(14) and together with the E1 protein is required for viral 
replication. Whether the E2 protein activates or represses 
gene transcription is dependent on the composition of the 
E2 DNA binding site and its position within the Long 
Control Region (LCR) of the viral genome. E2 also 
participates in DNA replication by binding to, and 
recruiting the E1 helicase to the viral origin of replication 
(15). The regulation of the oncoproteins E6 and E7 
expression by E2 has clinical significance; Loss of their 
E2-depenent repression through viral integration 
contributes to cancer progression (15, 16). The intracellular 
concentration, binding site affinity, cooperative interactions 
between E2 proteins bound to multiple sites and interaction 
with E1 are critical to control of viral life cycle (17-19). A 
goal of our comparative analysis is to extrapolate our 
understanding of E2 protein function from the few viral types 
and variants for which detailed structural, biophysical and 
biochemical studies have been conducted (20).  

  
The solution of atomic resolution structures of 

DNA Binding Domain (E2/D) from several papillomavirus 
types, free and bound to DNA (20-25) together with detailed 

binding and thermodynamic analyses, allow nuanced 
inquiries into the molecular mechanisms of direct and 
indirect readout of DNA sequence affinity and specificity by 
the E2 proteins (26-30). More limited structural information 
about the transactivation domain provides comparable insight 
into the protein-protein interactions that also contribute to the 
biological function of the E2 protein (31-33). 

  
 This article explores E2 protein structure and 

function by comparative analysis to explore its role in the 
viral life cycle, virulence and contribution to the oncogenic 
potential of clinically important papillomavirus types. Our 
analysis of the amino acid sequence, three-dimensional 
structure, and the electrostatic features of the E2/D shows 
high conservation among all papillomavirus types, 
indicating that the specific interactions between the E2 
protein and its binding sites on DNA have been highly 
conserved through evolution.    

 
2.1. Overview of the structure of the E2 protein  

The papillomavirus HPV16 E2 gene encodes a 
DNA binding protein of 360 amino acids in length that 
dimerizes to regulate viral gene expression and replication 
(Figure 1A). The E2 protein consists of a N-terminal 
transactivation domain (Figure 1B) and a C-terminal DNA 
binding domain (Figure 1C) connected by a flexible linker. 
The protein binds as a dimer to its cognate DNA sequence 
(20, 34). Structures of the DNA binding domain 
(abbreviated E2/D as noted above) from several viral types 
have been reported, free and in complex with different 
cognate DNA sequences. The solved E2/D crystal structures 
include the human high-risk cancer associated types HPV16, 
HPV18 and HPV31 (23-25, 32), the low risk cancer 
associated types include HPV6 (30), which cause benign 
genital warts in humans and the cow wart causing type 
BPV1. Solved NMR solution structures include the E2/D 
from HPV16 (35), HPV31 (24, 36) and BPV1 (37, 38).  

  
The E2/D is part of a novel structural class 

forming a dimeric β-barrel, with each subunit contributing a 
4-stranded β-Sheet “half-barrel” (Figure 1C). The α1 helix is 
termed the ‘recognition helix’ and contains all the amino 
acids involved in direct readout.  The dimer interface is made 
up of hydrogen bonds between subunits and a substantial 
hydrophobic β-barrel core (20). This topology is unusual 
since secondary, tertiary and quaternary structure is coupled. 
Unfolding experiments with either urea or acid suggest early 
dimerization as a step in the folding pathway (39). The 
monomer to dimer transition for this system is nM or less 
(34) indicating that the protein is likely a stable dimer in the 
cell. The sequence conservation among the numerous E2/Ds 
ranges from 80% identity among closely related viral types 
to 30% sequence identity among distant viral types (Figure 
3).  

 
The N-terminal transactivation domain activates 

gene transcription and viral replication (Figure 1). Crystal 
structures of the HPV16 (31), and HPV18 (32) 
transactivation domains have been solved. The HPV18 
protein has also been solved in complex with the E1 
helicase domain (33). These structures are very similar, the 
C-alpha backbone of 189 residues superpose with a root 



Papillomavirus E2 proteins 

902 

 
 

Figure 1. A) Schematic of the HPV16 E2 gene and known proteins of interaction.  B)  Ribbon diagram of the structure of the 
HPV16 E2 transactivation domain (31).C) A ribbon representation of the structure of the HPV18 E2 DNA binding domain 
showing the dimeric protein bound to the DNA sequence ACCGAATTCGGT (PDB-ID: 1JJ4). The recognition helix alpha1 
makes direct contact with the major groove of the DNA.  The bases of the spacer region AATT are depicted. 
 
means square deviation (RMSD) of ~1.2 angstroms (33). 
The transactivation domain contains two sub-domains, a 
curved anti-parallel beta-sheet domain and a helical domain 
containing three anti-parallel helices arranged to give the 
module an overall L shaped appearance (Figure 1b). 

  
 A ‘linker’ of 40 - 200 amino acids depending on 

the viral type (Figure 1A) connects the E2/D and 
transactivation domains. This region is poorly conserved 
and is believed to be unstructured. Little functional 
information is available for it. Some evidence exists to 
suggest that it is important to E2 function including nuclear 
localization (40). Phosphorylation of serine residues in the 
BPV1 E2 linker is required for viral DNA replication (41) 
and the linker is necessary for regulation during 
transcription and viral DNA replication of HPV11 E2 (40). 

