
[Frontiers in Bioscience 14, 5052-5065, June 1, 2009]

5052

Computational techniques for motif search

Sanguthevar Rajasekaran

Dept. of CSE, University of Connecticut, Storrs, CT 06269-2155

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Experimental techniques
4. Computational techniques
 4.1. Statistics based techniques
 4.2. Discrete algorithmic techniques
 4.2.1. Web based systems
 4.2.1.1. ELM
 4.2.1.2. SCANSITE
 4.2.1.3. PROSITE
 4.2.1.4. MnM
 4.2.1.5. Other web systems
 4.2.1.6. A comparison of different web systems
 4.2.2. Algorithmic techniques
 4.2.2.1. Interaction data algorithms
 4.2.2.2. Singular sequence data algorithms
 4.2.2.3. Algorithms for finding arbitrary patterns
 4.2.2.3.1. Learning
 4.2.2.3.2. Bottom-up processing
 4.2.2.3.3. Top-down processing
 4.2.2.3.4. Clustering approaches
 4.2.2.3.5. Heuristics
 4.2.2.4. Simple Motif Search (SMS)
 4.2.2.4.1. Biological significance of SMS
 4.2.2.4.2. An algorithm for SMS
 4.2.2.4.3. Algorithm TEIRESIAS
 4.2.2.4.4. Apriori principle based algorithms
 4.2.2.5. (l, d) motif search (LDMS)
 4.2.2.5.1. Biological significance of LDMS
 4.2.2.5.2. Approximation algorithms
 4.2.2.5.2.1. Random projection algorithm
 4.2.2.5.2.2 Pattern branching
 4.2.2.5.3. Exact algorithms
 4.2.2.5.3.1. Algorithms WINNOWER and SP-STAR
 4.2.2.5.3.2. Algorithm PMS1
 4.2.2.6. Edited motif search (EMS)
 4.2.2.6.1. Biological significance of EMS
 4.2.2.6.2. Algorithms for EMS
 4.2.2.7. Finding spaced motifs
5. Conclusions
6. Acknowledgements
7. References

1. ABSTRACT

In the study of protein-protein interactions, one is
interested in identifying domains as well as short motifs
that bind to these domains. Short motifs also confer
functions to proteins such as post-translational
modification, protein-protein interaction, and protein
trafficking. Identification of domains is relatively easy
since they are sufficiently long enough to render the
likelihood of occurrences by random chance very low. On

the other hand, the identification of motifs is a challenge
since they are typically very short. Thus it is vital to
develop efficient techniques to identify motifs. In this
paper we survey some of the techniques that have been
proposed in the literature for motifs identification.

2. INTRODUCTION

Motif search is an important problem in biology
since it has numerous applications including the study of
protein-protein interactions. Numerous approaches have

Computational techniques for motif search

5053

been proposed in the literature for solving this crucial
problem. These techniques can perhaps be categorized into
two, namely, experiments-based and computing-based. In
this paper we provide a summary of some of the
computing-based techniques that have been employed in
motif search. We also briefly summarize experiments-
based techniques.

Genomic sequencing allows the identification of
nearly all of the genes in an organism, from which the
potential gene products can be inferred. However, genomic
sequencing does not provide direct information on the
function of the individual gene products, nor their
interrelationships. Current approaches for predicting the
function of proteins provide important clues, but we need
more approaches. Homology analysis of protein sequences
has proven effective in inferring protein function, most
notably by facilitating the identification of similar protein
domains in different genes and organisms (see e.g.,
PROSITE and SMART) (1-2). The function of the domain
can then be inferred from previously characterized proteins
and subsequently confirmed in the uncharacterized
proteins. However, this approach requires that a query has
homology to a domain that has already been characterized.
As protein domains are highly conserved throughout
evolution, it is logical to expect that their binding partners
or substrates would be conserved as well. The domain may
contain short functional sites (such as protein interaction
sites) that can indicate the function. These functional sites
are what we refer to as motifs in this paper. These motifs
are difficult to find just based on conservation alone since
short conserved segments can occur in multiple species by
random chance. However, as a first step in the process of
identifying motifs, we can obtain a list of closely conserved
short sequences that occur in multiple species. There could
be many false positives in this list. We could then apply
various filters to trim this list down further. This general
theme is used by many scientists.

In this paper we focus on motif search
algorithms. We can categorize motif search techniques into
two: experimental and computational. Experimental
techniques, by nature, are very time consuming. However,
whether a putative motif is real or not can only be
confirmed with experiments. Even if we have an upper
bound on the length of any motif, since there could be a
large number of possible strings, experimentally verifying
if each of these strings is a real motif or not is impractical.
This is where the computational techniques could help
significantly. Computational techniques can process
through all possible strings of a given length and identify a
small number of them as putative motifs which then can be
experimentally evaluated. Though a major goal of this
paper is to discuss computational techniques for motif
search, we provide a brief introduction to experimental
techniques in Section 3. Section 4 is devoted to
computational techniques.

