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1. ABSTRACT 
 

Eukaryotic cells must continuously sense their 
environments, for example their attachment to extracellular 
matrix and proximity to other cells, differences in 
temperature or redox conditions, the presence of nutrients, 
growth factors, hormones, cytokines or pathogens. The 
information must then be integrated and an appropriate 
response initiated by modulating the cellular programme of 
gene expression. The mitogen-activated protein kinase 
(MAPK) signaling pathways play a critical role in this 
process. Decades of research have illuminated the many 
ways in which MAPKs regulate the synthesis of mRNA 
(transcription) via phosphorylation of transcription factors, 
cofactors, and other proteins. In recent years it has become 
increasingly clear that the control of mRNA destruction is 
equally important for cellular responses to extracellular 
cues, and is equally subject to regulation by MAPKs. This 
review will summarize our current understanding of post-
transcriptional regulation of gene expression by the 
MAPKs and the proteins that are involved in this process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION   
 

The orderly and regulated flow of genetic 
information from DNA to protein, from genome to proteome, 
requires that the intermediate molecule, mRNA, is relatively 
short-lived. Where gene expression undergoes dynamic 
changes, rapid turnover of mRNA is typically observed. For 
example mRNAs involved in cell cycle progression, immune 
and inflammatory responses often have short half-lives. In 
contrast housekeeping genes that are expressed at a relatively 
constant level typically produce more stable mRNAs (1). In 
other words mRNA degradation is controlled in a transcript-
specific manner. In most cases the rate of degradation of an 
mRNA is controlled by sequences within its untranslated 
regions (UTRs). These regions are unconstrained by the 
selective pressures that direct the evolution of protein coding 
sequences, and have acquired complex roles in the regulation 
of mRNA translation and localisation as well as turnover. 
 

Post-transcriptional regulation of gene expression 
is comprehensively reviewed elsewhere (2, 3), and only a 
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Figure 1. Pathways of mRNA degradation. The open reading frame (ORF) is flanked by 5’ and 3’ UTRs. An ARE in the 3’ UTR 
provides binding sites for proteins such as HuR, AUF1, TTP and KSRP (see text). The 3’ to 5’ decay pathway (shown above the 
mRNA) involves sequential action of the deadenylase PARN or the Ccr4/Not complex, degradation of the mRNA body by the 
exosome, and 5’ end processing by the scavenger decapping complex (DcpS). The 5’ to 3’ decay pathway (shown below the 
mRNA) has the same initial deadenylation step, then a decapping complex (including the decapping proteins Dcp1 and 2) 
removes the 7 methyl guanosine, and the mRNA body is degraded by the nuclease Xrn1. For simplicity not all components of the 
mRNA degradation machinery are illustrated. 

 
very brief overview will be given here (Figure  1). In 
general the rate limiting step in mRNA degradation is the 
shortening of the poly- (A) tail with which the 3’ end is 
decorated. This can be catalysed by a number of different 
deadenylases or deadenylase complexes. Once the poly (A) 
tail has been shortened beyond a critical length, the body of 
the mRNA becomes susceptible to rapid destruction by one of 
two pathways. The first pathway involves the exosome, a large 
complex of exonucleases and helicases responsible for 
processive degradation from the 3’ end. When the bulk of the 
mRNA has been destroyed and only a short 
oligoribonucleotide remains, a scavenger decapping complex 
removes the 7-methyl-guanosine cap from the 5’ end. 
Alternatively, the mRNA can be degraded by the exonuclease 
Xrn1, which degrades in the 5’ to 3’ direction. This pathway 
requires the initial removal of the 7-methyl-guanosine cap, 
which is catalysed by a decapping complex distinct from the 
scavenger decapping complex mentioned above. Both 
pathways for mRNA degradation are extremely rapid, and 
intermediates are difficult to detect. It was initially believed 
that the 3’ to 5’ exosome-dependent pathway predominated in 
mammalian cells, but more recent evidence suggests that the 5’ 
to 3’ pathway may be equally important (2, 4). RNA 
degradation may occur at discrete cytoplasmic granules known 
as processing bodies or P-bodies, which are also implicated 
in micro-RNA mediated post-transcriptional silencing and 
RNA surveillance pathways (5-7). 
 

Regulatory elements in UTRs are recognized in a 
sequence-specific manner by RNA-binding proteins. Whilst 
other classes of regulatory element and their binding 

proteins are increasingly recognized, the best characterized 
regulatory sequences at present are the adenine/uridine-rich 
elements (AREs), first described as mRNA destabilizing 
elements in 1986 (8, 9). In a commonly used classification 
based on the presence of pentameric AUUUA motifs, type I 
AREs contain dispersed pentamers, type II AREs contain 
overlapping pentamers, and type III AREs contain no 
pentamers but are generally U-rich . Other classification 
systems have also been proposed (10). The nonameric 
sequence UUAUUUAUU was identified as a minimal 
destabilizing sequence (11, 12), but other ARE sequences 
may function equally well, depending on the context in 
which they are found. 
 

Many ARE binding proteins have been identified, 
and shown to recognize AREs with overlapping but subtly 
different sequence specificities (2, 3). Amongst these proteins, 
tristetraprolin (TTP) and two closely related proteins are well-
characterized mRNA destabilizing factors, as is the KH-
domain splicing regulatory protein (KSRP). Human antigen R 
(HuR), a widely-expressed member of the ELAV (embryonic 
lethal abnormal vision) family of RNA binding proteins, is a 
stabilizing factor. ARE/poly (U)-binding degradation factor 1 
(AUF1) may either promote or inhibit mRNA degradation, 
depending on the cellular context and which of the four 
alternatively spliced isoforms are expressed. Destabilizing 
factors recruit components of the RNA degradation machinery 
to specific mRNAs, or cause those RNAs to become localized 
at sites of degradation, or nucleate the formation of processing 
bodies (13-20). In effect these may amount to the same 
thing. 
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Table 1. Targets of post-transcriptional regulation by the 
three major MAPK pathways 

p38 MAPK ERK JNK 
 β-APP (254)   
 β-AR (255)  
BMP-2 (211)    
Catalase (212)    
CCL2 (29, 89, 90, 213, 214)  CCL2 (90, 214)  
CCL3 (29, 215)    
C/EBPδ (172)   
COX-2 (75, 171, 175, 216-
225)  

COX-2 (223, 256, 
257) 

 

CSF2 (72, 78, 226-228)  CSF2 (200)  
CXCL1 (78, 146, 229, 230)   
CXCL2 (78)    
CXCL3 (29)   
CXCL8 (72, 87, 187, 228, 
231-236) 

  

CXCL10 (29, 237-239)   
DUSP1 (240)   
γ-GCSH (174)   
Ier3 (162)   
IFN-γ (73, 241)   
IL-1β (29, 230)   
IL-2 (241)  IL-2 (98, 99) 
IL-3 (242)  IL-3 (262) 
IL-4 (243)   
IL-6 (215, 227, 244-247)   
IL-13 (243)   
  iNOS (263, 