 
2.2. Overview of E2 protein DNA binding  

The E2 protein binds to specific DNA sequences 
in the viral long control regions (LCR), thereby regulating 
transcription of viral genes (Figure 2A). The consensus 

recognition sequence is ACCG NNNN CGGT where highly 
conserved four base pair sequences flank a four base pair 
‘spacer’; the E2/D homodimer binds these sequences with 
nM affinity (Figure 2; (20, 21, 23, 25, 26, 42, 43)). The 
backbone and side chains of the recognition helix mediate 
direct sequence-specific contacts with the DNA (Figure 2; 
(23)) while the variable nucleotides of the central spacer 
region are not contacted (20, 21, 25). The sequence of the 
spacer is variable and profoundly modulates the E2 protein 
binding affinity (26, 27, 44-46). As will be discussed in detail 
later in this article, unique conformational and/or dynamic 
properties of the spacer sequence modulates the relative 
affinity of E2 proteins for the binding sites present in the 
viral genomes (20, 27, 47-49). 

 
3.  CONSERVED RESIDUES YIELD CONSERVED 
STRUCTURE AND FUNCTION  
 

Papillomaviruses can be grouped into three 
phylogenetic clusters designated α, β, and other. Figure 3 
summarizes the differences in amino acid conservation 



Papillomavirus E2 proteins 

903 

 
 

Figure 2.  A) Schematic of the papillomavirus Long Control Region (LCR) or Upstream Regulatory Region (URR) and E2 
binding sites I-IV. B) The consensus E2 binding site derived from the 122 papillomavirus types were analyzed in this study. The 
frequency of the preferred base pairs at positions -3 and +3 (flanking percentages) and the occurrence of each pair at positions -3 
and +3 is shown in the center (central percentages). DNA sequences within the upstream regulatory region (URR) of the 
papillomaviruses included in this study (Appendix 2) were analyzed for binding motifs containing the ACCN6GGT sequence. 
This template excludes binding sites in which there is a substitution in the highly conserved bases that participate in the direct 
interactions between the E2 protein and the DNA. The European Molecular Biology Open Software Suite package was used to 
locate motifs within a given sequence (117). 
 
among the three groups for the E2/D by mapping the 
degree of conservation onto the HPV16 structure1 These 
representations show that significant conservation is only 
present at the DNA binding and dimerization interfaces 
(Fig 3A & 3C). The alpha genus is the most conserved. 
Inspection of atomic resolution structures of the E2/D 
reveals that absolutely conserved Gly293 is located in the 
loop connecting the recognition helix to the strands of the 
beta-barrel (Figure 4A). Glycine residues are well known to 
reside within tight turns where side chains larger than a 
hydrogen atom would sterically clash with adjacent side 
chains (50-53). Mutating Gly293 to Val and Phe in silico 
disrupts the predicted structure confirming that spatial 
constraints preclude insertion of a larger side chain into the 
E2 protein at this position. Molecular models of the G293V 
and G293F (the amino acid numbering is based on HPV16 
E2 structure assignment (22)) proteins reveal a shift in the 
recognition helix that prevents it from contacting the DNA 
without distortion of one of the macromolecules (Figure 4B).  

 
Other residues are also highly conserved among 

the all the aligned papillomavirus sequences. Residues with 
> 90% conservation include: Asn296, Lys299, Cys300 and 
Gln349 that are located on the surface of the recognition 
helix and mediate direct contact with the completely 
conserved nucleotides of the palindromic E2 recognition 
sequence (Figure 2B). Only conservative substitutions Glu 
for Asn, Arg for Lys, Ser for Cys and Glu (predominantly) 

for Gln occur at these positions (Appendix 1). The residues 
forming the dimerization interface of the E2 DNA binding 
domain are also highly conserved. For example, Ser313 
resides within a loop that contributes to the stabilization of 
the dimerization interface and is conserved in 88% of the 
analyzed sequences. Again, substitutions are conservative; 
Thr substituted for Ser in most cases except for Ile in one 
HPV type (ChPV; Appendix 1). Trp319, Trp321 and 
Pro353 participate in intersubunit contacts and are invariant 
in > 90% of the papillomavirus types. Val333 and Leu335 
are located within the subunit interface and are characterized 
by ~ 75% conservation.  

 
3.1. The electrostatic surface of E2/D types and variants   

The high degree of sequence identity among the 
E2 DNA binding domains of 122 HPV types and 24 
HPV16 variants analyzed suggests corresponding 
conservation of structure (54). This hypothesis is supported 
by the low variability among the amino acids that dock the 
recognition alpha-helix on the beta-barrel and form the 
dimer interface as discussed above. To confirm the 
expected conservation of structure, homology models (54) 
of each of 122 viral types were determined using crystal 
structures from the alpha genus and other papillomavirus 
genra as templates (Figure 5). The average root means square 
deviation (RMSD) of the modeled structures is ≤ 2 
angstroms indicating that they are essentially the same. No 
deviations were observed from the overall fold of the E2 
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Figure 3. Structural surface representation of the amino acid sequence conservation using HPV16 E2 DNA binding domain as 
the template. Red denotes > 90% conservation, orange denotes a conservative substitution and blue denotes no conservation. A) 
The DNA binding surface of the DNA binding domain in surface fill view, B) 180 degree rotation showing the non-DNA 
contacted surface. The asterisk indicates a second conserved surface that is separate from the documented E2-E1 interface, and 
C) the dimer interface. The mucosal papillomaviruses are the most highly conserved in the DNA binding and dimerization 
surfaces. D) Row D shows the conservation of the E2 transactivation domain conservation using the structure of the domain of 
the HPV11 E2 protein in complex with a molecular inhibitor ( (59); PDB ID: 1DTO). The inhibitor shown in green binds to 
pocket conserved throughout papillomavirus evolution. Note: The sequences used in this study were obtained from the sources 
summarized in Appendix 2. Grouping these sequences into (1) Other (animal E2 sequences), (2) beta genus and (3) and alpha 
genus was done as described in the text (1). Multiple sequence alignments were performed using the ClustalW program 
(118).The secondary structure assignments shown in Figure 5 were taken from structure of HPV16 E2/D (PDB ID: 1by9). 
Residue conservation calculations were performed using AMAS program (119). Briefly, AMAS is a program which performs a 
systematic characterization of the physical-chemical properties seen at each position in a multiple protein sequence alignment. A 
flexible set-based description of amino acid properties is used to define the conservation between any groups of amino acids.   
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Figure 4.  A) Close-up of the structure of the HPV16 E2 
DNA binding domain (PDB ID: 1BY9) highlighting the 
Gly residue in a loop preceding the DNA recognition 
helix that is absolutely conserved in all 122 
papillomavirus types and 24 papillomavirus HPV16 
variants that were analyzed. The picture shows the loop 
that contains Gly293 (red), the residues that are within 5 
angstroms (Lys290, Asp292, Ala 293, Leu 296, Ala 329 
and Ile 330) in magenta; B) Homology models that were 
generated after in silico mutagenesis of HPV 16 E2 
Gly293 to Ala and Val, indicating the shift in the spatial 
position of the recognition helix. The wild type protein is 
colored green, the G293A mutant protein is colored red 
and the G293V mutant protein is colored blue. This view 
looks up at the recognition helices of the E2 protein dimer. 
 