3. EXPERIMENTAL TECHNIQUES

When computational techniques identify putative
motifs, we can confirm these with biochemical

experiments. Though experimental techniques are very
accurate, they are very costly and time consuming.
Computational techniques can be used to reduce the cost
and time significantly. Functional subdomains can be
identified experimentally using cross-linking, assay of
proteolytic fragments, the study of mutants, etc. (3). Motifs
can be found from crystal structure data. Experimental
techniques have been used to find binding sites as well.
Experimental techniques include analyzing protein
complexes, phage display, and mutagenesis (4-6).

Edwards, et al. address the problem of
discovering novel bioactive peptides (7). Short synthetic
oligopeptides that encompass functional motifs play an
important role in the study of protein signaling and
interactions. The authors specifically targeted oligopeptides
that could identify human platelet function. Toward this
goal they have employed high-throughput in vitro platelet
function assays and have been able to identify many
agonists and antagonists of platelet function.

4. COMPUTATIONAL TECHNIQUES

In this Section we discuss computational
techniques that have been proposed for motif search.
Computational techniques can be classified into two,
namely, discrete algorithmic methods and stochastic (or
statistics based) methods. In general, stochastic methods
are non-optimal or non-complete algorithms. These
algorithms perform well in practice. On the other hand,
discrete algorithmic techniques typically focus on
providing optimal and/or complete results. Run times of
some of these techniques could be long. For example, the
run times could be exponential in some of the underlying
parameters. In Section 4.1 we introduce statistics based
methods and Section 4.2 is devoted for discrete algorithmic
techniques.

4.1. Statistics based techniques

Several statistical techniques have been used to
identify putative motifs. For example, Austin, et al. have
applied statistical techniques to identify tripeptide motifs in
the C-termini (8). They point out that C-termini are often
sites of activity for a variety of biologically important
functions and hence the authors concentrate on identifying
motifs in C-termini. Their basic approach is to estimate the
over-representation of position-specific tripeptides in seven
eukaryotic proteomes using z-statistic. In order to reduce
background noise they employ randomization models and
masking. Before estimating the over-representation they
cluster the proteins into gene-families and the analysis is
performed within individual families. This is done to
eliminate errors that might be caused by counting irrelevant
representations of any motif. Comparative genomics has
then been applied to identify tripeptides that are over-
represented across many species. They report a good
success with their approach. For example, they have been
able to predict all the C-terminal targeting motifs present in
the literature (at the time of publication). Deng, et al. have
used maximum-likelihood method to estimate domain-
domain interactions (9). Reiss and Schwikowski build a
simple probabilistic model based on protein sequence

Computational techniques for motif search

5054

information and all versus all protein interaction datasets to
identify ligand peptides of peptide recognition modules
(10).

The algorithms PRINTS, BLOCKS,
GibbsSampler, and MEME also fall under the statistics
based methods. None of these techniques is optimal but
give a reasonably good set of candidate results with high
statistical significance. For example, MEME works as
follows (11). Given a set of input sequences, it fits a two-
component finite mixture model to these sequences using
expectation maximization. This algorithm also takes as
input the length of the motif under concern. It is capable of
finding multiple motifs. MEME also outputs a model and a
threshold for each motif. This model and the threshold can
be used to find occurrences of the same motif in other
databases.

4.2. Discrete algorithmic methods
4.2.1. Web-based systems

Several web-based systems are available for
motif search. In this section we provide details on some of
them.

4.2.1.1. ELM

ELM is a system developed for investigating
candidate short non-globular functional motifs in
eukaryotic proteins (12). A user can input any protein
sequence and the species information. The user, optionally,
can also submit relevant sub-cellular compartment(s). The
ELM server then identifies plausible motifs. The main
algorithm used by ELM is one of sequence comparisons. It
looks for substrings in the query sequence that are very
similar to the already known motifs. These matching
substrings serve as candidates for output. However,
sequence similarity alone might result in too many false
positives. Thus ELM uses a series of filters to eliminate as
many false positives as possible. Even then it may not
eliminate all of the false positives. In fact computational
techniques alone cannot eliminate all the false positives.
Experimental confirmation is the ultimate proof of a motif.
False positives could arise because the sequence matches
occur in an irrelevant context or because they match to a
wrong cellular compartment (12).

ELM keeps a database with tens of tables that

store information relevant for linear motifs. All data input
is handled with hand curation. Annotation of a motif
involves literature search, similarity search using BLAST,
multiple sequence alignment of relevant sequences, etc.
Motif patterns are represented as POSIX regular
expressions. Two annotation standards, namely, Gene
Ontology (GO) and the NCBI taxonomy database
identifiers are used.