264) 
myogenin (186)   
 nucleolin (258)  
p21 (186) p21 (259, 260)  
PAI-1 (248)   
Socs3 (249)   
Sox9 (250)    
 TGFβ (261)  
TNF (50, 52-55, 60, 77, 84, 
85, 215, 239, 251) 

TNF (52, 91-93)  

UPA (76, 252)   
VEGF (253) VEGF (163) VEGF (253) 

This is not an exhaustive list 
 

mRNA fate is thought to be determined by the 
combinatorial actions of multiple proteins that recognize 
overlapping or discrete sequences within UTRs. In ways 
that are not yet fully understood, their binding is likely to 
be influenced by the secondary structure of the mRNA, 
which in turn may be influenced by ionic conditions (21) or 
intermolecular RNA-RNA interactions (22). The cellular 
machinery dedicated to the destruction of RNA is therefore 
highly complex, with many possible points of regulation. 
Indeed, the process of mRNA turnover is under tight 
regulation, and can be modulated in response to 
extracellular cues. Hence changes in mRNA abundance can 
be brought about by changes in rate of synthesis, 
destruction or both. Post-transcriptional mechanisms can 
function cooperatively with transcriptional mechanisms to 
accelerate or amplify changes in steady state mRNA levels. 
Alternatively, transcriptional and post-transcriptional 
mechanisms can oppose one another to dampen changes in 
steady state mRNA levels. 
 

Researchers have recently used microarray-based 
approaches to assess the relative contributions of 
transcriptional and post-transcriptional regulatory events 
during a coordinated cellular response (23, 24). For 
example changes in steady state cytoplasmic mRNA 

abundance were compared to changes in newly synthesized 
nuclear pre-mRNA, the latter providing a crude measure of 
the transcriptional response (25, 26). It was concluded that 
approximately half of the global change in mRNA levels 
could be accounted for by transcriptional regulation. By 
inference, the remainder must be explained by changes in 
mRNA stability. More directly, other researchers have 
combined microarrays with actinomycin D chases to study 
mRNA stability at a transcriptome-wide level (27-30). 
Half-lives of many thousands of mRNAs were increased or 
decreased in the course of a cellular response to a simple 
agonist. Such studies underline the point that changes in 
cellular programmes of gene expression cannot be 
understood in terms of transcription alone. It is increasingly 
recognized that alterations in post-transcriptional regulatory 
mechanisms can have a causative role in human 
pathologies, for example cancers and chronic inflammatory 
diseases (31-35). Conversely, the post-transcriptional level 
of gene regulation represents a possible new target for 
therapeutic intervention in human disease (36, 37). 
 
  The principles of transcriptional regulation by 
signaling pathways are quite well understood. In contrast 
the study of mRNA turnover regulation is in its infancy. 
This review will focus on modulation of mRNA stability by 
MAPKs, highlighting gaps in our current understanding of 
this phenomenon. Table 1 lists mRNAs that have been 
identified as targets of post-transcriptional regulation by the 
three major MAPK pathways. There is more abundant 
evidence for post-transcriptional regulation by p38 than by 
ERK or JNK, therefore our review will begin with the p38 
MAPK pathway. 
 
3. POST-TRANSCRIPTIONAL REGULATION BY 
MAPK PATHWAYS 
 
3.1. p38 MAPK 

The four members of the p38 MAPK family, α βγ 
and δ, are encoded by discrete genes and display different 
patterns of tissue-specific expression (38). The α isoform is 
very broadly expressed whereas the other isoforms are 
expressed in a more restricted fashion. The first member of 
the family, p38α, was identified at about the same time by 
three labs as a component of a signaling pathway activated 
by the pro-inflammatory cytokine interleukin 1 (IL-1) or by 
stresses such as heat shock or hyperosmolarity, and as the 
molecular target of a novel compound that post-
transcriptionally inhibited the expression of IL-1 and 
another potent inflammatory cytokine, tumor necrosis 
factor (TNF). Since its discovery, the p38 MAPK pathway 
has therefore been intimately linked to both inflammation 
and post-transcriptional regulation. In the canonical 
pathway an upstream MAPK kinase (usually MKK3 or 
MKK6) activates p38 MAPK by phosphorylating both 
threonine and tyrosine residues within the Thr-Gly-Tyr 
activation motif. Alternative pathways for p38 MAPK 
activation exist, one involving phosphorylation of a 
tyrosine residue near the carboxy terminus (39). It is 
conceivable that this phosphorylation modulates the 
interaction of p38 MAPK with downstream substrates, and 
that therefore the outcome of p38 MAPK activation 
depends upon the pathway by which it becomes active. It
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Figure 2. A hypothetical reconciliation of p38 MAPK 
effects on stability and translation of TNF mRNA. Suppose 
that there are two cellular pools of TNF mRNA: pool 1 is 
unavailable for translation but not subject to p38-regulated 
degradation, whilst pool 2 is translatable but rapidly 
degraded in the absence of p38 activity. Imagine that in one 
cell type or under one set of conditions (A) most TNF 
mRNA is in pool 1. Addition of a p38 inhibitor will result 
in rapid clearance of the mRNA in pool 2 and consequent 
inhibition of TNF protein synthesis, but little change in 
stability or steady state quantities of TNF mRNA at the 
whole cell level. Inspection of polysomal profiles will 
reveal that the inhibitor has decreased the amount of 
polysome-associated TNF mRNA. One possible conclusion 
is that p38 MAPK controls TNF mRNA translation. Now, 
suppose that in another cell type or under different 
conditions (B) most TNF mRNA is in pool 2. Addition of a 
p38 inhibitor will decrease the expression of TNF mRNA 
and protein to quite similar extents, and destabilization of 
TNF mRNA will be readily demonstrated by actinomycin 
D chase experiments. The conclusion is that p38 MAPK 
controls TNF mRNA stability. The two scenarios differ 
only in the distribution of TNF mRNA between subcellular 
pools. In the first scenario it is true to say that TNF mRNA 
is translationally repressed, but it is not translationally 
regulated by p38 MAPK. 

 
has not yet been investigated whether non-

canonical p38 MAPK activation has different consequences 
in terms of post-transcriptional gene regulation. 
 

SK&F 86002, the original p38 inhibitor, has 
given rise to second and third generation inhibitors such as 

SB203580 and SB202190, with improved specificity and 
efficacy. These drugs, which have played an essential part 
in the elucidation of the post-transcriptional function of the 
p38 MAPK pathway, do not inhibit the γ or δ isoforms 
(40). A recently described class of MAPK inhibitors is 
mechanistically dinstinct from the original family of 
dipyridinyl imidazoles, and blocks the function of all four 
isoforms (41). Such compounds may be used to determine 
whether p38 γ and δ are involved in the post-transcriptional 
regulation of gene expression. They clearly differ in 
substrate specificity from the α and β isoforms (38), and 
there is yet little or no evidence for a post-transcriptional 
role. Henceforth “p38” will be assumed to refer to the α 
and β isoforms. 
 