DNA binding domain (data not shown). Thus, the amino acid 
variations of the studied virus types do not compromise the 
integrity of the domain’s overall fold that is crucial for virus 
viability. 

    
A subtle, but potentially important variability 

among the papillomavirus types is the nature of the protein-
DNA interface. The electrostatic potential of the DNA 
binding surfaces of HPV16 and HPV18 E2 proteins differ 
with regard to both net charge and charge distribution (20). 
Since electrostatic interactions contribute significantly to 
protein-DNA interactions in general, and in an unique way 
to the E2 protein in particular (27), we used molecular 
modeling to explore differences in the electrostatic 
potential. The goal of this analysis was to assess whether 
the E2 DNA binding surfaces from HPV types defined as 
oncogenic (i.e., high risk) (5) have unique characteristics 
that might contribute to their ability to cause disease. 

We utilized the E2/D homology models from α 
papillomavirus types to compare the electrostatic potential 
of the E2 DNA binding surface. An electrostatic potential 
map was generated for each model by centering the domain 
within a 65 x 65 x 65 Å cubic lattice with 1.5 angstrom 
spacing. We limited our analysis to the DNA binding 
surfaces and the alpha papillomaviruses. Each surface is 
analyzed against all the others to generate a similarity index 
(SI); zero (black) and one (white) denote dissimilar and 
identical surfaces, respectively (Figure 6A). The SI is a 
composite measure of similarity in net charge and charge 
distribution among the analyzed DNA binding surfaces. It 
is not surprising given the high degree of amino acid 
sequence similarity that the overall electropositive nature of 
the surface is conserved; the smallest SI among the surface 
potentials of the DNA binding surfaces of about 0.65 
(Figure 6A). 

  
Figure 6B compares the electrostatic potential 

maps of the DNA binding surfaces of the HPV6 (low 
risk) and HPV16 (high risk) E2 proteins whose SI is 0.70 
among the most diverse pairs of proteins (Figure 6A); 
blue denotes a positive and red denotes a negative 
potential. While the HPV16 surface contains an 
increased electropositive surface potential within the 
middle of the DNA binding surface and the surface 
containing the recognition helix, a clear distinction 
between the high and low risk human mucosal 
papillomavirus types surfaces is not observed. The 
overall differences are minor corresponding to the 
magnitude of the potentials not their distribution. The SI 
scores denote strong electrostatic conservation with no 
correlation with epidemiological classifications. The 
overall conclusion drawn from this analysis is that the 
electrostatic nature of the DNA binding surface of the E2 
proteins is highly conserved and lacks the heterogeneity 
necessary to explain the oncogenic potential of the 
mucosal human papillomaviruses. 

  
3.2. Transactivation domain sequence conservation at 
the E2 - E1 Interaction Interface 

The assembly of the E1 and E2 proteins at the 
viral origin is required for the initiation of papillomavirus 
DNA replication (55, 56). The E1 protein is a helicase that 
on its own, binds with low affinity and specificity to the 
origin of replication; specific binding is accomplished by 
the cooperative binding of the E1 and the E2 proteins to 
adjacent sites. Once the complex is formed, E2 is 
displaced and additional E1 molecules are added to the 
origin in an ATP dependent step (33, 57). The interaction 
of the HPV E1 helicase and E2 transactivation domains 
is well defined crystallographically (Figure 8B; (33)). It 
is less certain whether the DNA binding domain of the 
human E2 protein interacts with E1. Three bases separate 
the E1 and E2 binding sites at the origin or replication in 
BPV1; this close proximity is highly suggestive that the 
DNA binding domains of the two proteins interact (15, 
33, 58). In contrast, the alpha papillomavirus E1 and E2 
binding sites are further separated; significant distortion 
of the DNA would be required to bring the bound DNA 
binding domains into direct contact (15)
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Figure 5. Summary of the generation of homology models 
(54) by group from the indicated templates for 122 
papillomavirus types and the RMSD values obtained from 
comparison of the models.  Comparative protein structure 
modeling of E2 sequences were performed using 
MODELLER (120, 121). Briefly, MODELLER perform a 
comparative modeling of sequences by satisfaction of 
spatial restraints inherited from a protein (s) of know 
structure (s), also known as template (s). Three templates 
were used to generate the modeled structures, BPV1E2/D 
(PDB ID: 1jjh), HVP16 and 18E2/D (PDB IDs: 1by9 and 
1f9f), and HPV6 E2/D (PDB ID: 1r8h). The sequence 
identities between target sequences and templates were in 
the range of 40 - 80%, which is considered a ‘safe’ range of 
sequence identity where accurate models can be obtained. 
Five models were constructed for each sequence and the 
ones with best energy (according to MODELLER’s energy 
function) were kept. In addition, models were inspected 
using PROSAII (122) and PROCHECK (123) to further 
analyze their quality. Structural superposition of models 
was calculated with STAMP using only main chain atom 
coordinates (124).  

