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1. ABSTRACT 
 
 

In the study of protein-protein interactions, one is 
interested in identifying domains as well as short motifs 
that bind to these domains. Short motifs also confer 
functions to proteins such as post-translational 
modification, protein-protein interaction, and protein 
trafficking. Identification of domains is relatively easy 
since they are sufficiently long enough to render the 
likelihood of occurrences by random chance very low. On 

the other hand, the identification of motifs is a challenge 
since they are typically very short. Thus it is vital to 
develop efficient techniques to identify motifs. In this 
paper we survey some of the techniques that have been 
proposed in the literature for motifs identification. 
  
2. INTRODUCTION 
 

Motif search is an important problem in biology 
since it has numerous applications including the study of 
protein-protein interactions. Numerous approaches have 
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been proposed in the literature for solving this crucial 
problem. These techniques can perhaps be categorized into 
two, namely, experiments-based and computing-based. In 
this paper we provide a summary of some of the 
computing-based techniques that have been employed in 
motif search. We also briefly summarize experiments-
based techniques. 
 

Genomic sequencing allows the identification of 
nearly all of the genes in an organism, from which the 
potential gene products can be inferred. However, genomic 
sequencing does not provide direct information on the 
function of the individual gene products, nor their 
interrelationships. Current approaches for predicting the 
function of proteins  provide important clues, but we need 
more approaches. Homology analysis of protein sequences 
has proven effective in inferring protein function, most 
notably by facilitating the identification of similar protein 
domains in different genes and organisms (see e.g., 
PROSITE and SMART) (1-2). The function of the domain 
can then be inferred from previously characterized proteins 
and subsequently confirmed in the uncharacterized 
proteins. However, this approach requires that a query has 
homology to a domain that has already been characterized. 
As protein domains are highly conserved throughout 
evolution, it is logical to expect that their binding partners 
or substrates would be conserved as well. The domain may 
contain short functional sites (such as protein interaction 
sites) that can indicate the function. These functional sites 
are what we refer to as motifs in this paper. These motifs 
are difficult to find just based on conservation alone since 
short conserved segments can occur in multiple species by 
random chance. However, as a first step in the process of 
identifying motifs, we can obtain a list of closely conserved 
short sequences that occur in multiple species. There could 
be many false positives in this list. We could then apply 
various filters to trim this list down further. This general 
theme is used by many scientists. 
  

In this paper we focus on motif search 
algorithms. We can categorize motif search techniques into 
two: experimental and computational. Experimental 
techniques, by nature, are very time consuming. However, 
whether a putative motif is real or not can only be 
confirmed with experiments. Even if we have an upper 
bound on the length of any motif, since there could be a 
large number of possible strings, experimentally verifying 
if each of these strings is a real motif or not is impractical. 
This is where the computational techniques could help 
significantly. Computational techniques can process 
through all possible strings of a given length and identify a 
small number of them as putative motifs which then can be 
experimentally evaluated. Though a major goal of this 
paper is to discuss computational techniques for motif 
search, we provide a brief introduction to experimental 
techniques in Section 3. Section 4 is devoted to 
computational techniques.    
  
3. EXPERIMENTAL TECHNIQUES 
 

When computational techniques identify putative 
motifs, we can confirm these with biochemical 

experiments. Though experimental techniques are very 
accurate, they are very costly and time consuming. 
Computational techniques can be used to reduce the cost 
and time significantly. Functional subdomains can be 
identified experimentally using cross-linking, assay of 
proteolytic fragments, the study of mutants, etc. (3). Motifs 
can be found from crystal structure data. Experimental 
techniques have been used to find binding sites as well. 
Experimental techniques include analyzing protein 
complexes, phage display, and mutagenesis (4-6). 
 

Edwards, et al. address the problem of 
discovering novel bioactive peptides (7). Short synthetic 
oligopeptides that encompass functional motifs play an 
important role in the study of protein signaling and 
interactions. The authors specifically targeted oligopeptides 
that could identify human platelet function. Toward this 
goal they have employed high-throughput in vitro platelet 
function assays and have been able to identify many 
agonists and antagonists of platelet function. 
  
4. COMPUTATIONAL TECHNIQUES 
 

In this Section we discuss computational 
techniques that have been proposed for motif search. 
Computational techniques can be classified into two, 
namely, discrete algorithmic methods and stochastic (or 
statistics based) methods. In general, stochastic methods 
are non-optimal or non-complete algorithms. These 
algorithms perform well in practice. On the other hand, 
discrete algorithmic techniques typically focus on 
providing optimal and/or complete results. Run times of 
some of these techniques could be long. For example, the 
run times could be exponential in some of the underlying 
parameters. In Section 4.1 we introduce statistics based 
methods and Section 4.2 is devoted for discrete algorithmic 
techniques. 
 
4.1. Statistics based techniques 

Several statistical techniques have been used to 
identify putative motifs. For example, Austin, et al. have 
applied statistical techniques to identify tripeptide motifs in 
the C-termini (8). They point out that C-termini are often 
sites of activity for a variety of biologically important 
functions and hence the authors concentrate on identifying 
motifs in C-termini. Their basic approach is to estimate the 
over-representation of position-specific tripeptides in seven 
eukaryotic proteomes using z-statistic. In order to reduce 
background noise they employ randomization models and 
masking. Before estimating the over-representation they 
cluster the proteins into gene-families and the analysis is 
performed within individual families. This is done to 
eliminate errors that might be caused by counting irrelevant 
representations of any motif. Comparative genomics has 
then been applied to identify tripeptides that are over-
represented across many species. They report a good 
success with their approach. For example, they have been 
able to predict all the C-terminal targeting motifs present in 
the literature (at the time of publication).  Deng, et al. have 
used maximum-likelihood method to estimate domain-
domain interactions (9). Reiss and Schwikowski build a 
simple probabilistic model based on protein sequence 
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information and all versus all protein interaction datasets to 
identify ligand peptides of peptide recognition modules 
(10). 
    

The algorithms PRINTS, BLOCKS, 
GibbsSampler, and MEME also fall under the statistics 
based methods. None of these techniques is optimal but 
give a reasonably good set of candidate results with high 
statistical significance. For example, MEME works as 
follows (11). Given a set of input sequences, it fits a two-
component finite mixture model to these sequences using 
expectation maximization. This algorithm also takes as 
input the length of the motif under concern. It is capable of 
finding multiple motifs. MEME also outputs a model and a 
threshold for each motif. This model and the threshold can 
be used to find occurrences of the same motif in other 
databases.  
  
4.2. Discrete algorithmic methods  
4.2.1. Web-based systems 

Several web-based systems are available for 
motif search. In this section we provide details on some of 
them. 
  