Some of the filters used by ELM are: 1) Cell
Compartment Filter: Each motif in ELM is annotated with
cell compartments in which the motif is known to function.
If the user inputs the compartments in which the query
sequence is known to function, ELM will restrict its output
to only matches in these compartments; 2) Globular
Domain Filter: Matches inside globular domains are not

reported. SMART and Pfam databases are used for this
filtering; and 3) Taxonomic Filtering: Each motif in ELM
is annotated with NCBI taxonomy node identifiers to
denote its known phylogenic relations. Motifs that are not
related to the lineage of the species input by the user are
filtered out.

4.2.1.2. SCANSITE

Yaffe, et al. focus on the problem of inferring
protein function and predicting protein-protein interactions
(13). They point out that identifying signaling domains
within protein sequences is a simpler problem than
identifying short linear motifs targeted by the domains.
They propose a technique for the discovery of motifs based
on peptide-library based search.

When a user inputs a query sequence,
SCANSITE scans through the sequence looking for
potential motifs. A sliding window of size 15 is used for
this purpose. A score is computed for each substring of
length 15. Within any substring, residues critically
invariant for a motif are identified. A position-specific
score is assigned for each residue in a window and a
normalized score is obtained for each putative motif. This
score, rawS , is then compared with the best possible score,

optS , for each motif giving a final score of

optrawoptf SSSS /)(−= . The fS value of each motif

site within the query sequence is then compared to pre-
calculated scores of the motif for all possible sites and for
all vertebrate sequences in SWISS-PROT to obtain a rank
for the motif site. This site will be considered a hit if its
rank exceeds a threshold value.

For any given query sequence, SCANSITE
provides a lot of information in the output. For example, it
displays domain information (obtained using Pfam). Motif
sites are displayed with a vertical bar the length of which is
proportional to the corresponding score. An abbreviated
name of the motif is also shown. A plot of the surface
accessibility is also a part of the output. If one clicks on the
protein cartoon, a table that carries detailed information on
the motif sites, their scores, ranks, etc. is displayed.

4.2.1.3. PROSITE

Hulo, et al. have developed the web system
PROSITE that stores protein domains, families and
functional sites (14). It also stores the associated patterns
and profiles that can be used to identify them. PROSITE
has defined a set of rules, called ProRules, based on
patterns that provide valuable information about
functionality. A ProRule is nothing but a set of conditional
annotations in Swiss-Prot format. The condition could be
on the position-specific presence of amino acids, the
presence of other domains, etc. The version of PROSITE
dated November 11, 2007 has 1319 patterns, 745 profiles,
and 764 ProRules.

For any given query sequence, PROSITE reports
matches to the patterns it has in its database. In earlier
versions of PROSITE, the matches were reported without

Computational techniques for motif search

5055

any indication of the significance of the matches. The latest
version uses a new method to estimate the significance of
matches.

4.2.1.4. MnM (Minimotif Miner)

Balla, et al. have constructed a database of short
motifs and their web system MnM
(http://sms.engr.uconn.edu) helps users in the identification
of motifs in proteins (15). They employ three different
scores to score a candidate motif, namely, frequency score
(FS), surface prediction score (SPS) and evolutionary
conservation score (ECS). The web module of the MnM
application has a database with data integrated from the
current versions of RefSeq, LocusLink, HomoloGene and
Taxonomy databases of NCBI. The protein sequences in
RefSeq are screened for all minimotifs in the MnM
database using a motif search algorithm for proteome of
different species, namely, human, mouse, rat, yeast, rice,
fruitfly, malaria parasite and watercress. Pre-processed
minimotif statistics are stored in the MnM application
database as follows. The total occurrences of each amino
acid are measured for each proteome independently, the
probability of finding a given amino acid X in a proteome
being given by (∑AAX/∑AATOT) where AAX is the total
count of the amino acid X in the proteome and AATOT is
the total count of all the amino acids in the proteome. The
expected count (Ce) of a minimotif in the proteome is given
by the product of the probabilities of the individual or
subsets of amino acids defining the minimotif and the
possible number of occurrences of the minimotif in the
proteome dataset. Let (Ca) be the actual count (i.e.) the
actual number of occurrences of the minimotif in the
proteome dataset. The enrichment factor efactor of a
minimotif is defined as the ratio of its actual count to its
expected count in the proteome dataset (efactor= Ca/ Ce).
For minimotifs occurring in the N- and the C- termini, the
positional probabilities of the amino acids is considered
while calculating the expected count of the minimotif.
Information stored in the MnM application database
includes statistical details of the distribution of minimotifs
present in the proteomes of various species, the actual
count, the expected count and the enrichment factor of each
minimotif.