 
An amino acid sequence alignment analysis 

comparable to that described above for the E2/D was 
performed for the E2 transactivation domain to explore 
conservation in relation to the domain’s three-dimensional 
structure. The alignment revealed similarity between any 
two PV of 36 - 100% among the transactivation domains 
indicating structural conservation among the 
papillomavirus types and variants comparable to that seen 
for the E2/D. Unlike the E2/D, the transactivation domain 

does not have extensive surfaces of highly conserved 
residues. Rather, the regions of very high conservation are 
localized to small surface patches (Figure 8). The residues 
Pro60, Ile73 and Gly156 are absolutely conserved (Figure 7 
& Figure 8, colored red). Pro60 is within an alpha-turn-alpha 
motif. Glycine 156 is within a beta-turn-beta motif. Both 
residues are likely required for the stability of their respective 
turns and thus, the maintenance of the functional 
conformation of the domain. 

     
High conservation is observed for a number of 

residues including several implicated in the interaction 
between the HPV11 E1 and E2 proteins (59). Tyr19, 
Glu20, Trp33 and Lys93 cluster around a pocket that binds 
a peptide which inhibits the E1-E2 interaction (Figure 3D, 
surrounding the green peptide; (59)). Mutation of Tyr19 to 
Ala inhibited the E2-E1 interaction (59). Arg37, Ala69 and 
Ile73 form a second cluster of residues on the opposite 
surface of the transactivation domain (Figure 3D, asterisk). 
Mutagenesis of Ile73 to Ala inhibits the E2-inhibitor 
interaction suggesting E1-E2 interference and that the 
surface defined by this cluster of conserved residues 
participates in the inter-protein interaction (59). Arg37 and 
Ile73 residues were found to be crucial for interaction with 
Brd4 (60). It has been suggested that this conserved surface 
helps regulate viral gene transcription (60-62). Highly 
conserved residues for which no functional correlation is 
available are Val59, Trp134 and Phe170. 

 
4.  ANALYSIS OF HPV16 VARIANTS 
 

Twenty four variants of HPV16 have been 
identified by clinical screening and fully sequenced (12, 
63). These variants are closely related and group into five 
phylogenetic branches designated European (E), Asian 
(As), Asian American (AA), African-1 (Af1) and African-2 
(Af2) (Figure 7; (12)). An increased risk of squamous cell 
cervical carcinomas and its precursor high grade lesions is 
associated with non-European (NE) variants of HPV16 (7-
9, 64). Patients infected with the non-European variants 
were 11 times more likely to be diagnosed with cervical 
cancer relative to infection with the prototype European-
related HPV16 variants (7). The correlation between viral 
variant and disease may be due to differences in 
transcriptional regulation, the biological activities of the 
proteins encoded by HPV16 variants or in the ability of the 
host to mount an immunological response to specific viral 
epitopes (65). The summary of this analysis shown in 
Figure 7 and includes the transactivation domain, the 
‘linker’ region connecting the two domains as well as the 
DNA binding domain. Since there is > 90% identity among 
the HPV16 variants, only substitutions relative to the 
prototype HPV16 E2pro reference sequence are shown 
(66). 

  
The HPV16 variants can be dichotomized into 

European and Non-European clinical isolates (Figure 7); 
some variants denoted in Figure 7 as transitional, show 
characteristics of both the European and Non-European 
groups. The shared characteristics may be due to a common 
ancestor followed by separate evolution. The DNA binding 
domain of the Non-European variants are characterized by
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Figure 6. A) A similarity index (125), with equivalent x 
and y axis, comparing the electrostatic potential of the 
DNA binding surface of E2 proteins from low and high 
HPVs (5). A value of one represents complete similarity 
while zero denotes no similarity; Protein interaction 
properties similarity analysis (PIPSA) (125) was used to 
compute the difference in electrostatic potential among 
structure models. PIPSA calculates the Hodgkin Similarity 
index (SI) that measures the similarity of two molecular 
potentials in sign, magnitude and spatial behavior. The SI 
index value ranges from -1 for anti-correlated index (i.e. 
opposite sign) to +1 for correlated potential. SI index were 
traditionally applied to measure electrostatic potential 
similarities between small molecules but it can be use also 
for protein using a grid approach. The electrostatic potentials 
were calculated using APBS program (126) and compared 
with PIPSA using the following parameters: regular cubic 
lattice with 65 angstrom dimensions, 1.5 angstrom spacing, 
two monovalent ionic species: -1 and +1 at 0.050 M, 
concentration, a dielectric constant of 78, and 298.15 K. 
Cubic lattice dimensions were manually inspected to ensure 
the complete immersion of proteins in the lattice. The cubic 
lattice was centered at the center of the models and only the 
DNA binding surface was used to compute the SI indexes. 
B) The surface potentials calculated for the HPV6 and 
HPV16 E2 proteins illustrating the high degree of 
similarity. These two surfaces only differ in a diffuse 
increase in the electropositive potential of the surface for 
the HPV16 E2 protein. 