4.2.1.1. ELM  

ELM is a system developed for investigating 
candidate short non-globular functional motifs in 
eukaryotic proteins (12). A user can input any protein 
sequence and the species information. The user, optionally, 
can also submit relevant sub-cellular compartment(s). The 
ELM server then identifies plausible motifs. The main 
algorithm used by ELM is one of sequence comparisons. It 
looks for substrings in the query sequence that are very 
similar to the already known motifs. These matching 
substrings serve as candidates for output. However, 
sequence similarity alone might result in too many false 
positives. Thus ELM uses a series of filters to eliminate as 
many false positives as possible. Even then it may not 
eliminate all of the false positives. In fact computational 
techniques alone cannot eliminate all the false positives. 
Experimental confirmation is the ultimate proof of a motif. 
False positives could arise because the sequence matches 
occur in an irrelevant context or because they match to a 
wrong cellular compartment (12). 

 
ELM keeps a database with tens of tables that 

store information relevant for linear motifs. All data input 
is handled with hand curation. Annotation of a motif 
involves literature search, similarity search using BLAST, 
multiple sequence alignment of relevant sequences, etc. 
Motif patterns are represented as POSIX regular 
expressions. Two annotation standards, namely, Gene 
Ontology (GO) and the NCBI taxonomy database 
identifiers are used. 
  

Some of the filters used by ELM are: 1) Cell 
Compartment Filter: Each motif in ELM is annotated with 
cell compartments in which the motif is known to function. 
If the user inputs the compartments in which the query 
sequence is known to function, ELM will restrict its output 
to only matches in these compartments; 2) Globular 
Domain Filter: Matches inside globular domains are not 

reported. SMART and Pfam databases are used for this 
filtering; and 3) Taxonomic Filtering: Each motif in ELM 
is annotated with NCBI taxonomy node identifiers to 
denote its known phylogenic relations. Motifs that are not 
related to the lineage of the species input by the user are 
filtered out. 
  
4.2.1.2. SCANSITE 

Yaffe, et al. focus on the problem of inferring 
protein function and predicting protein-protein interactions 
(13). They point out that identifying signaling domains 
within protein sequences is a simpler problem than 
identifying short linear motifs targeted by the domains. 
They propose a technique for the discovery of motifs based 
on peptide-library based search. 
 

When a user inputs a query sequence, 
SCANSITE scans through the sequence looking for 
potential motifs. A sliding window of size 15 is used for 
this purpose. A score is computed for each substring of 
length 15. Within any substring, residues critically 
invariant for a motif are identified. A position-specific 
score is assigned for each residue in a window and a 
normalized score is obtained for each putative motif. This 
score, rawS , is then compared with the best possible score, 

optS , for each motif giving a final score of 

optrawoptf SSSS /)( −= . The fS value of each motif 

site within the query sequence is then compared to pre-
calculated scores of the motif for all possible sites and for 
all vertebrate sequences in SWISS-PROT to obtain a rank 
for the motif site. This site will be considered a hit if its 
rank exceeds a threshold value. 
 

For any given query sequence, SCANSITE 
provides a lot of information in the output. For example, it 
displays domain information (obtained using Pfam). Motif 
sites are displayed with a vertical bar the length of which is 
proportional to the corresponding score. An abbreviated 
name of the motif is also shown. A plot of the surface 
accessibility is also a part of the output. If one clicks on the 
protein cartoon, a table that carries detailed information on 
the motif sites, their scores, ranks, etc. is displayed.   
  
4.2.1.3. PROSITE 

Hulo, et al. have developed the web system 
PROSITE that stores protein domains, families and 
functional sites (14). It also stores the associated patterns 
and profiles that can be used to identify them. PROSITE 
has defined a set of rules, called ProRules, based on 
patterns that provide valuable information about 
functionality. A ProRule is nothing but a set of conditional 
annotations in Swiss-Prot format. The condition could be 
on the position-specific presence of amino acids, the 
presence of other domains, etc. The version of PROSITE 
dated November 11, 2007 has 1319 patterns, 745 profiles, 
and 764 ProRules. 
 

For any given query sequence, PROSITE reports 
matches to the patterns it has in its database. In earlier 
versions of PROSITE, the matches were reported without 
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any indication of the significance of the matches. The latest 
version uses a new method to estimate the significance of 
matches. 
  
4.2.1.4. MnM (Minimotif Miner) 

Balla, et al. have constructed a database of short 
motifs and their web system MnM 
(http://sms.engr.uconn.edu) helps users in the identification 
of motifs in proteins (15). They employ three different 
scores to score a candidate motif, namely, frequency score 
(FS), surface prediction score (SPS) and evolutionary 
conservation score (ECS). The web module of the MnM 
application has a database with data integrated from the 
current versions of RefSeq, LocusLink, HomoloGene and 
Taxonomy databases of NCBI. The protein sequences in 
RefSeq are screened for all minimotifs in the MnM 
database using a motif search algorithm for proteome of 
different species, namely, human, mouse, rat, yeast, rice, 
fruitfly, malaria parasite and watercress. Pre-processed 
minimotif statistics are stored in the MnM application 
database as follows. The total occurrences of each amino 
acid are measured for each proteome independently, the 
probability of finding a given amino acid X in a proteome 
being given by (∑AAX/∑AATOT) where AAX is the total 
count of the amino acid X in the proteome and AATOT is 
the total count of all the amino acids in the proteome. The 
expected count (Ce) of a minimotif in the proteome is given 
by the product of the probabilities of the individual or 
subsets of amino acids defining the minimotif and the 
possible number of occurrences of the minimotif in the 
proteome dataset. Let (Ca) be the actual count (i.e.) the 
actual number of occurrences of the minimotif in the 
proteome dataset. The enrichment factor efactor of a 
minimotif is defined as the ratio of its actual count to its 
expected count in the proteome dataset (efactor= Ca/ Ce). 
For minimotifs occurring in the N- and the C- termini, the 
positional probabilities of the amino acids is considered 
while calculating the expected count of the minimotif. 
Information stored in the MnM application database 
includes statistical details of the distribution of minimotifs 
present in the proteomes of various species, the actual 
count, the expected count and the enrichment factor of each 
minimotif.  
 

User-entered accession numbers retrieve protein 
details and minimotif information from the MnM 
application database. The user has the choice of entering 
three different types of accessions, namely, RefSeq 
Accession, SwissProt Accession or GI of a protein. Also, 
search criteria include the species for which minimotif 
statistics are to be retrieved and the sub-cellular 
localization of the minimotifs. For entries pasted into the 
sequence input window, the motif search algorithm 
searches the query sequence for each minimotif, recording 
its count and positions in the protein sequence. Sequences 
are sorted based on the motif score and output to the 
minimotif table. Three different scores can be used. For 
example, a ‘Frequency Score’ FS of a minimotif in a 
protein sequence of length x is arrived as follows: ms = Ca 
(p) / Ce (p), where Ca (p) is the actual number of 
occurrences of the minimotif in p and Ce (p) is the expected 
number of occurrences of the minimotif in p. The 

denominator is  Ce (p) = Ce * (x/m), where m is the total 
number of amino acid residues in the proteome dataset. 
  