Because of the central role of the p38 MAPK 
pathway in the regulation of inflammatory gene expression, 
it is regarded as a promising target for therapeutic 
intervention in chronic inflammatory diseases such as 
rheumatoid arthritis or Crohn’s disease (42, 43). Several 
p38 MAPK inhibitors have undergone or are undergoing 
clinical trials (44). It needs to be kept in mind that the 
function of p38 MAPK is not restricted to the control of 
inflammatory gene expression. For example muscle 
differentiation requires the p38-dependent expression of 
transcription factors such as MyoD and myogenin (45, 46). 
Other roles in cell proliferation and survival, differentiation 
or development have been described (38). It is not yet 
apparent whether these additional p38 functions will give 
rise to significant problems in the clinical development of 
p38 inhibitors as anti-inflammatory drugs (47). 
 

Early papers concluded that the p38 MAPK 
pathway was required for the efficient translation of TNF 
mRNA, because inhibitors reduced TNF expression more 
strongly at the protein level than at the mRNA level (48, 
49). However, recent research (Table 1) has revealed that 
control of mRNA stability is a more frequently encountered 
property of the p38 pathway. In fact, several studies 
describe destabilization of TNF mRNA by p38 inhibitors 
(50-55). As described below, mechanisms of regulation of 
mRNA turnover by p38 MAPK are increasingly well 
understood, but an account of transcript-specific 
translational control by this pathway is still lacking. 
 

It is technically difficult to quantify changes in 
translation efficiency in isolation from mRNA degradation. 
In the absence of such direct assays, translational control is 
often inferred from inspection of polysomal profiles or 
from discrepancies between mRNA and protein levels. In 
the case of TNF the correlation between mRNA and protein 
expression tends to be poor (56-60). Even under strongly 
inducing conditions, a relatively low proportion of TNF 
mRNA may be actively translated and associated with 
polysomes (48, 60-63). Deductions from mRNA and 
protein abundance can be misleading if discrete subcellular 
pools of TNF mRNA are not identically regulated by 
signaling pathways. For example (Figure  2) suppose that 
there exists a subcellular pool of TNF mRNA (pool 1), 
which is unavailable for translation and not regulated by 
p38 MAPK at the level of mRNA stability. In contrast, p38 
MAPK controls the stability of a second, discrete 
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subcellular pool (pool 2), which is available for translation. 
If the majority of TNF mRNA is in pool 1, then inhibition 
of p38 will strongly decrease expression of TNF protein but 
not strongly decrease whole-cell levels of TNF mRNA. 
Inhibitors of p38 MAPK are reported to decrease the 
proportion of TNF mRNA associated with polysomes (48, 
62), which has been interpreted as suggesting that p38 
promotes the translation of TNF mRNA. However there is 
not yet direct evidence that TNF mRNA can be mobilized 
between untranslatable and translatable pools in a manner 
that is controlled by p38 MAPK. An alternative 
interpretation of the same data is that inhibition of p38 
MAPK causes the degradation rather than the translational 
suppression of polysome-associated TNF mRNA.  
 

Effects of p38 MAPK on mRNA translation 
certainly cannot be ruled out, although the lack of a 
mechanistic explanation is problematic, and the supporting 
evidence is not as conclusive as it may appear. The RNA 
binding proteins TIA-1, TIAR and FXR1P have been 
implicated in the sequestration and translational 
blockade of TNF mRNA (62, 64, 65). It is possible that 
one or more of these proteins acts downstream of the 
p38 MAPK pathway to control translation of TNF and 
other mRNAs, but such a role has not yet been 
demonstrated. Transcriptional pulsing strategies can be 
used to generate synchronized pools of reporter mRNAs 
with similar poly (A) tail lengths (66). This method was 
used to show that p38 activation inhibits the 
deadenylation of a reporter mRNA containing the TNF 
ARE, without influencing the rate of subsequent decay 
of the mRNA body (67). Poly (A) tail length influences 
the efficiency of mRNA translation as well as its 
stability. In theory, control of deadenylation by p38 
MAPK could provide a mechanistic link between effects 
of the pathway on mRNA translation and stability. 
However, it is not yet well established that p38 MAPK 
controls stability of endogenous ARE-containing 
transcripts at the level of deadenylation. 
 

The downstream kinase MAPK-activated protein 
kinase 2 (MAPKAP-K2 or MK2) is efficiently 
phosphorylated and activated by p38 α and β but not by the 
γ and δ isoforms (38, 68-71). Several lines of evidence 
suggest that MK2 has an important role as an effector of 
post-transcriptional regulation by the p38 MAPK pathway. 
Constitutively active mutants of MK2 were able to stabilize 
a variety of ARE-containing reporter transcripts (72-76). 
An MK2 null mouse was viable but underexpressed several 
inflammatory mediators that are post-transcriptionally 
regulated by the p38 MAPK pathway (71, 77-79), and was 
consequently resistant to various inflammatory challenges 
(80-83). Initially, steady state levels and stability of TNF 
mRNA were found to be unaltered in MK2-/- cells in spite 
of an approximately 90% decrease in expression of TNF 
protein, consistent with regulation of TNF translation by 
the p38 MAPK pathway (77). However, on further 
investigation, both TNF and IL-6 mRNAs were found to be 
less stable in cells lacking MK2 (79, 84). In embryonic 
fibroblasts derived from MK2-/- mice, a subset of mRNAs 
(including, CSF2, CXCL1, CXCL2, COX-2) were unstable 
in the presence of LPS but could be stabilized by 

reintroduction of MK2 (78), implying that LPS-induced 
stabilization requires the activation of MK2. 
 

The kinase MK3 is highly related to MK2 and 
appears to overlap in function. The dominant role of MK2 
in post-transcriptional regulation may simply reflect its 
higher level of expression in the cell types that have been 
studied. A murine knockout of MK3 alone had no obvious 
consequences, but in an MK2 null background caused a 
further decrease in the expression of TNF. Furthermore 
MK3 was indistinguishable from MK2 in its ability to 
rescue mRNA stabilization in MK2-/- MEFs (78). The 
functions of MK2 and MK3 have been investigated 
mainly in the context of inflammatory gene expression. 
An unanswered question is to what extent the regulation 
of mRNA stability is independent of MK2 or MK3, in 
other words directly mediated by p38 MAPK itself. It 
would be interesting to determine which mRNAs, if any, 
are destabilized by p38 inhibitors in the absence of both 
MK2 and MK3. Since different mechanisms of post-
transcriptional regulation by the p38 pathway might 
predominate in different cell types, it would be 
instructive to carry out such an analysis in, for example, 
muscle cells as well as fibroblasts or macrophages.  
 