T310K (also noted in two European variants), 
W341C, and D344E amino acid variations. The residues 
W341C and D344E map to the surface of this domain that 
interacts with the p53 protein and can thus affect apoptosis 
(Figure 8A; (67)). The T310K variation may increase the 
electropositive character of the recognition helix and is also 
noted in two European HPV16 variants. The transactivation 
domain substitutions H35Q, T135K, H136Y and R165Q 
that are characteristic of the Non-European variants map to 
surfaces implicated in the E2 - E1 interaction at the origin 
of replication (Figure 8B; (31, 33)). This analysis shows 
that while there is > 93% amino acid identity among the E2 
genes of the 24 HPV16 variants analyzed, the 7% variation 
between the European and Non-European viruses 
predominantly maps to the E2 - E1 interaction surface 
necessary for the initiation of viral replication. This 
clustering of the variations to an interface critical to the 
viral life cycle suggests functional significance. 

  
We also asked whether the HPV16 E1 protein 

also has amino acid substitutions unique to the European 
and Non-European variants and if so, whether they mapped 
to the proposed inter-protein surfaces. Our analysis of nine 
E1 protein sequences (available at the time), revealed the 
amino acid substitutions Q78E, C168S, I326M and E452D.  
A structural correlation can be drawn only for E452D as it 
is located within the E1 helicase domain for which 
structural information is available. This residue is on the E2 
- E1 interaction surface consistent with the conclusion 
drawn from the analysis of the E2 protein variants (Figure 7 
& 8B; (59)). 

  
Lastly, we note a difference in the E2/D between 

the European and Non-European HPV16 variants. These 
amino acid substitutions are likely to affect the cooperative 
binding of E1 and E2 at the replication origin and 
promoters. It is possible that alteration of the balance 
between viral replication and expression of the E6 and E7 
oncoproteins might play a role in the increased oncogenic 
potential of the non-European viruses towards the 
development of high grade squamous intraepithelial lesions 
of the cervix (68, 69) and life threatening malignancy (10). 

  
5.  ROLE OF THE E2 PROTEIN IN MALIGNANCY 
AND ITS INTERACTION WITH P53   
 

 In cervical cancer, the genomes of high risk 
HPV types are often integrated into the host genome 
disrupting the E2 open reading frame (15, 55, 70-72). Since 
the E6 and E7 open reading frames remain intact in the 
integrated genome, through loss of E2 expression, they can 
be de-repressed resulting in expression of the E6 and E7 
oncoproteins. These events abrogate cell cycle control, 
favor cell proliferation and thus contribute to oncogenesis 
(15, 20, 55, 67). Recent studies suggest that the HPV16 E2 
proteins might also regulate cell proliferation and cell death 
through a direct interaction with p53 that induces apoptotic 
cell death (15, 67, 73, 74). It has been suggested that the E2 
protein of high risk HPV’s may also function as a tumor 
suppressor protein (15, 74). In contrast, the E2 protein from 
low risk human papillomaviruses such as HPV6 and 
HPV11 do not bind p53 (67). The three residues implicated
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Figure 7. A) Annotation of the papillomavirus E2 gene including the N terminal transactivation domain and C terminal DNA 
binding domain that shows only the amino acid differences among the HPV16 variants. The overall the identity of HPV16 variant 
E2 genes is > 95%. The numbering corresponds to HPV16 E2 gene bank deposition. The numbering is not continuous and is 
represented along the bottom of the figure; B) The amino acid alignment of the HPV16 E2 prototype (E2pro) gene and 23 
variants that depicts only the variable amino acid sequences. The amino acids that are uniquely conserved within the Non-
European group are H35Q, T135K, H136Y, A143T, and R165Q in the transactivation domain and T310K, W341C and D344E in 
the DNA binding domain. Tr denotes a transitional epidemiological classification ‘European Asian’. Additional information 
about individual variants is in the Appendix 3. The numbers at the bottom of the figure represent the amino acid sequence 
number within the E2 gene (numbers are read from top to bottom). 
 
in the E2 – p53 interaction, by alanine mutagenesis, are 
W341, D344 and D338. Mutation of these residues in 
HPV16 eliminates the E2 – p53 interaction and the induction 
of apoptosis in non-HPV transformed cell lines (67). Thus, 
the amino acid variations W341C and D344E (Figure 8A) 
that distinguish the European and Non European variants 
may influence the balance of proapoptotic signals by altering 
their interaction with p53; direct biochemical studies will be 
necessary to validate this hypothesis.  

6. E2/D– DNA AFFINITY AND SPECIFICITY  
 

The ability of proteins to ‘read’ DNA sequence is 
the net result of noncovalent interactions that include 
formation of enthalpically favorable protein-DNA contacts, 
entropically favorable release of bound water and ions and 
conformational changes in either or both partners. Base-
specific interactions between protein and DNA, such as 
hydrogen bonds inferred from atomic resolution structures,
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Figure 8. A) A 90° rotation of the E2/D protein structure 
(frame of reference is Figure 2C) showing in red the 
mutations present in the Non-European variants (Figure 6). 
These mutations are on the surface of the protein that 
interacts with the E1 replication protein (57); B) Ribbon 
diagram of the structure of the HPV18 E2 transactivation 
domain (yellow) in complex with the E1 helicase domain 
(blue) (33). The structures of the HPV18 and HPV16 E2 
transactivation domains are highly similar with an RMSD 
of ~ 1 Å (33). The mutations present in the proteins of the 
Non-European variants are shown in red (Figure 6).The 
E452D amino acid substitution present in Non-European 
HPV16 E1 protein variants is highlighted in magenta. No 
structural information is available for three other conserved 
amino acid variations within the E1 protein for the Non-
European variants, Q78E, C168S and I326M, which are not 
present within this domain.    

 
are typically referred to as ‘direct readout’. It is not unusual 
for conformational changes in either or both 
macromolecules to improve the configuration of direct 
interactions. In some cases, the propensity of duplex DNA 
to assume or change conformation is dependent upon the 
properties of nucleotides that do not directly contact the 
protein. These contributions to binding are typically 
referred to as `indirect readout' (20, 27, 75-78). The E2 
protein utilizes both direct and indirect readout to bind its 
recognition sequences (Figure 1) (20). 