The output screen of the search displays a table 
of protein details and provides links to various NCBI 
search sites. Minimotifs appear highlighted on the protein 
sequence at positions they occur. A table of minimotif 
statistics that ranks the minimotifs in descending order of the 
motif scores is also available. This table contains the actual 
count, the expected count and the motif score of the minimotif 
in the protein sequence, the actual count, the expected count 
and the enrichment factor of the minimotif in the proteome of 
the species for which the query was submitted, the positions of 
occurrence of the minimotifs in the protein and links to 
references available online for the minimotif. 
 

The user also has choices of viewing the domains 
(the “View Domains” button) and the SNPs (the “View SNPs” 
button) present in the protein. A table of minimotifs similar to 
the one explained above can be retrieved for the set of protein 
sequences in the group of the query protein in the 
HomoloGene database by clicking on the “View 
Homologenes” button. Individual minimotif can be 
highlighted on the protein sequence by choosing the radio 
button that belongs to it and using the “View Selected Motif” 
option. Also, there is a pop-up that displays information of 
minimotifs, domains and SNPs when the user moves the 
mouse over the highlighted portions of the protein sequence.  

 
Version 2 of MnM has been released in 

November 2008 (http://mnm.engr.uconn.edu).  
  
4.2.1.5. Other web systems 

There are other web systems such as DiLiMoT 
(Discovery of Linear Motifs) and SMART (Simple 
Modular Architecture Research Tool) (16, 2). 3MOTIF is a 
web application that can be used to visually map motifs 
onto 3D protein structures in the PDB (17). Crucial 
properties of the motifs are displayed with different colors 
in this map. 
  
4.2.1.6. A comparison of different web systems 

Table 1 provides a comparison of various web 
based systems for motif search. ELM uses sequence 
analysis as a primary technique and hence it can be 
categorized under the   discrete  algorithmics  technique.  
The filters it uses exploit  biological  information available 
in various databases such as GO. The query engine of 
MnM uses sequence analysis. This part of MnM uses 
discrete algorithmic techniques. For filtering it employs 
some statistics based techniques such as frequency 
analysis. Similar to ELM, MnM also employs some known 
biological databases to remove false positives. SCANSITE 
computes a score for each putative motif and it can be 
thought of as a purely statistics based method. On a given 
query sequence, PROSITE uses string matching algorithms 
to report matches to the patterns it has in its database. Thus 
PROSITE is also based on discrete algorithmic techniques. 
  
4.2.2. Algorithmic techniques 

The algorithmic aspects of motif search have 
been addressed by numerous researchers. Depending on the 
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data used by these techniques they can be classified into 
two, namely, those that employ interaction data and those 
that use singular sequence data.  
 
4.2.2.1. Interaction data algorithms 

Interaction data can be used to discover binding 
sites. Binding sites might give us clues on the motifs 
present. Many research works concentrate on solving this 
problem. For example, Li and Li focus on finding the two 
sides of binding (18). The two sides are referred to as a 
binding pair. The authors concentrate on finding pairs 
where each side has a short sequence of continuous 
residues. Such pairs are called short sequence motifs. They 
first find maximal contact segment pairs from a protein 
complex structural dataset. These segment pairs are then 
used to cluster the structural dataset and as a result form 
candidate short sequence motifs. Finally, an iterative 
refinement is applied on the candidate motifs to finalize the 
motifs. 

 
  Nedua, et al. concentrate on the study of protein 
interaction networks (16). The authors point out that not all 
protein-protein interactions are mediated by pairs of 
globular domains. Many such interactions happen over the 
binding of the domain of one protein with a short sequence 
(referred to as a linear motif) in the other. These authors 
also point out that linear motifs are difficult to find since 
they are short and tend to reside in disordered regions in 
proteins. Their method for detecting linear motifs is based 
on the hypothesis that the linear motifs are detectable by 
the virtue of over-representation. For a given set of proteins 
that share an interaction partner, they first preprocess the 
sequences to eliminate regions (such as globular domains, 
coiled-coils, collagen regions, etc.) that cannot possibly 
contain the linear motifs. They then generate all three to 
eight-mers in the remaining sequence. The 
overrepresentation of each such substring is calculated in 
comparison with a random sequence. The authors claim 
that their technique results in the rediscovery of known 
motifs and the prediction of new ones. 
 

Tan, et al.  discover correlated linear motifs from 
sparse and noisy protein interaction data (19). 
  
4.2.2.2. Singular sequence data algorithms 

Algorithms that make use of singular sequence 
data exclusively can further be classified into those that 
look for arbitrary patterns and those that look for specific 
patterns. In this paper we concentrate on three specific 
patterns, namely, Simple Motif Search (SMS), (l,d)-motif 
search (LDMS) and Edit-distance based motif search 
(EMS). Section 4.2.2.3 considers arbitrary patterns 
algorithms. Sections 4.2.2.4, 4.2.2.5, and 4.2.2.6 are 
devoted for SMS, LDMS, and EMS, respectively. In 
Section 4.2.2.7 we give a brief introduction to algorithms 
that find spaced motifs, i.e., motifs that have several 
segments separated by non-conserved characters. 
  
 4.2.2.3. Algorithms for finding arbitrary patterns 

 Brazma, et al. is an excellent survey paper that 
discusses the problem of identifying arbitrary patterns 
automatically from biological (DNA, RNA and protein) 

sequences (20). Patterns of interest are Generalized Regular 
Patterns. An example of a PROSITE pattern is C-x (2,4)-C-
x (3)- (LIVMFYWC)-x (8)-H. This stands for any string 
that starts with C, followed by 2 to 4 arbitrary symbols, 
followed by C, followed by 3 arbitrary symbols, followed 
by a member of {L,I,V,M,F,Y,W,C}, followed by 8 
arbitrary symbols, followed by H. Many different 
algorithmic approaches have been employed by researchers 
to identify arbitrary patterns. We enumerate some of them 
next. 
  
4.2.2.3.1. Learning 

Brazma, et al. pose the problem of finding 
patterns as a learning task (20). Two problems are 
considered. The first problem is to find a classifier function 
for a family of sequences. This function will take as input a 
query sequence and output YES if the sequence is a 
member of the family and NO otherwise. The 
corresponding learner will be trained with both positive and 
negative examples. The function to be learnt should have a 
“short description” and it should be correct with high 
probability. The second problem takes as input a collection 
of sequences belonging to the same family and the goal is 
to infer patterns characteristic of the family.  These authors 
also acknowledge that the ultimate test of whether a pattern 
is biologically significant or not lies only in experimental 
verifications. This paper provides a summary of prior 
works that address variants of the pattern identification 
problem.  
  