The TNF ARE is essential for post-
transcriptional control of TNF expression by p38 
MAPK, since germline deletion of this element rendered 
TNF biosynthesis insensitive to p38 inhibitors (85). 
AUUUA motifs are common to p38-regulated 
transcripts (86), but their number and organization is 
extremely variable. A relatively complex arrangement of 
AUUUA motifs appeared to be necessary for regulation 
of COX-2 or IL-8 mRNA stability by the p38 pathway 
(87, 88). Amongst p38-stabilized mRNAs identified in a 
microarray study (29) common features of ARE 
sequence or structure could not be identified. Just as 
importantly, many unstable ARE-containing transcripts 
were not sensitive to p38 inhibition. Therefore, one of 
the greatest remaining puzzles in this field is how 
selective regulation of mRNA stability by the p38 
pathway is achieved. To understand this fully it may be 
necessary to consider the secondary structure of RNA in 
which protein binding sites are embedded, or higher 
order features of ARE organization that have not yet been 
recognized. 
 
3.2. ERK and JNK 

Stability of several mRNAs has been shown to be 
regulated by the extracellular signal-regulated kinase 
(ERK) pathway (Table 1). There is considerable overlap 
with the set of transcripts regulated by p38 MAPK. 
Furthermore, CXCL2 and TNF mRNAs were cooperatively 
stabilized through the action of p38 MAPK and ERK (52, 
89-91). The possible significance of convergence of the 
two signaling pathways is discussed below. 
  

In macrophages the activation of ERK is required 
for the efficient export of TNF mRNA from the nucleus to 
the cytoplasm (92). The TNF ARE is necessary but not 
sufficient for this regulation, and ARE-binding proteins 
involved have so far not been identified (92, 93). The 
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regulation of TNF mRNA export is dependent on nuclear 
splicing of pre-mRNA and assembly of a complex of 
proteins at the splice site (93). Few other examples of 
ERK-regulated nuclear-cytoplasmic mRNA transport are 
known (94), and details of the mechanism await 
clarification. 
 

The c-Jun N-terminal kinase (JNK) pathway was 
implicated in post-transcriptional regulation of IL-2 and -3, 
TNF, inducible nitric oxide synthase (iNOS) and vascular 
endothelial growth factor (VEGF) (references in Table 1). 
The synthetic glucocorticoid dexamethasone (dex) was 
reported to block TNF translation by inhibiting JNK 
activity in a mouse macrophage cell line (95). Dex also 
inhibits p38 MAPK in murine macrophages by inducing the 
expression of MAPK phosphatase 1 (57, 96, 97), therefore 
the inference that JNK controls translation may be 
mistaken. JNK-mediated stabilization of IL-2 mRNA was 
dependent on both an ARE in the 3’ UTR and an element in 
the 5’ UTR, designated the JNK response element (JRE) 
(98, 99). The JRE was recognized by nucleolin, an 
abundant nucleolar protein (100), and Y-box factor 1 (YB-
1), a promiscuous nucleic acid binding protein (101). 
Depletion of these factors impaired JNK-mediated mRNA 
stabilization in vitro. However, neither protein appears to 
be a genuine substrate of JNK or a direct regulator of 
mRNA degradation. Their roles in mRNA turnover 
downstream of JNK may be rather indirect (99). Direct 
mechanistic links between JNK and mRNA stability or 
translation remain elusive. 
 
3.3. MAPK signal integrating kinases 

MAPK signal-integrating kinases (Mnks) can be 
activated by either p38 MAPK or ERK, and are therefore 
potential mediators of cooperative effects of the two 
MAPK pathways on gene expression (102, 103). Mnks 
are thought to influence higher order structure of 
mRNAs and control translation by phosphorylating the 
eukaryotic translation initiation factor eIF4E, which 
binds to the 5’ cap structure (references in 104). It is 
unclear how this mechanism could result in selective 
post-transcriptional regulation of particular transcripts, 
since the 5’ cap is a universal feature of eukaryotic 
mRNAs. Therefore it is of interest that Mnks are also 
able to phosphorylate hnRNPA0, hnRNPA1 and 
polypyrimidine tract binding protein-associated splicing 
factor (PSF) (104, 105). All of these proteins have been 
shown to interact with AREs, although precise 
specificities are not known. A Mnk inhibitor, 
CGP57380, decreased the expression of TNF in Jurkat T 
cells (104), murine macrophages (106) human 
keratinocytes (107) and the murine macrophage cell line 
RAW264.7 (108). The same inhibitor increased the 
association of TNF mRNA with hnRNPA1 but decreased 
its association with PSF in Jurkat cells (104, 105). Mnks 
are proposed to regulate the translation (104, 106) 
and/or stability (108) of TNF mRNA through the 
phosphorylation of one or more associated RNA binding 
proteins. The specificity of CGP57380 is imperfect (40), 
therefore it would be extremely valuable to confirm 
these findings in the Mnk1/Mnk2 knockout mouse 
(109). 

4. MEDIATORS OF POST-TRANSCRIPTIONAL 
REGULATION BY MAPKS 
 
4.1. Tristetraprolin 

Tristetraprolin (TTP) is a member of a small 
family of RNA-binding proteins that recognize AREs via a 
conserved, central tandem zinc finger domain (110) (Figure  
3). Amongst several alternative names, TTP is also known 
as ZFP36 (zinc finger protein of 36 kD). In general, TTP 
protein is weakly expressed under basal conditions but 
upregulated in response to a variety of agonists. At least in 
murine macrophages, the expression of TTP is dependent 
on p38 MAPK (74, 111, 112). TTP may bind to AREs 
within its own 3’ UTR and autoregulate its expression (74, 
113), although this idea remains controversial (114). The 
function of endogenous TTP protein has been investigated 
in cells of the myeloid lineage, and more recently in T cells 
(115, 116), B cells (117) and fibroblasts (114). In transient 
transfection experiments we observed destabilization of 
reporter mRNAs by quantities of exogenous TTP that were 
below the limit of detection. IL-1 or PMA induced the 
expression of TTP in HeLa cells, although the abundance 
of the protein remained so low that it could be detected 
only with some difficulty (our unpublished observations). 
Great care needs to be taken before describing a given cell 
line as “TTP null” (88, 118). 
 

The TTP relatives BRF (butyrate response factor) 
1 and 2 are also known as ZFP36-like proteins 1 and 2 
(ZFP36L1 and ZFP36L2). At the mRNA level, ZFP36, 
ZFP36L1 and ZFP36L2 are expressed widely but at 
different levels in normal human tissues (119). The three 
proteins appear to bind RNA with similar specificity, and 
function identically as effectors of ARE-dependent mRNA 
decay, suggesting that redundancy may exist between the 
members of the family (15, 17, 120, 121). Yet murine 
knockouts of TTP and ZFP36L1 differ strikingly. The 
ZFP36L1 knockout is embryonic lethal, at least partly due 
to dysregulation of VEGF expression in the developing 
embryo (122, 123). As discussed below, the TTP knockout 
is not embryonic lethal but has an inflammatory phenotype. 
An authentic ZFP36L2-null mouse has not yet been 
generated (124). The ZFP36 proteins may serve different 
functions by virtue of different patterns of expression, 
subtle differences in RNA binding specificity that have so 
far escaped detection, or different mechanisms of 
regulation. 
 