  
The high level of primary sequence conservation 

in the E2/D results in conservation of tertiary structure and 
the amino acid residues that mediate direct interactions as 
discussed in the preceding sections (Figure 3). This 
conservation extends to the DNA sequence that is bound by 
the E2 protein; the two-fold symmetric four base pair 

sequences of the palindromic binding site directly bound by 
the E2 protein (20, 21, 23, 25, 26, 42, 43) are virtually 
invariant among papillomavirus genomes. Significant 
variability is only observed for positions -3 and +3 among 
the viruses analyzed in this study (Figure 2b). A little over 
half of the binding sites have palindromic C and G, 
respectively, at these two positions. The frequency for a C in 
position +3 or a G in position -3 is 61% and 65%, 
respectively. Only 10% of the remaining possible 
combinations of nucleotides are palindromes. The frequency 
of T, A or C is no greater than 15% at either position; the 
directly contacted base pairs are highly conserved. Taken 
together, these observations show that the direct component 
of DNA sequence specific binding by the E2 protein is 
critical to PV biology and has thus been ‘locked in’ by 
evolution. ‘Fine tuning’ of the affinity, structure and 
dynamics of the protein-DNA interaction can be attributed to 
the ‘indirect’ component of the reaction (26, 27). 

   
The nature of the E2-DNA complex interface has 

been studied using a number of point mutations designed to 
effect amino acids directly within the interface of this 
complex (28). According to this analysis, the sum of the 
individual amino acid contributions differs by about 1.0 
kcal/mol, or roughly 10% of the interaction energy was due 
to indirect readout. This study suggests that more water 
molecules are present at the molecular interface than 
visualized crystallographically for HPV18-E2/D and 
BPV1-E2/D DNA complexes (20). Solvent is an important 
component of the E2-DNA complex (27). The relative 
contributions of direct and indirect interactions are likely to 
be dependent on solution conditions. As discussed below, 
the contribution of indirect readout to binding can be 
gleaned from careful studies conducted as a function of salt 
concentration and type (Figure 9; (27)).  

 
Although the cognate ‘spacer’ sequence is not 

contacted by the protein, spacer sequence differences 
among the binding sites present in each HPV genome result 
in 30 - 100 fold changes in binding affinity (26, 27). For 
example, the E2 cognate binding sites containing spacer 
sequences AATT, TTAA and ACGT have distinct structural 
propensities (29, 47). An analysis combining gel 
electrophoretic mobility measurements with X-ray 
crystallographic analysis and theoretical structural prediction 
has shown that DNA sequences containing AATT are curved 
~ 17º while those containing TTAA are curved by ~ 11 
degrees (47)2. Net curvature is not observed for the ACGT 
sequence. 

  
The sequence dependent effects of complex 

formation by the E2/D-DNA interaction have also been 
studied by directly comparing E2/D binding from HPV-16 
and BPV-1 types. Utilizing quantitative gel-mobility shift 
experiment as well as solution equilibrium experiments, it 
was shown that the BPV-1 E2/D has moderate sensitivity to 
the sequence of the spacer, while the HPV-16 E2/D has a 
clear preference (30 - 100 fold greater) to spacer sequences 
rich in A:T base pairing, especially in high monovalent 
cation concentration or in the presence of divalent cations 
(Figure 9; (26, 27)). Nicked and gapped DNA sequences in 
the spacer region are detrimental to HPV-16 E2 binding, 
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whereas only minimal effects in BPV-1 E2 binding were 
detected (26). Extending the consensus binding site by 
adding an AT or a GC base pair to each end results in 
tighter binding affinities for the HPV16 E2 DNA binding 
domain when compared to adding a CG or TA base pair to 
the identical sites (79). 

  
The structure analysis of DNA sequences A4T4 

and T4A4 show monovalent cation-dependant bending 
manifest as changes in NMR signal and electrophoretic 
mobility (80). Divalent cation dependence for A-tract 
sequences has been reported with Mg2+ increasing the angle 
of curvature by ~ 2 fold (81).  These reports show that the 
structures of the E2 binding sites are likely to differ based 
on the spacer sequence, and that monovalent and divalent 
cations play an important role in determining the structural 
conformation of a given DNA sequence. Analyzing DNA 
structure, by utilizing the cyclization method, enabled the 
prediction variations in E2/D affinity for the cognate sites 
(29). The predictive ability proved to be correct in 15 of 16 
sequences, with the sole exception being traced to 
differential magnesium ion binding. These results further 
highlight the importance of indirect readout with regard to 
both DNA structure as well as the role of ions in sequence 
specific affinity and specificity (27, 29). 

 
Cations penetrate within the grooves of duplex 

DNA; high resolution crystal structures show K+, Rb+ and 
Cs+ ions within the DNA duplex minor groove’s ‘spine of 
hydration’ (82, 83). Molecular dynamics simulations show 
fractional occupancy of cations within the minor groove of 
the Dickerson dodecamer duplex (84, 85). An analysis of 
the electrostatic potential of this sequence identified a 
highly negative electrostatic potential within the ‘ApT 
pocket’ of the minor groove (86, 87). Cations are observed 
within the minor grooves of DNA duplexes bearing either 
AnTn or TnAn by NMR although their localization within 
the two sequences differs (88-90). Additional experimental 
and theoretical studies show monovalent cations localized 
deep within and near the top of the minor grooves of AT 
rich sequences, especially A tracts (84, 91-94). 