4.2.2.3.2 Bottom-up processing 

Jonassen, et al. present a bottom-up approach for 
identifying patterns (21). Any bottom-up approach 
enumerates all possible patterns, calculates the “fitness” of 
each pattern, and finally outputs the best scoring patterns. 
There are a number of ways for defining the fitness of a 
pattern. Fitness of a pattern, for example, could be the 
number of example sequences in which the pattern either 
occurs exactly or approximately. Jonassen, et al. represent 
the pattern space as a tree and perform a depth-first search 
of this tree (21). They also employ an elegant data structure 
called block data structure that enables one to efficiently 
find the set of substrings matching each pattern. This 
algorithm is able to identify patterns having both 
ambiguous positions and gaps. An improved version of this 
algorithm has been given by Jonassen (22). For example 
this improved version enables the use of branch-and-bound 
and heuristics to make the search efficient. 

 
Jonassen & Eidhammer and Jonassen report 

variations of the above algorithm called PRATT and 
PRATT2 (23, 22). These algorithms define a pattern graph. 
Each path in this graph corresponds to a set of patterns. 
Here also, a depth-first search through the graph is made 
looking for conserved patterns that have the highest fitness 
scores. A pattern is said to be conserved if it occurs in at 
least Nmin of the positive examples given. Here Nmin is a 
user-specified number.  
  
4.2.2.3.3. Top-down processing 

Top-down approaches for finding patterns are 
based on optimally aligning the input sequences and 
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enumerating longest common subsequences. Since the 
problem of multiple sequence alignment is known to be 
NP-complete, several heuristics are employed for aligning 
sequences. The algorithm of Smith and Smith uses the 
dynamic programming algorithm to construct a 
dendrogram for the sequences (24). This dendrogram can 
be thought of as an estimated phylogenic tree. Each leaf of 
this dendrogram corresponds to an input sequence. The 
dendrogram is a binary tree where at each internal node a 
pairwise alignment is performed to identify the common 
pattern between the two children of this node. A child 
could either be a pattern or an input sequence. Pairwise 
alignments are always performed with sequences or 
patterns that are the most similar. For example, if the input 
sequences are 54321 ,,,, SSSSS  and if 1S is similar to 

2S ; 3S  is similar to 4S ; and 5S  is the most dissimilar 

from the others, then, 1S  and 2S  will be aligned to 

identify the pattern 1P between them; 3S  and 4S  are 

aligned to get the pattern 2P ; 1P  and 2P  are aligned to 

get 3P ; Finally 3P  and 5S  are merged to get 4P ; 4P is 
the pattern identified to be common among the five input 
sequences. If there are k sequences and the average length 
of each sequence is n, then the run time of this algorithm is 

)( 2knO . Since the construction of dendrograms is a 
common data clustering technique, Smith and Smith’s 
algorithm can also be used to cluster the input sequences 
(24). 
  
 4.2.2.3.4. Clustering approaches 

Zhong, et al. employ clustering techniques to 
explore local protein sequence motifs representing common 
structural property (25). The authors argue that systems 
such as PROSITE, PRINTS, and BLOCKS are based on 
searching sequences for conserved patterns (including 
experimentally validated motifs). In other words, these 
systems make use of apriori information on the datasets to 
be analyzed and frequent human intervention. In contrast, 
clustering techniques do not require any such prior 
knowledge. Zhong, et al. make use of k-means clustering to 
cluster data so that each cluster will have proteins with 
similar characteristics (25). K-means clustering has been 
used before by Han and Baker to find recurring local 
sequence motifs in proteins (26). Zhong, et al. modify the 
k-means clustering algorithm with a new greedy 
initialization technique (25). The clustering applied by the 
authors is based on recurring sequence motifs. They also 
study the structural similarity of proteins in each cluster 
thus obtained. 
 
4.2.2.3.5. Heuristics 

Other heuristics are reported by Roytberg, 
Schuler, et al., Vingron, et al., etc. (28-30). Brazma et al. 
have developed a fitness measure based on minimum 
description length principle and use it to automatically find 
significant patterns in unaligned sequences (30). Here also 
the authors state: “Evaluating whether these relations have 
biological significance is outside the scope of the method 

and have to be explored individually in each case.” More 
patterns finding algorithms can be found in (31-32). 
   

In addition to the above techniques for 
identifying patterns, clustering, etc., three formal versions 
of the motif search problem have been identified in the 
literature see e.g., (33). In the next three subsections we 
introduce these problems and provide a summary of 
algorithms that have been employed to solve them. 
  
4.2.2.4. Simple motif search (SMS) 
 A pattern is a string of symbols (also called 
residues) and ?’s. A “?” refers to a wild card character. A 
pattern cannot begin or end with ?. AB?D, EB??DS?R, etc. 
are examples of patterns. The length of a pattern is the 
number of characters in it (including the wildcard 
characters). The problem of SMS is to take as input a 
database DB of sequences and to identify all the patterns of 
length at most P (with anywhere from 0 to  2/P  wild 
card characters). All the patterns together with a count of 
how many times each pattern occurs should be output (34). 
Optionally a threshold value for the number of occurrences 
could be supplied. 
  Rajasekaran, et al. have derived the above motif 
model and this model has been derived as follows (34). 
They have generated a list of 312 minimotifs (i.e., motifs of 
short length) that have defined biological functions. They 
have used this list to select parameters for a de novo 
analysis of novel minimotifs in the human proteome.  The 
authors suggest a value of 10 for P. The average minimotif 
in their list has 2.1 wildcard positions for any amino acid.  
Wildcards  signify any of the 20 amino acids. Since only 13 
% of minimotifs in the list have more than 50% wild card 
positions, they have chosen P/2 or 5 wild cards as the 
maximal number in the algorithm.   
  
4.2.2.4.1. Biological significance of SMS 

A problem similar to SMS has been addressed by 
Rigoutsos and Floratos (35). Their algorithm is called 
TEIRESIAS. Core histones play a central role in the 
packaging of DNA within the cell. Crystallographic 
techniques have established the presence of the core 
histone motif common to all the histone proteins (36). 
There are two families of histone proteins, namely, H3 and 
H4. Members of each family are known to be highly 
similar. However, similarity across the two families was 
not known until the application of TEIRESIAS. 
TEIRESIAS was able to identify a large number of patterns 
shared by the two families (35, 37). SMS algorithm has 
been employed in MnM to identify potential motifs which 
are then scored using three metrics. Davey, et al. have 
employed TEIRESIAS and BLAST to identify putative 
motifs (38).  
  