A number of studies have independently 
concluded that TTP specifically recognizes the sequence 
UUAUUUAUU (125-127). This sequence was highly 
enriched amongst transcripts that associated with TTP 
protein in vivo (128). Wright and colleagues (129) have 
solved the structure of a nonameric UUAUUUAUU 
oligoribonucleotide in complex with the RNA-binding 
domain of the ZFP36L2. A conformational change is 
thought to take place on binding of ZFP36L2 to its RNA 
substrate. The zinc finger domain of TTP is very closely 
related to that of ZFP36L2 and is thought to interact with 
substrate in a similar fashion, with a structural change 
induced by nucleic acid binding (126, 130). Like several 
other RNA-binding proteins, TTP can shuttle between the 
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Figure 3. Properties of ARE-binding proteins. Members of the ZFP36/TTP family (blue), FBP/KSRP family (green) and 
AUF/hnRNP D family (red) are shown to scale. Zinc finger domains (ZFD), hnRNP K homology domains (KH) and RNA-
recognition motifs (RRM) are indicated in solid colors. Percentages of identical residues within amino-terminal, central RNA-
binding and carboxy terminal domains are indicated, in each case compared to the first protein in the alignment. Conservation of 
putative phosphorylation sites is illustrated, with amino acid sequences in the same order as the whole proteins. Residues 
conserved in two or more family members are in color, and sites of phosphorylation of TTP (S186) and KSRP (T692) are 
indicated by asterisks. In the case of the AUF family, alternatively spliced exons are indicated by numerals. The phosphorylation 
site S83 is encoded by exon 2, therefore is absent from AUF1 p37, AUF1 p42 and both splice isoforms of AUF2. 

 
nucleus and the cytoplasm, but is almost exclusively 
cytoplasmic under most conditions. Several protein motifs 
have been implicated in the nuclear export and import of 
TTP (131-135). Of most direct relevance, the binding of 
14-3-3 proteins to serine 178 was implicated in the 
cytoplasmic accumulation of murine TTP (135). 14-3-3 
proteins are multifunctional adaptor proteins that 
specifically recognize serine- or threonine-phosphorylated 
partner proteins and control phosphorylation-dependent 
phenomena such as subcellular localization and protein 
stability (136-138). The implication is that cytoplasmic 
localization of TTP is partly dependent on phosphorylation 
of serine 178, as we will discuss below. 
 

In vitro and in transfected cells TTP promotes the 
deadenylation of ARE-containing reporter transcripts (20, 

139-141). Furthermore TTP and ZFP36L1 interact with 
several components of the cellular mRNA degradation 
machinery, including deadenylases, decapping complexes 
and exonucleases (14, 15, 17, 18, 20). Tethering of TTP 
protein to reporter mRNAs resulted in localization of those 
transcripts to processing bodies and rapid degradation (14, 
15, 17). Depletion of TTP and ZFP36L1 impaired, whereas 
overexpression of TTP or ZFP36L1 enhanced, the 
localization of ARE-containing reporter transcripts to 
processing bodies (17). In these studies exogenous TTP and 
TTP fusion proteins were expressed without deliberate 
activation or inhibition of the signaling pathways that are 
thought to control expression and function of endogenous 
TTP. It would be interesting to determine whether 
activation of MAPK signaling pathways and 
phosphorylation of specific residues influenced the 
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localization or turnover of a reporter transcript to which 
TTP was tethered. 
 

The murine TTP knockout results in a complex 
inflammatory syndrome characterized by myeloid 
hyperplasia, cachexia, erosive arthritis, dermatitis and 
conjunctivitis (110, 142). Much of this pathology is due to 
enhanced stability of TNF mRNA and increased expression 
of TNF protein by cells of the myeloid lineage (142-144). 
The phenotype is likely to be influenced by dysregulation 
of other transcripts in both myeloid and other cell types. 
TTP-/- animals or cells show abnormal expression of CSF2 
(colony stimulating factor 2, also known as 
granulocyte/macrophage colony stimulating factor), COX-
2, IL-2, CXCL1 and a number of other 
immune/inflammatory mediators (116, 140, 145, 146) (our 
unpublished observations). Of particular interest, TTP 
directly controls expression of the potent anti-inflammatory 
cytokine IL-10 via its interaction with the IL-10 3’ UTR 
(128) (our unpublished observations). Hence the TTP null 
phenotype may be a complex outcome of changes in 
expression of both pro- and anti-inflammatory mediators. 
In summary, TTP is well characterized as an important 
effector of ARE-dependent mRNA degradation. Several 
targets of TTP-mediated post-transcriptional regulation 
have been identified, and other putative targets are coming 
to light, for example through the systematic analysis of 
mRNA stabilities in TTP null fibroblasts (114) or by 
analysis of transcripts associated with TTP in vivo (128). 
 

TTP is very extensively phosphorylated in vivo 
(112, 147-149). Mass spectrometric analysis identified ten 
major sites of phosphorylation of exogenously expressed 
TTP in HEK293 cells, as well as several minor sites (149). 
It should be noted that signaling pathways involved in the 
phosphorylation of TTP may not have been fully active in 
these cells, since no stimulus was applied. In vitro TTP 
could be phosphorylated by all three major MAPKs (147, 
150-154), although sites of phosphorylation and functional 
consequences are not yet known. Since p38 MAPK 
regulates mRNA stability via MK2, it is significant that 
TTP is efficiently phosphorylated by MK2 in vitro (112). 
Two major sites of phosphorylation by MK2 were 
identified as serines 52 and 178 (of murine TTP) (155). 
There is evidence that both sites are phosphorylated in vivo, 
and that MK2 is at least partly responsible (149, 155, 156). 
Note that the sequence surrounding the distal 
phosphorylation site is quite well conserved in ZFP36L1 
and ZFP36L2 (Figure  3). The corresponding site in 
ZFP36L1 has been implicated in the regulation of ZFP36L1 
function by PKB (157). 
 

TTP-/- macrophages were relatively insensitive to 
the inhibitory effect of p38 inhibitors on TNF gene 
expression, suggesting that post-transcriptional gene 
regulation by the p38 MAPK pathway may be mediated by 
TTP (150). Whereas MK2-/- mice underexpressed and TTP-

/- mice overexpressed TNF, double knockout mice 
expressed roughly the same quantity of TNF as the TTP 
knockouts. Therefore MK2 regulates TNF biosynthesis 
chiefly by inactivating TTP (84). CXCL-1 mRNA was 
destabilized by a p38 inhibitor in wild type macrophages 

but not in TTP-/- macrophages (146). The same is broadly 
true of TNF, IL-10 and a number of other mRNAs (our 
unpublished observations). One exception is that TNF 
mRNA was very weakly (but statistically significantly) 
destabilized by p38 inhibition in TTP-/- macrophages. 
These observations demonstrate that the p38-MK2 pathway 
regulates the stability of certain inflammatory mediator 
mRNAs exclusively (or almost exclusively) via TTP (at 
least in murine macrophages). 
 