  
The cations localized within the minor groove 

are hypothesized to reduce repulsion between proximal 
phosphates and the electronegative O2 of thymine and N3 
of adenine on the groove‘s floor, resulting in narrowing of 
the groove width and facilitating bending of the helical axis 
(86, 95). The minor groove widths of free E2 binding sites 
are 9.4 Å and 12.1 Å, respectively, for the AATT and 
ACGT spacers (48) (Figure 1C). The structural differences 
of AT rich sequences as well as distinct differences in 
spacer sequences of cognate binding sites allows for a 
thorough exploration of structural effects of DNA in E2 
protein binding affinity and specificity. 

  
Biochemical and computational studies provide 

compelling evidence that the structure, dynamics and 
flexibility of the spacer DNA are a critical determinant of 
E2 binding affinity (26, 29). The E2 proteins in general 
cause a bend ~42 degrees to the spacer region of the DNA 
and bind to their cognate DNA sequences as homo-dimers 
(20). The available evidence suggests that full length E2 

proteins and their isolated DNA-binding domains display 
comparable specificity for DNA sequence and bind to the 
DNA in the same manner (96). Peptides derived from the 
alpha1 (recognition) helix of 18 amino acid bind to the 
cognate sequence and not with non-specific DNA (97). 
This analysis revealed the propensity for this derived 
peptide to bind to the ACCG half site, demonstrating a 
capacity for discrimination of nucleic acid sequences 
without the need for the entire protein architecture (97). 

   
Cations play a key role in E2/D sequence 

specific binding and affinity and the sequence-specific 
uptake of cations into the DNA upon binding of the E2 
proteins is a key contribution to this binding-site 
discrimination (Figure 9; (27)). Augmenting the cation 
concentration increases the affinity of the E2 DNA binding 
domain for pre-bent sequences containing AT rich spacers 
(27). Furthermore, divalent cations also revealed an 
increase in affinity and specificity for human 
papillomavirus type 16 E2 DNA binding domain when 
bound to cognate binding sites containing AT rich spacers. 
Thus, divalent cations in the intracellular milieu are 
essential to the ability of HPV16 E2 protein to discriminate 
among binding sites with different spacer sequences. 

  
The mechanism for DNA binding utilized by E2 

is distinct from the generally observed displacement of the 
cations condensed around DNA, neutralizing its highly 
negative charge, upon the binding of proteins (98-100). The 
E2 protein thus utilizes a novel mechanism of indirect 
readout in which cations penetrate into the grooves of the 
bound DNA’s minor groove (27). These cations neutralize 
the highly electronegative charge density within the minor 
groove of the spacer DNA resulting from its distortion from a 
canonical B-helix induced by E2 binding (20, 27, 87). 

 
Of the multitude of mechanisms that proteins use 

to recognize specific sequences of DNA, indirect readout is 
particularly intriguing since it is based upon their ability to 
distinguish subtle aspects of nucleic acid structure and 
dynamics. The results highlight differences in the 
contribution of electrostatics to spacer sequence 
discrimination by E2 DNA binding domains. Since the 
levels of K+ and Mg2+ are homeostatically regulated in 
mammalian cells, the cation dependence of binding is 
unlikely to be a direct regulator of the papillomavirus life-
cycle. However, these dependences illuminate aspects of 
the underlying mechanism of DNA sequence 
discrimination by the E2 proteins that may differ among the 
various papillomavirus types. 

6.1. Computational analysis OF E2 structure and DNA 
binding   

Insight into the contribution of DNA deformation 
to formation of E2/D-DNA complexes has been obtained 
thorough molecular dynamic simulations of the free and 
E2/D-bound DNA (101-104). Simulations of DNA 
containing the ACCGAATTCGGT E2 binding sequence 
that is tightly bound by HPV E2 proteins were run from the 
uncomplexed or E2/D-complexed starting coordinates. 
Both simulations rapidly relaxed to the dynamical structure 
represented by the crystal structure of the free DNA. This 
result shows that the structure of the bound DNA sequence 
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Figure 9. Summary of the equilibrium binding constants 
(Kd, nM) determined for in BPV1-E2/D (A & C) HPV16-
E2/D and (B & D) binding to DNA containing the AATT, 
TTAA and ACGT spacer sequences. Panels A and B 
summarize binding in buffer containing 150 (black bars) 
and 250 mM (grey bars). The ionic strength of these 
solutions is 0.15 and 0.25, respectively. Panels C and D 
summarize binding in the presence of Mg2+: buffer 
containing 150 mM KCl (black bars), buffer containing 150 
mM KCl and 10 mM MgCl2 (black crosshatched bars; ionic 
strength = 0.19 M), buffer containing 110 mM KCl and 10 
mM MgCl2 (grey crosshatched bars; ionic strength = 0.15 
M) (27). The data indicated the increased affinity with AT 
rich sequences as KCL concentration increase, and in the 
presence of MgCl2. Figure reprinted from reference (27) 
with permission from Elsevier. 
 
is dynamically unstable in the absence of protein and arises 
as a consequence of conformational changes induced by the 
E2/D (101). Comparison of these simulations with those 
of an ideal canonical B form structure of the same 
sequence indicates a propensity for DNA bending to 
occur in the direction of the protein induced 
conformational changes.  Since the free DNA structure 
containing the AATT spacer sequence is bent in the 
direction of the E2/D-induced conformational change, 
complex formation to some sequences is a consequence 
of both intrinsic DNA structure as well as protein 
induced structural change.  The indirect readout 
mechanism manifests itself through the intrinsic 
structure and the flexibility of the sequence (101). 