4.2.2.4.2. An algorithm for SMS 

Rajasekaran, et al. have given a simple algorithm 
for this problem that takes less time than that of 
TEIRESIAS (34). Note that SMS identifies all the patterns 
of length at most P (with anywhere from 0 to  2/P  
wild card characters). For every pattern, the number of 
occurrences should be output.  
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Let a (u, v)-class be a class of patterns such that each 
pattern has length u and has exactly v wild card characters. 
For example, GA??C?T belongs to (7, 3)-class. Clearly, 

there are  vu

v
u −Σ







 −
||

2
 patterns in a (u, v)-class. To 

identify the patterns in a (u, v)-class, they perform 








 −
v

u 2
sorts. In particular, for each possible placement 

of v wild card characters (excluding at the end positions) in 
a sequence of length u, they perform a sorting. For 
example, when u=6 and v=2, there are six possible 
placements: C??CCC, CC??CC, CCC??C, C?C?CC, 
CC?C?C, and C?CC?C. Here C corresponds to any residue. 
Every such placement is called a (u, v)-pattern type.  
 
For every (u, v)-pattern type, the following steps are 
performed. 
1. If R is a pattern type in (u, v)-class, generate all 
possible u-mers in all the sequences of DB. If the 
sequences in DB have lengths nlll ,,, 21 K , respectively, 

then the number of u-mers from iS  is 1+−uli ,  for  

ni ≤≤1 .   
2. Sort all the u-mers generated in step 1 only with 
respect to the non-wild card positions of R. For example, if 
the pattern type under concern is CC??C?C, generate all 
possible 7-mers in DB and sort the 7-mers with respect to 
positions 1,2,5, and 7. Employ radix sort. See e.g., (39).  
3. Scan through the sorted list and count the number of 
occurrences of each pattern.  
 
The run time of the above algorithm is 
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2

 for a (u, v)-class, where M is the 

total number of residues in DB and w is the word length of 
the computer. Thus the run time of the entire algorithm is 

)( 2/ MPO P  (35). 
  
4.2.2.4.3. Algorithm TEIRESIAS 

The TEIRESIAS algorithm addresses a problem 
similar to SMS (35, 37). They define a pattern to be a 
string of symbols (also called residues) and ?’s. A "?" is a 
wild card character. A pattern cannot begin or end with ?. 
AB?D, EB??DS?R, etc. are examples of patterns. The 
length of a pattern is the number of characters in it 
including the wildcard characters. For any pattern P, any 
substring of P that itself is a pattern is called a subpattern 
of P. AB is a subpattern of AB?D, for example. P is called 
a <l, W>  pattern if every subpattern of P of length W or 
more contains at least l residues. A pattern P’ is said to be 
more specific than a pattern P if P’ can be obtained from P 
by changing one or more wild card characters of P into 
residues and/or by adding one or more residues or wild 
card characters to the left or right of P. ABCD and 
E?AB?D are more specific than AB?D. We call a pattern P 

maximal if there is no pattern P’ that is more specific than 
P and which occurs the same number of times in a given 
database DB as P. The problem TEIRESIAS addresses 
takes as input a database DB of sequences, the parameters l, 
W, and q and outputs all <l, W> maximal patterns in DB 
that occur in at least q distinct sequences of DB.  
  

The run time of TEIRESIAS is )log( NNWO l , 
where N is the size of the database (i.e., the number of 
characters (or residues) in the database). TEIRESIAS 
algorithm consists of two phases. In the first phase 
elementary <l, W> patterns are identified. An elementary 
<l, W> pattern is nothing but a pattern which is of length 
W and which has exactly l residues. This phase runs in time 

)( lNWO . In the second phase (known as the 
convolution phase), elementary patterns are combined (i.e., 
convolved) to obtain larger patterns. As an example, 
AS?TF and TFDE can be combined to obtain AS?TFDE. 
All the convolved patterns that pass the support level and 
which are maximal will be output. The run time of this 

phase is )log( NNWO l . 
  
4.2.2.4.4. Apriori principle based algorithms 

Ye, et al. consider an extension of TEIRESIAS 
(40). They concentrate on three types of patterns: Type I, 
Type II, and Type III. Type I patterns are the same as the 
simple patterns defined in (35, 37). A type II pattern is a 
PROSOITE-like pattern. For instance, Sx(2,3)AF is a type 
II  pattern that has three residues and a variable wildcard 
region. A type III pattern is of a given length and in which 
a set of residues occurs in a predefined order. For example, 
a type III pattern of length 8 could have the residues A, T, 
and F in this order. This pattern could be denoted as 
A*T*F. Six different algorithms for finding these three 
types of patterns are given in (40). These algorithms 
employ the Apriori principle and is similar to the pattern 
growth algorithm PRATT of (21). The apriori principle 
states that any super-pattern of an infrequent pattern cannot 
be frequent. This principle has been employed, for 
example, to identify association rules in databases (41). 
  

The input to the algorithms are a dataset S. Input 
also are integers min_support, min_non_wc, and max_wc_l. 
Here, min_support refers to the minimum number of 
sequences in which the pattern should occur; min_non_wc 
is the minimum number of non-wildcard characters in each 
pattern; and max_wc_l is the maximum number of 
consecutive wildcard characters allowed in any pattern. A 
pattern is said to be frequent if it occurs in at least 
min_support input sequences. If a pattern is frequent and 
obeys the other two constraints, call it a valid pattern. The 
algorithms output all the valid patterns. The algorithm 
starts by finding all the valid patterns of length one each. 
For every such one-pattern it tries to expand it on the right 
by one more symbol and checks if the resultant pattern is 
valid or not. As a result, valid patterns of length 2 are 
obtained. In a similar manner, patterns of length more than 
2 are also identified. Ye, et al. have compared their 
algorithms with PRATT2 and TEIRESIAS (40). Their 
algorithms perform better than PRATT2 in terms of 
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efficiency as well as the diversity of patterns found (21-22). 
Also, they are comparable to TEIRESIAS in terms of 
performance but are better in terms of the diversity of 
patterns. 
 
4.2.2.5. (l, d) motif search (LDMS) 

The second version of interest is called 
),( dl motif search (LDMS) and has been introduced in 

(42). The input consists of n sequences of length m each. 
Two integers l and d are also input. The problem is to find 
a motif (i.e., a sequence) M of length l. It is given that each 
input sequence contains a variant of M. The variants of 
interest are sequences that are at a Hamming distance of d 
from M.  
  