It is clearly crucial to understand what MK2-
mediated phosphorylation does to TTP. The 
phosphorylation of serines 52 and 178 increases the 
interaction of TTP with 14-3-3 proteins (155, 156, 158, 
159), with a highly complex set of consequences (Figure  
4). 1) Prevention of dephosphorylation. The 
phosphorylation status of TTP is dynamically regulated by 
a balance of kinase and phosphatase activities (111, 156). 
The binding of 14-3-3 proteins protects TTP from PP2a-
mediated dephosphorylation (156). The cellular equilibrium 
between phosphorylated and unphosphorylated TTP may 
therefore be set by 14-3-3 protein availability, although this 
remains to be tested. 2) Prevention of proteasome-
mediated degradation. In transfected cells, coexpression 
of 14-3-3 proteins increased the levels of TTP protein 
(135). MK2-dependent phosphorylation of serines 52 and 
178 prevented the proteasome-mediated degradation of 
TTP protein, presumably because the recruitment of 14-3-3 
proteins blocks targeting of TTP to the proteasome (84, 
111). 3) Regulation of subcellular localization. TTP can 
be detected in both stress granules (distinct cytoplasmic 
foci at which translationally silenced mRNAs are stored 
under conditions of cellular stress) and processing bodies 
(4, 6, 160, 161). Phosphorylation at serines 52 and 178 
resulted in exclusion of TTP from stress granules (158). The 
significance of this is uncertain, because stress granules are not 
thought to be sites of mRNA degradation, and it is not known 
whether they are formed during a normal physiological 
response to a pro-inflammatory stimulus. In HeLa cells IL-1 
caused transient relocalization of a GFP-TTP fusion protein 
from the nucleus to the cytoplasm in a manner dependent on 
p38 MAPK activation and intact serines 52 and 178 (our 
unpublished observations). The stabilization of TTP mRNA 
and protein by p38 MAPK (74, 84, 111) makes it difficult to 
observe endogenous TTP protein under conditions of chronic 
p38 inhibition. However, addition of a p38 inhibitor to 
macrophages that had previously been stimulated with LPS 
resulted in relocalization of pre-existing endogenous TTP to 
the nucleus (111). This is consistent with the previous 
observation that 14-3-3 proteins enhanced the cytoplasmic 
accumulation of TTP in a manner dependent on serine 178 
(135), but its physiological significance is so far unknown. 
4) Regulation of RNA binding activity. MK2-mediated 
phosphorylation of serines 52 and 178 was suggested to 
decrease the affinity of TTP for cognate RNA (84), 
although other studies disagreed with this conclusion (155, 
156, 158). 5) Regulation of mRNA-destabilizing activity. 
Phosphorylation of serines 52 and 178 impaired the RNA 
destabilizing function of TTP. Wild type TTP destabilized 
an ARE-containing reporter but was inactivated by MK2, 
whereas a serine 52/178 mutant destabilized the reporter 
and was unresponsive to MK2 (158).
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Figure 4. Regulation of TTP by the p38-MK2 pathway. In this simplified schematic, only MK2 mediated phosphorylations of 
TTP are considered. An equilibrium exists between phosphorylated and unphosphorylated TTP. The position of the equilibrium 
is influenced by 14-3-3 proteins, which bind to phosphorylated TTP and protect it from dephosphorylation by PP2A. 
Dephosphorylated TTP protein is excluded from stress granules and prone to degradation by the proteasome, but more active in 
the degradation of target transcripts. The role of MK2-mediated phosphorylation in the nuclear-cytoplasmic distribution of TTP 
is not well established; the effect of MK2-mediated phosphorylation on the affinity of TTP for RNA is controversial; and the link 
between degradation of TTP protein and TTP-bound mRNAs is uncertain (dotted arrows). 

 
The p38 MAPK-MK2 pathway thus appears to 

have extremely complex effects on TTP. Via the regulation 
of mRNA stability, protein stability and localization it 
promotes the accumulation of cytoplasmic TTP. However 
this form of TTP is phosphorylated, inactive, possibly 
sequestered. The cell is therefore poised to rapidly degrade 
target mRNAs when the activity of MK2 declines and the 
kinase-phosphatase equilibrium shifts towards TTP 
dephosphorylation and activation. At the same time TTP 
protein becomes susceptible to proteasome-mediated 
destruction. An intriguing finding that merits further 
investigation is that the degradation of TTP target mRNAs 
appears to be somehow coupled to the degradation of TTP 
protein itself (91). 
 

There are many other interesting questions. For 
example, does regulation of an mRNA by TTP imply 
regulation by the p38 MAPK pathway? The majority of 
known targets of TTP are also post-transcriptionally 
regulated by the p38 pathway. Novel TTP targets were 
recently identified by investigation of TTP-/- fibroblasts 
(114). The most completely characterized of these novel 
targets was Ier3 (immediate early response 3), which was 
elsewhere shown to be stabilized in a p38-dependent 
manner in response to Herpes simplex virus infection 

(162). It is not yet known whether other recently-identified 
targets of TTP are post-transcriptionally regulated by p38 
MAPK. The question can be put another way: are all genes 
that are post-transcriptionally regulated by p38 MAPK 
targets of TTP? This is an important issue, in view of 
alternative mechanisms of mRNA stabilization by the p38 
pathway discussed below. An informative approach might 
be to ask whether post-transcriptional regulation by p38 
MAPK is impaired in non-myeloid cells (for example 
muscle cells) derived from TTP-/- mice. 
 

A very important question is what the MK2-
mediated TTP phosphorylation does if it does not impair 
RNA binding. An obvious hypothesis is that it blocks the 
interaction of TTP with one or more of the components of 
the mRNA decay machinery, but this has not been 
demonstrated. The many sites of phosphorylation of TTP 
suggest that it may serve as a target of post-transcriptional 
regulation by other kinases. Regulation of TTP function 
through direct phosphorylation by p38 MAPK itself cannot 
yet be ruled out. According to recent reports the mRNA 
destabilizing function of TTP could be impaired through 
activation of the ERK pathway (91, 163). In one case 
inhibition of both ERK and p38 MAPK was required for 
prevention of TTP-mediated mRNA decay (91). 



Post-transcriptional gene regulation by MAP kinases 

856 

Intriguingly, ERK and p38 MAPK pathways also 
cooperated to regulate the stability of TTP protein (111). 
Although ERK is known to phosphorylate TTP (147, 152, 
153), sites of phosphorylation remain to be identified. Until 
this is done the nature of the convergence of ERK and p38 
MAPK pathways on TTP cannot be elucidated.  
 