 Simulations have also been conducted to explore 
the relative flexibility of the spacer and conserved half-sites 
of the E2 binding sequence. The ACGT spacer is more 
flexible than AAAC spacers especially in the backbone 
dynamics of the CpG step (102). The higher affinity of 
BPV1 E2/D for sites with the ACGT spacer is thus, likely 
due to the lesser penalty incurred in deforming the 
sequence upon protein binding. It was noted that the 
conserved half-sites behave identically and adapt 
conformations close to those seen in the bound 
conformations regardless of the spacer sequences present 
(104). Thus, the E2 proteins may take advantage of the 
invariant flanking half sites to form and initial complexes 
whose spacer sequence subsequently relaxes to its final 
conformation (104). The overall effect of E2/D binding is 
to diminish global DNA motion and to impose and lock 
base displacements and helix curvature. 

  
6.2. Modulation of E2 protein binding 

Cytosine methylation at CpG dinucleotides 
influences transcription and replication of DNA in 
eukaryotic organisms. DNA methylation is hypothesized to 
be involved in silencing gene expression; the pattern of 
methylation is thought to reflect the gene expression profile 
of a cell.  The E2 protein of papillomaviruses contributes to 
viral transcription and viral DNA replication, all of which 
are dependent on its ability to bind the consensus sequences 
located within the long control region (LCR; Figure 2A). 
E2 binding sites are potential sites for DNA methylation in 
the mammalian host cell because they contain CpG 
dinucleotides.  

 
In vitro studies have shown that methylation of 

the CpG dinucleotides contained within the binding site 
block binding of the HPV16 E2 protein. Methylation in all 
four sites of the E2 binding site abolished DNA binding; 
partially methylated sites decrease but do not abolish 
specific binding (105). More recent studies have indicated 
that the ability of E2 proteins to activate transcription is 
inhibited by global methylation of CpG dinucleotides 
(106). Furthermore, in studies that detected HPV16 LCR 
methylation, hypomethylation was present in well 
differentiated epithelial cells; in contrast, hypermethylation 
was present in poorly differentiated epithelial cells (106). 
This data suggests that DNA methylation may play an 
important role in modulating both transcription and 
replication and in turn the viral life cycle. Studies on 
HPV18 have shown that the methylation of CpG steps 
repress promoter activity (107). Since the methylation state 
of the viral genome within a mammalian cell may vary 
during its life cycle, DNA binding by the E2 protein and 
hence its function can be modulated by DNA methylation. 

    
7. SIGNIFICANCE  

 
Non-covalent associations between proteins and 

their specific target sites on DNA plays a pivotal role in 
replication, transcription and replication, where the 
underlying mechanism involves molecular processes of 
protein-nucleic acid recognition and protein-protein 
association.  The overall specificity and affinity of proteins 
to their target DNA involves a balancing act of diverse 
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competing free energy components, including 
electrostatics, hydrogen binding, ion and water release, and 
van der Waals contributions (108). Formation of sequence-
specific protein-DNA complexes can also be viewed as a 
melding of direct and indirect readout contributions that 
adds up to an overall favorable free energy of binding 
(109). The structure and flexibility of the target DNA 
(indirect readout) plays a crucial role in determining the 
binding specificity and affinity of the E2-protein (27). The 
E2 protein presents a novel class of DNA binding protein 
that utilizes a novel mechanism of indirect readout in which 
cations penetrate into the grooves of the bound DNA’s 
minor groove for sequence specific binding and affinity. 
These cations neutralize the highly electronegative charge 
density within the minor groove of the spacer DNA 
resulting from its distortion from a canonical B-helix 
induced by E2 binding (20, 27, 87). 

 
The DNA binding domain of the papillomavirus E2 

protein is a prototype of a novel structural class of DNA-
binding proteins (20). With the evolutionary and molecular 
modeling investigations we have been able to extend our 
investigation to 146 papillomaviruses and found that the 
‘direct’ component of DNA sequence specific binding by the 
E2 protein appears to have been maintained throughout 
evolution. Thus, the fine tuning of the affinity, structure and 
dynamics of the protein-DNA interaction can be attributed to 
the ‘indirect’ component of the reaction (26, 27).  

  
The functional properties of the E2 protein are 

crucial to the viral life cycle via its regulation of gene transcription 
and DNA replication. As such, the conservation of the E2/D could 
have therapeutic implications for HPV infection and disease.  
Papillomavirus vaccines recently approved by the FDA are very 
effective in lowering viral load and preventing disease (110-113). 
These vaccines target the L1 protein of HPV16 and 18 that 
together account for ~ 70% of infections that lead to malignancies. 
Since the L1 targeted vaccines are type specific, they do not offer 
protection against the remaining viral infections that can cause 
malignancy. The E2 protein has been tested as a possible vaccine 
target in rabbits; this test vaccine lowers viral load and reduces 
tumor size (114). In one report, the immune responses to the E2, 
E6 and E7 proteins is impaired (115); these patients cannot mount 
a T-cell response to these antigens and are at a higher risk for 
disease progression (115). In contrast, specific antibodies have 
been raised against a HPV16 E2-DNA complex (116) showing 
that the human E2 protein is immunogenic. Since the structural 
properties of the ‘high risk’ human papillomavirus E2 proteins are 
highly conserved and immunogenic, the E2 protein should be 
evaluated as a vaccine candidate for prophylactic protection 
against a broad spectrum of HPV types. 
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