4.2.2.5.1. Biological significance of LDMS 

Buhler and Tompa have employed LDMS 
algorithms to find known transcriptional regulatory 
elements upstream of several eukaryotic genes (43). In 
particular, they have used orthologous sequences from 
different organisms upstream of four types of gene: 
preproinsulin, dihydrofolate reductase (DHFR), 
metallothioneins, and c-fos. These sequences are known to 
contain binding sites for specific transcription factors. The 
authors point out the differences between experimental data 
and synthetic data that LDMS algorithms are typically 
tested with. For example, the background DNA in 
experimental data is not random. Their algorithm 
successfully identified the transcription factor binding sites. 
They have used the values of l=20 and d=2. The same sites 
have also been found using PMS2 of Rajasekaran, et al. 
(44). Buhler and Tompa have also employed their 
algorithm to solve the ribosome binding site problem for 
various prokaryotes (43). This problem is even more 
challenging since here the number of input sequences could 
be in the thousands. 

 
  Eskin and Pevzner used LDMS algorithms to 
find composite regulatory patterns (45). They point out 
that traditional pattern finding techniques (on unaligned 
DNA sequences) concentrate on identifying high-
scoring monads. A regulatory pattern could indeed be a 
combination of multiple and possibly weak monads. 
They employ MITRA (a LDMS algorithm) to locate 
regulatory patterns of this kind. The algorithm is 
demonstrated to perform well on both synthetic and 
experimental data sets. For example, they have 
employed the upstream regions involved in purine 
metabolism from three Pyrococcus genomes. They have 
also tested their algorithm on four sets of S.cerevisiae 
genes which are regulated by two transcription factors 
such that the transcription factor binding sites occur 
near each other. 
 
  Price, et al. have employed their 
PatternBranching LDMS technique on a sample 
containing CRP binding sites in E.coli, upstream regions 
of many organisms of the eukaryotic genes: 
preproinsulin, DHFR, metallothionein, & c-fos, and a 
sample of promoter regions from yeast (46). They report 
finding numerous motifs in these sequences. 

Though the ),( dl motif problem is defined for 
arbitrary sequences, all the algorithms in the literature 
assume DNA sequences. The literature contains numerous 
algorithms for solving the LDMS problem. These 
algorithms can be classified into two. Those algorithms that 
may not output the correct answer(s) always are referred to 
as approximation algorithms (or heuristic algorithms) and 
those that always output the correct answers are called 
exact algorithms.  
  
4.2.2.5.2. Approximation algorithms 

Examples of approximation (or heuristic) 
algorithms include Random Projection, PatternBranching, 
MULTIPROFILER, CONSENSUS, and ProfileBranching 
(43, 46, 42, 47, 46). These algorithms have been 
experimentally demonstrated to perform well. We provide 
summaries of Random Projection and PatternBranching 
next. 
  
4.2.2.5.2.1. Random projection algorithm 

The algorithm of Buhler and Tompa is based on 
random projections (43). Let the motif M of interest be an 
l-mer and C be the collection of all the l-mers from all the n 
input sequences. The algorithm projects these l-mers along 
k randomly chosen positions (for some appropriate value of 
k). We can think of the projection of each l-mer as an 
integer. We group the projected values (which are k-mers) 
according to their integer values. In other words, we hash 
all the l-mers using the k-mer of any l-mer as its hash 
value. 

 
The main idea of the algorithm is the observation 

that many instances of M will have the same projected 
value. If a hashed group has at least a threshold number s 
of l-mers in it, then there is a good chance that M will have 
its k-mer equal to the k-mer of this group. Since there are 

)1( +− lmn  l-mers in the input and there are k4  
possible k-mers, the expected number of l-mers that have 

the same hash value is k

lmn
4

)1( +−
. The threshold s is 

chosen to have twice this expected value and k is chosen 

such that klmn 4)1( <+− . This will ensure that the 
expected number of random l-mers that have the same hash 
value is less than one. Also k has to be less than (l-d). 
Typical values used for k and s are 7 and 3, respectively. 
  

The above process of random hashing is repeated 
r times (for some relevant value of r) so as to be sure that a 
bucket of size s≥  is observed at least once. Calculation 
of r can be done as follows. The probability p that a given 
instance of M has the same hash value as M is given by 
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. Since there are n instances of M, the 

probability that fewer than s of them have the same hash 
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Therefore, the probability that less than s instances have the 

same hash value in each of the r trials is rpP )'(= . The 

value of r is thus 

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
'log

log
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. Buhler and Tompa employ a 

value of 0.05 for P (43).  The algorithm collects all the k-
mers (and the corresponding l-mers) that pass the threshold 
and these are processed further to arrive at the final answer 
M. Expectation maximization (EM) technique of Lawrence 
and Reilly is employed to process these l-mers (48). The 
EM formulation employs the following model. Each input 
sequence has an instance of M (where |M|=l) such that 
these instances are characterized by a l×4 weight matrix 
W with ],[ jiW  being the probability that base i occurs 

in position j for 41 ≤≤ i  and lj ≤≤1 . Occurrences 
of bases in different positions are assumed independent. 
Bases for the remaining m-l positions in each sequence are 
governed by a background distribution B. If S is the set of 
input sequences, then the EM-based technique of Lawrence 
and Reilly determines a weight matrix model W* that 

maximizes the likelihood ratio 
)/Pr(

)*,/Pr(
BS

BWS
. 

 
4.2.2.5.2.2. Pattern branching 

A local searching algorithm called 
PatternBranching has been given in (46). This algorithm 
falls under the approximation category.  If u is any l-mer, 

then there are d

d
l

3







 l-mers that are at a Hamming 

distance of d from u. Refer to each such l-mer a neighbor 
of u. One strategy to solve the LDMS problem is to start 
from each l-mer u in the input, search the neighbors of u, 
score them appropriately and output the best scoring 
neighbor. Note that there are a total of )1( +− lmn  l-
mers in the input.  

 
Let S = S1,S2,…,Sn be the collection of n given 

input sequences. PatternBranching only examines a 
selected subset of neighbors of any l-mer u of the input and 
hence is more efficient. For any l-mer u, let )(uDi  stand 
for the set of neighbors of u that are at a Hamming distance 
of i  from u (for di ≤≤1 ). For any input sequence jS , 

let ),( jSud  denote the minimum Hamming distance 

between u and any l-mer of jS  (for nj ≤≤1 ). Let 

∑
=

=
n

j
jSudSud

1
),(),( . For any l-mer u in the input 

let BestNeighbor(u) stand for the neighbor v in )(1 uD  

whose distance ),( Svd  is minimum from among all the 

elements of )(1 uD . PatternBranching starts from a u, 

identifies )(1 uorBestNeighbu = ; Then it identifies 

)( 12 uorBestNeighbu = ; and so on. It finally 

computes du . The best du  from among all possible u's is 
output. 
  