4.2. HuR 

HuR is the only widely-expressed member of the 
mammalian ELAV family of RNA binding proteins, the 
others being restricted to neuronal cells (164). HuR is 
chiefly localized in the nucleus but, like TTP and many 
other RNA binding proteins, has the capacity to shuttle 
between nucleus and cytoplasm. It is clearly an mRNA 
stabilizing factor that binds to AREs, but it also recognizes 
other U-rich sequences (165). Consistent with its rather 
relaxed binding specificity, HuR has been implicated in the 
post-transcriptional control of many genes (164, 166-168). 
Amongst these are several genes involved in the regulation 
of apoptosis, therefore HuR appears to be a key coordinator 
of a pro-survival program (168). Like the Drosophila 
melanogaster orthologue ELAV, HuR is probably essential 
for cell survival and proliferation, and no mammalian 
knockout has yet been described. It is thought to be 
involved in the assembly of ribonucleoprotein complexes in 
the nucleus and their export to the cytoplasm as well as 
subsequent cytoplasmic events. Manipulation of cellular 
HuR levels may perturb early post-transcriptional events, 
therefore experiments involving overexpression or 
knockdown by RNA interference need to be interpreted 
with caution. 
 

In many cancers, increased cytoplasmic 
expression of HuR has been linked to poor prognosis and 
elevated expression of pro-survival genes, in particular 
COX-2 (33, 167, 169, 170). Cytoplasmic accumulation of 
HuR is induced by several stimuli, including pro-
inflammatory cytokines, ultraviolet light, T cell activation 
and heat shock. In many cases mRNA stabilization and 
cytoplasmic accumulation were both prevented by p38 
MAPK inhibitors (171-176). It has therefore been 
suggested that p38 stabilizes target mRNAs by promoting 
relocalization of the stabilizing factor HuR to the 
cytoplasm. 
 

We raise a number of concerns about this 
hypothesis. Whilst p38 MAPK is thought to regulate 
mRNA deadenylation (67), HuR exerts its stabilizing effect 
by blocking the degradation of the mRNA body, not 
deadenylation (176-178). Detailed analysis of COX-2 and 
IL-8 AREs showed that HuR binding and p38-regulated 
mRNA stability did not have the same sequence 
requirements (87, 88). Stimulation of T cells through CD3 
induced relocalization of HuR from the nucleus to the 
cytoplasm but did not stabilize IL-2 mRNA. Costimulation 
through CD3 and CD28 stabilized IL-2 mRNA but did not 
further increase cytoplasmic levels of HuR, therefore 
changes in mRNA stability can be uncoupled from changes 
in HuR localization (179). Stabilization of mRNA by the 
p38 MAPK pathway can occur within less than an hour. In 
many of the cases that have been described, it is not clear 
that relocalization of HuR to the cytoplasm occurs with 

similar rapidity. HuR activity and/or localization are 
regulated directly or indirectly by the checkpoint kinase 
Chk2, the AMP-regulated kinase and protein kinase C 
(180-183). However, there is so far no mechanistic 
explanation for effects of the p38 MAPK pathway on HuR, 
through phosphorylation of HuR itself or the proteins that 
control its localization. Until such a link is found it remains 
possible that relocalization of a small fraction of cellular 
HuR from the nucleus to the cytoplasm does not have a 
direct causal role in p38-mediated mRNA stabilization. For 
example, assume that HuR is required for the export of 
several mRNAs from the nucleus, and remains associated 
with those mRNAs throughout their cytoplasmic life-span. 
The p38-mediated stabilization of a subset of those mRNAs 
might then lead to, rather than be caused by, an increase in 
cytoplasmic levels of HuR. Pending the description of a 
more direct link between HuR and p38 MAPK, this is 
offered as an alternative hypothesis. 
 
4.3. KSRP 

KH-domain splicing regulatory protein (KSRP) 
belongs to a small family of proteins, members of which 
have been implicated in the regulation of transcription, 
mRNA splicing, editing and localization. A recent addition 
to this list is the regulation of mRNA turnover. KSRP 
interacts with the exosome and other decay components in 
vivo (13, 16, 18). Depletion of KSRP inhibited the decay of 
ARE-containing reporter mRNAs in vitro and in vivo (13), 
and tethering of KSRP to reporter transcripts promoted 
their decay (16). KSRP is involved in post-transcriptional 
regulation by two distinct signaling pathways, the PI3K and 
p38 MAPK pathways (184-187). 
 

The p38 MAPK pathway controls terminal 
differentiation of muscle cells by regulating expression of 
the transcription factor myogenin and the cyclin-dependent 
kinase inhibitor p21waf/cip, amongst several other genes (46). 
Myogenin and p21 mRNAs are destabilized by KSRP. 
Under differentiating conditions p38 MAPK is activated, 
phosphorylates KSRP at threonine 692, inhibits its 
interaction with RNA and consequently stabilizes 
myogenin and p21 mRNAs (186). Ten transcripts were 
found to bind to KSRP in HeLa cells, and to be upregulated 
and stabilized when KSRP was depleted by RNA 
interference (187). Amongst these targets, COX-2, CSF2, 
CXCL2, CXCL3, IL-6 and IL-8 are already known to be 
post-transcriptionally regulated by the p38 MAPK pathway 
(Table 1). KSRP is not phosphorylated by MK2 and does 
not mediate regulation of mRNA stability by MK2 (186, 
187). Therefore, two pathways are suggested to exist for 
the stabilization of target transcripts by the p38 MAPK 
pathway, one involving the phosphorylation and 
inactivation of KSRP by p38 itself, the other involving 
phosphorylation and inactivation of TTP by MK2 (187). It 
remains to be resolved whether KSRP and TTP function 
separately or cooperate to modulate mRNA stability in 
response to p38 MAPK. 
 

The RNA binding specificity of KSRP has not 
been characterized in detail. Considerable structural 
flexibility of KSRP protein is thought to underlie its 
capacity to recognize many different sequence elements 
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and participate in distinct post-transcriptional processes 
(188).  The two related proteins FBP1 (Far upstream 
sequence element Binding Protein 1) and FBP3 are 58% 
and 40% identical to KSRP, but share strongest homology 
within the KH domains that mediate RNA binding (Figure  
3). FBP1 was identified as a HeLa cell protein interacting 
with the COX-2 ARE (88), and all three family members 
were identified by affinity purification of proteins 
recognizing the TNF ARE (89). The site of 
phosphorylation of KSRP by p38 MAPK is moderately 
well conserved in FBP1 but not FBP3 (Figure  3). 
However, it is not known whether  FBP1 or FBP3 
contributes to ARE-dependent and/or p38-regulated mRNA 
degradation. KSRP, at least, appears to be a p38-sensitive 
effector of mRNA decay, but it is unclear whether the 
specificity of gene regulation by the p38 MAPK pathway 
can be accounted for by KSRP alone. Possibly the 
recruitment of KSRP to target transcripts is influenced by 
other RNA binding proteins that have greater sequence 
specificity. 
 