4.2.2.5.3. Exact algorithms 

Many exact algorithms are known as well. 
Examples include the ones given by Martinez, Brazma,, 
Galas, et al., Sinha & Tompa, Staden, Tompa, van Helden, 
et al., Rajasekaran, et al., Davila & Rajasekaran, and 
Davila, et al. (49-55, 44, 56-57). However, as pointed out 
by Buhler and Tompa, these algorithms "become 
impractical for the sizes involved in the challenge problem" 
(43). A challenging instance of LDMS is an instance where 
the probability of finding a supurious motif (i.e., a motif 
that occurs by random chance) is greater than or equal to 1. 
Exceptions are the MITRA algorithm and the algorithms of 
Rajasekaran, et al. (45, 44, 56-57). MITRA solves for 
example the (15, 4) instance in 5 minutes using 100 MB of 
memory (45). This algorithm is based on the WINNOWER 
algorithm and uses pairwise similarity information (58). A 
new pruning technique enables MITRA to be more 
efficient than WINNOWER. MITRA uses a mismatch tree 
data structure and splits the space of all possible patterns 
into disjoint subspaces that start with a given prefix. The 
same (15,4) instance is solved in 3.5 minutes by PMS2 
(44). 

 
It is noteworthy here that approximation 

algorithms such as CONSENSUS and ProfileBranching 
take much less time for the (15, 4) instance (46). However 
these algorithms fall under the approximate category and 
may not always output the correct answer. 

 
The largest challenging instances that have been 

solved thus far are (17,6) and (19,7). These instances have 
been solved by an algorithm called PMSprune (59). 
PMSprune is an exact algorithm and it can be thought of as 
an extension of PMS1. This algorithm takes 69 minutes and 
9.2 hours to solve the instances (17,6) and (19,7), 
respectively.   
  

We now provide summaries of some of the 
algorithms that have been proposed for LDMS.  
  
4.2.2.5.3.1. Algorithms WINNOWER and SP-STAR 

WINNOWER algorithm of Pevzner and Sze 
works as follows (58). If A and B are two instances (i.e., 
occurences) of the motif in two different sequences, then 
the Hamming distance between A and B is at most 2d. It 
can be shown that the expected Hamming distance between 

A and B is 
l

dd
3

42
2

− . WINNOWER constructs a 

collection C of all possible l-mers in the input. A graph 
),( EVG  is constructed in which each l-mer of C will be 
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a node. Two nodes u and v in G are connected by an edge if 
and only if the Hamming distance between u and v is at 
most 2d and they come from two different sequences. 
  

Since the n instances of the motif M will form a 
clique in G, the problem of finding M reduces to that of 
finding large cliques  in G. Unfortunately, the problem of 
finding large cliques in a graph is NP-hard and also there 
will be numerous 'spurious' edges (i.e., edges that do not 
connect instances of M) in G. Pevzner and Sze observe that 
the graph G constructed above is 'almost random' and is 
multipartite and use this observation to eliminate edges 
(58). If { }kvvvQ ,,, 21 K=  is any clique, node u is 

called a neighbor of Q if { }uvvv k ,,,, 21 K  is also a 
clique. If u is a neighbor of Q, then Q can be extended to 
get a larger clique.  A clique is said to be extendable if it 
has at least one neighbor in every part of the multipartite 
graph G. WINNOWER is based on the observation that 
every edge in a maximal n-clique belongs to at least 









−
−

2
2

k
n

 extendable cliques of size k.  

  
WINNOWER iteratively constructs cliques of 

larger and larger sizes. If N=mn, then the run time of the 

algorithm is )( 12 +dNO . This algorithm runs in a 
reasonable amount of time in practice especially for small 
values of d. Pevzner and Sze have also given another 
algorithm called SP-STAR that is faster than WINNOWER 
and uses less memory (58). WINNOWER algorithm treats 
all the edges of G equally without distinguishing between 
edges based on similarities. SP-STAR scores the l-mers of 
C as well as the edges of G appropriately and hence 
eliminates more edges than WINNOWER per iteration. 
  
4.2.2.5.3.2. Algorithm PMS1 

This algorithm is based on radix sorting and has 
the following steps: 1) Generate all possible l-mers from 
each of the n input sequences. Denote by iC  the collection 

of l-mers from iS , for ni ≤≤1 ; 2) For all ni ≤≤1  

and for all iCu∈ generate all l-mers v such that u and v 
are at a Hamming distance of d. Let the collection of l-mers 

corresponding to iC  be '
iC , for ni ≤≤1 ; 3) Employ 

radix sort to sort all the l-mers in every niCi ≤≤1,'  and 

eliminate duplicates in every '
iC . Let iL  be the resultant 

sorted list corresponding to '
iC ; and 4) Merge all the iL s 

)1( ni ≤≤ and output the generated (in step 2) l-mer that 
occurs in all the iL s (44). Many fundamentally new ideas 
that can be used to improve the performance of PMS1 have 
also been given in (44).  
 

The exact algorithms of Eskin & Pevzner and 
Rajasekaran, et al. are able to solve the challenging 

instances (9, 2), (11, 3), and (13, 4) in a reasonable amount 
of time using a PC (45, 44). However for the (15,5) 
instance they either take a long time or call for too much of 
memory. Chin and Leung have proposed a technique called 
voting which can be thought of as a combination of the 
techniques of Buhler & Tompa and Rajasekaran, et al. (60, 
43-44). They have reported solving the (15, 5) instance in 
around 22 minutes. In a recent work Davila, et al. have 
improved the performance of the algorithms of 
Rajasekaran, et al. with some crucial ideas (44, 57). The 
largest challenging instances that have been solved thus far 
are (17,6) and (19,7). See (56, 59). The algorithms used to 
solve these instances are based on PMS1 (44). PMS1 takes 
an approach much different from the others in the 
literature. It has yielded the best performance thus far. 
Also, PMS1 and related algorithms use simple data 
structures such as arrays.  
  
4.2.2.6. Edited motif search (EMS) 

The input for this problem is a database DB of 
sequences nSSS ,,, 21 K . Input also are integers P, D, 
and q. The output should be all the patterns in DB such that 
each pattern is of length P and it occurs in at least q of the 
n sequences. A pattern U is considered an occurrence of 
another pattern V as long as the edit distance between U 
and V is at most D. 
  
4.2.2.6.1. Biological significance of EMS 

EMS has applications in finding the DNA 
binding sites. Rocke and Tompa have used Gibbs sampling 
techniques to solve EMS (61). They have tested their 
technique on the noncoding regions of the full H.influenzae 
genome and found many interesting motifs. Also, since 
EMS is closely related to LDMS (LDMS being a special 
case of EMS), all the applications relevant for LDMS can 
also be handled by EMS techniques. 
  

Note that EMS is more general than LDMS. 
From a biological point of view EMS is perhaps more 
relevant than EMS since in the process of evolution, inserts 
and deletes are common and LDMS rules out these. 
  
4.2.2.6.2. Algorithms for EMS 

An algorithm for EMS has been given by Sagot 

that has a run time of )||( 2 ddmlnO Σ  where m is the 
average length of the sequences in DB and Σ is the alphabet 
from which the input sequences are generated (62). It is 

based on suffix trees and uses )/( 2 wmnO space where 
w is the word length of the computer. An algorithm with an 
expected run time of 

)log)(( )(1 nmnmdnmO pow ε++  where ld /=ε  

and )(εpow  is an increasing concave function has been 

given in (63). The value of )(εpow  is roughly 0.9 for 
protein and DNA sequences. This algorithm is also suffix-
tree based. 

 
A sorting based algorithm similar to PMS1 has been given 
in (34). This algorithm runs in time
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Table 1. A comparison of different web-based motif search systems 
System Freq. Analysis SNP Comparisons # of motifs in proteomes Links to Literature Domain mappings Subcellular 

localization 
MnM Yes Yes Yes Yes Yes Yes 
ELM No No No Yes Yes Yes 
Scansite No No No No No No 
Prosite No No No Yes Yes No 
DILIMOT No No No No No No 

 

)||( 2 ddmlnO Σ . The space used is 

)||( ddnmlO Σ . The space used can be reduced to 

)||( ddlnmdO Σ+ . Since this algorithm uses arrays 
only, the underlying constants will be small and hence can 
be expected to perform well in practice. 
  
4.2.2.7. Finding spaced motifs  

Some classes of motifs, called spaced motifs, 
have the following property: Each motif consists of several 
segments located closer to each other. All the algorithms 
discussed above assume monad (i.e., single segment) 
motifs. A number of algorithms have been proposed in the 
literature for finding spaced motifs. Examples include 
MITRA and SPACE (45, 64). The problem of finding 
spaced motifs is made difficult by the presence of non-
conserved characters (called spacers) in between two 
segments (i.e., monads). Several different techniques have 
been used to find spaced motifs. For example, Favorov, et 
al. assume that the spacers in the same motif are of the 
same length (65). The algorithm of Sinha and Tompa tries 
out all possible spacer lengths (52). The algorithm of 
Carvalho, et al. uses suffix trees to locate regularly spaced 
monads and combine them to form spaced motifs (66). 
Eskin and Pevzner have defined a special data structure 
called  the mismatch tree data structure and used this in 
their algorithm MITRA (45). MITRA first identifies 
monads and then combines them to get spaced motifs. 

 
The algorithms of Favorov, et al., Sinha & 

Tompa, Carvalho, et al., and Eskin & Pevzner have been 
used to find dyads, i.e., motifs consisting of two monads 
(65, 52, 66, 45). On the other hand, the SPACE algorithm 
has been employed to find spaced motifs with more than 
two monads as well (64). SPACE is similar to TEIRESIAS 
and it poses the spaced motif finding problem as a frequent 
itemset mining problem. There are three steps in SPACE. 
In step 1, candidate motifs are found; in step 2 these 
candidates are refined into spaced motifs; and in step 3, the 
spaced motifs are ranked using a scoring scheme and a 
sorted list of the spaced motifs is output. 
  
5. CONCLUSIONS 
 
 In this paper we have provided a survey of 
various techniques that are currently being employed for 
the discovery of short motifs. Finding motifs is an 
important problem and there is still room for improvement 
as far as the computational techniques are concerned. 
Numerous techniques have been proposed in the literature 
for motif search. Each of these techniques addresses a 
specific aspect of motif search. We can categorize motif 
search methods into two: experimental and computational

 
 Experimental techniques are very time consuming. Given 
the large number of putative motifs, experimental 
techniques may not be feasible for an exhaustive search. 
This is where computational techniques could be of great 
help. 
 
 Computational techniques could be categorized 
into two: stochastic and discrete algorithms based. 
Stochastic techniques (STs) are often fast but may not find 
complete or optimal results. On the other hand, discrete 
algorithmic techniques (DATs) typically find optimal 
solutions. Some of the problem formulations in DATs are 
NP-hard and hence can take a very long time to solve in 
practice. 
  

Based on the data used to find motifs, DATs can 
further be classified into those that employ interaction data 
and those that make use of singular sequence data. 
Algorithms that use interaction data are typically very 
effective in finding domains whereas those that employ 
singular sequence data are effective in finding short motifs. 
 

DATs that use singular sequence data can further 
be categorized into those that find arbitrary patterns and 
those that look for specific patterns.  Algorithms that find 
arbitrary patterns make use of techniques such as learning, 
bottom-up processing, top-down processing, clustering, and 
heuristics. 
 

Three specific patterns of interest are simple 
motifs and variants (such as type I, type II, and type III 
patterns), ),( dl  motifs, and edit-distance based motifs. 
We can think of simple motifs as a slightly restricted form 
of arbitrary patterns. Patterns here are represented using 
PROSITE-like expressions. ),( dl motifs primarily 
assume substitutions whereas edit-distance based motifs 
permit substitutions, inserts, and deletes. Algorithms for all 
these three specific patterns have been used to solve some 
important problems in biology. 

Algorithms known for ),( dl  motif search 
(LDMS) can be grouped into two: approximate and exact. 
An exact algorithm always comes up with the correct 
answer (s). An approximate (or heuristic) algorithm may 
not always come up with the correct answer(s). Algorithms 
such as Random Projection, PatternBranching, 
MultiProfiler, Consensus, Weeder, ProfileBranching, etc. 
fall under the approximation group. Examples of exact 
algorithms include WINNOWER, SP-STAR, MITRA, 
PMS1, PMS2, PMS3, Voting, PAMPA, PMSprune, etc. 
Approximation algorithms, in general, are very fast but 
may not always come up with the correct answer(s). On the 
other hand, exact algorithms perform an exhaustive search 
and hence always produce correct answer(s). By nature, 
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they take a long time to terminate. In fact the largest 
challenging instances of LDMS that have been solved so 
far are by an exact algorithm (PMSprune).  
 

Some of the motif techniques assume DNA 
sequences. Examples include algorithms for LDMS and 
EMS. These algorithms will work on protein sequences as 
well. However, the run times of some of these algorithms 
are exponential in the size of the alphabet. Therefore, they 
will take a very long time on protein sequences. All the 
algorithms that have been described in Section 3.2.1 (web 
based systems) work on protein sequences. 
 

In conclusion, computational techniques are of 
great help in motif search. The particular choice of 
technique will depend on various factors such as the type of 
data used, performance measures of interest, types of 
patterns desired, etc. 
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