4.4. The AUF family 

AUF1 was amongst the first ARE-binding 
proteins to be recognized (2, 3, 189). TNF and IL-1β 
mRNAs were unusually stable in macrophages derived 
from an AUF1-/- mouse, the corresponding proteins were 
overexpressed in response to LPS, and AUF1-/- mice were 
highly susceptible to lethal endotoxic shock (190). AUF1 is 
therefore a critical negative regulator of innate immune 
responses. Four isoforms of AUF1, ranging from 37 kD 
to 45 kD in molecular mass, are generated by alternative 
splicing of the primary transcript (Figure  3). Although 
AUF1 is generally thought of as an mRNA destabilizing 
factor, it may under some circumstances exert the 
opposite effect. The AUF1 p37 isoform interacts with 
the exosome and is the principal destabilizing isoform 
(18, 191, 192). Post-transcriptional outcomes may 
depend on the relative levels of expression and 
subcellular localizations of the four isoforms (193-195). 
Databases contain a number of proteins closely related 
to AUF1. One of these, AUF2 (Figure  3), shows strong 
similarity with AUF1 in terms of its genomic organization, 
alternative splicing, RNA binding specificity and function 
(196). AUF2 and other related proteins have been little 
studied in the context of mRNA stability. It is not clear 
whether the members of this family have distinct functions 
or patterns of expression. 
 

MAPKs phosphorylate serine and threonine 
residues followed by proline residues. Certain 
phosphorylated Ser-Pro and Thr-Pro sites are recognized by 
the peptidyl isomerase Pin1, which catalyzes cis-trans 
isomerization about the proline peptide bond, and thus 
brings about signaling-dependent changes in protein 
structure and function (197, 198). Pin1 was associated with 
AUF1 in vivo. Inhibition of Pin1 activity decreased the 
stability of CSF2 mRNA and increased its association with 
AUF1 (192, 199). These observations are consistent with a 
model in which phosphorylation of AUF1 converts it into a 
substrate for Pin1, isomerization of AUF1 inhibits its 
interaction with CSF2 mRNA and results in stabilization of 
that transcript. 

The ERK pathway controls CSF2 mRNA 
stability (200) and has been tentatively linked to the Pin1-
mediated modulation of mRNA stability (192, 199). 
However, the p45 isoform of AUF1 contains only three 
potential sites of phosphorylation by proline-directed 
kinases, only one of which (S83) has been shown to be 
phosphorylated in vivo. Glycogen synthase kinase 3β rather 
than ERK was implicated in the phosphorylation of S83; 
stimulation of the myeloid cell line THP-1 with PMA (a 
classical activator of the ERK pathway) resulted in loss 
rather than gain of phosphorylation of S83; and the 
phosphorylation of this site did not appear to influence 
affinity for an ARE substrate (201, 202). Furthermore S83 
is encoded by exon 2 and is therefore not present in the p37 
isoform of AUF1 that is considered the main effector of 
mRNA degradation. Although Pin1 appears to play a role 
in the regulation of mRNA stability, it remains to be 
demonstrated conclusively that AUF1 is the principal 
target, and the connection with ERK or other MAPK 
pathways remains to be established. 
 
4.5. Other mediators of post-transcriptional regulation 
by MAPKs 

Heterogeneous nuclear ribonucleoprotein 
(hnRNP) A0 (89) and poly (A) binding protein (203) were 
independently identified as ARE-binding proteins that 
could be phosphorylated by MK2. In both cases the 
relevance of such phosphorylation to p38-mediated post-
transcriptional regulation remains to be demonstrated. 
 

Translation and turnover of mRNAs are regulated 
not only by sequence-specific RNA binding proteins but 
also by short non-coding RNAs known as micro RNAs or 
miRNAs. Interactions between miRNAs and mRNAs are 
nucleated by base-pairing between the seven nucleotide 
“seed region” of the miRNA and a complementary 
sequence of the target mRNA, most often within the 3’ 
UTR. As described in recent reviews (204-207), miRNAs 
are now believed to target approximately 30% of 
eukaryotic protein-coding mRNAs, and to contribute to the 
regulation of many biological phenomena. At least in part, 
ARE-dependent and miRNA-mediated post-transcriptional 
regulation share a subcellular location, the processing body 
(5-7). There are several possible mechanisms of crosstalk 
between the two post-transcriptional mechanisms, a few of 
which have been described in recent publications. 1) 
Biogenesis of miRNAs may be regulated by MAPKs at the 
level of transcription or processing of the precursor RNA. 
For example expression of miR-155 in response to immune 
or inflammatory activation is dependent on JNK and/or 
ERK pathways (208, 209). 2) Protein components of the 
miRNA-mediated silencing machinery could be 
phosphorylated and regulated by MAPK pathways. To our 
knowledge this has not yet been reported. 3) miRNAs could 
participate in the regulation of mRNA stability or 
translation by sequence-specific RNA binding proteins. 
The miRNA miR-16 and RNA-induced silencing complex 
(RISC) were implicated in the regulation of mRNA 
stability by TTP (210). Curiously, it is not the seed region 
of miR-16 that is complementary to the ARE core sequence 
AUUUA, as might be expected for a conserved mechanism 
of ARE-dependent control. It is also unclear whether the 
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simultaneous binding of a complementary miRNA and 
RISC proteins could be consistent with the direct, high 
affinity interaction of TTP with an RNA substrate. 4) If 
miRNAs and RNA-binding proteins recognize identical or 
overlapping sequences, then MAPK-mediated regulation of 
protein binding could indirectly influence the miRNA 
pathway. Conversely, changes in expression of miRNAs 
could antagonize or augment post-transcriptional regulation 
by RNA-binding proteins (207). These possibilities have 
not yet been explored in detail. 
 
5. SUMMARY AND PERSPECTIVE 
 

The study of stimulus-dependent modulation of 
mRNA stability is relatively new. Although significant 
advances have been made during the last few years, several 
major challenges remain. This review has focussed on 
ARE-binding proteins, but proteins with quite different 
RNA-binding specificities are becoming recognized as 
mediators of signal-dependent changes in the translation or 
degradation of mRNA. It is still not well understood how 
the primary sequence and secondary structure of an 
endogenous mRNA determines its interactions with all of 
these proteins in vivo, and how such interactions permit 
signaling pathways to exert tight control over specific 
subsets of transcripts. Even amongst well-known and 
much-studied regulators of mRNA stability, it is unclear 
how much functional redundancy exists between closely 
related family members. Although certain important 
phosphorylation events have been identified, we do not yet 
know what these phosphorylations mean in terms of the 
localization of target mRNAs and their interactions with the 
cellular mRNA degradation machinery. We have described 
some processes involved in the signal-dependent 
stabilization of mRNAs. The reverse phenomenon, signal-
dependent mRNA destabilization, may be equally 
important but has not yet been studied in detail. Finally, an 
area of interest for future research will be the convergence 
of post-transcriptional mechanisms that depend on 
sequence-specific protein-RNA or RNA-RNA interactions, 
and the impact of MAPK signalling on the interactions of 
the two distinct machineries. 
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