User-entered accession numbers retrieve protein
details and minimotif information from the MnM
application database. The user has the choice of entering
three different types of accessions, namely, RefSeq
Accession, SwissProt Accession or GI of a protein. Also,
search criteria include the species for which minimotif
statistics are to be retrieved and the sub-cellular
localization of the minimotifs. For entries pasted into the
sequence input window, the motif search algorithm
searches the query sequence for each minimotif, recording
its count and positions in the protein sequence. Sequences
are sorted based on the motif score and output to the
minimotif table. Three different scores can be used. For
example, a ‘Frequency Score’ FS of a minimotif in a
protein sequence of length x is arrived as follows: ms = Ca
(p) / Ce (p), where Ca (p) is the actual number of
occurrences of the minimotif in p and Ce (p) is the expected
number of occurrences of the minimotif in p. The

denominator is Ce (p) = Ce * (x/m), where m is the total
number of amino acid residues in the proteome dataset.

The output screen of the search displays a table
of protein details and provides links to various NCBI
search sites. Minimotifs appear highlighted on the protein
sequence at positions they occur. A table of minimotif
statistics that ranks the minimotifs in descending order of the
motif scores is also available. This table contains the actual
count, the expected count and the motif score of the minimotif
in the protein sequence, the actual count, the expected count
and the enrichment factor of the minimotif in the proteome of
the species for which the query was submitted, the positions of
occurrence of the minimotifs in the protein and links to
references available online for the minimotif.

The user also has choices of viewing the domains
(the “View Domains” button) and the SNPs (the “View SNPs”
button) present in the protein. A table of minimotifs similar to
the one explained above can be retrieved for the set of protein
sequences in the group of the query protein in the
HomoloGene database by clicking on the “View
Homologenes” button. Individual minimotif can be
highlighted on the protein sequence by choosing the radio
button that belongs to it and using the “View Selected Motif”
option. Also, there is a pop-up that displays information of
minimotifs, domains and SNPs when the user moves the
mouse over the highlighted portions of the protein sequence.

Version 2 of MnM has been released in

November 2008 (http://mnm.engr.uconn.edu).

4.2.1.5. Other web systems

There are other web systems such as DiLiMoT
(Discovery of Linear Motifs) and SMART (Simple
Modular Architecture Research Tool) (16, 2). 3MOTIF is a
web application that can be used to visually map motifs
onto 3D protein structures in the PDB (17). Crucial
properties of the motifs are displayed with different colors
in this map.

4.2.1.6. A comparison of different web systems

Table 1 provides a comparison of various web
based systems for motif search. ELM uses sequence
analysis as a primary technique and hence it can be
categorized under the discrete algorithmics technique.
The filters it uses exploit biological information available
in various databases such as GO. The query engine of
MnM uses sequence analysis. This part of MnM uses
discrete algorithmic techniques. For filtering it employs
some statistics based techniques such as frequency
analysis. Similar to ELM, MnM also employs some known
biological databases to remove false positives. SCANSITE
computes a score for each putative motif and it can be
thought of as a purely statistics based method. On a given
query sequence, PROSITE uses string matching algorithms
to report matches to the patterns it has in its database. Thus
PROSITE is also based on discrete algorithmic techniques.

4.2.2. Algorithmic techniques

The algorithmic aspects of motif search have
been addressed by numerous researchers. Depending on the

Computational techniques for motif search

5056

data used by these techniques they can be classified into
two, namely, those that employ interaction data and those
that use singular sequence data.

4.2.2.1. Interaction data algorithms

Interaction data can be used to discover binding
sites. Binding sites might give us clues on the motifs
present. Many research works concentrate on solving this
problem. For example, Li and Li focus on finding the two
sides of binding (18). The two sides are referred to as a
binding pair. The authors concentrate on finding pairs
where each side has a short sequence of continuous
residues. Such pairs are called short sequence motifs. They
first find maximal contact segment pairs from a protein
complex structural dataset. These segment pairs are then
used to cluster the structural dataset and as a result form
candidate short sequence motifs. Finally, an iterative
refinement is applied on the candidate motifs to finalize the
motifs.

 Nedua, et al. concentrate on the study of protein
interaction networks (16). The authors point out that not all
protein-protein interactions are mediated by pairs of
globular domains. Many such interactions happen over the
binding of the domain of one protein with a short sequence
(referred to as a linear motif) in the other. These authors
also point out that linear motifs are difficult to find since
they are short and tend to reside in disordered regions in
proteins. Their method for detecting linear motifs is based
on the hypothesis that the linear motifs are detectable by
the virtue of over-representation. For a given set of proteins
that share an interaction partner, they first preprocess the
sequences to eliminate regions (such as globular domains,
coiled-coils, collagen regions, etc.) that cannot possibly
contain the linear motifs. They then generate all three to
eight-mers in the remaining sequence. The
overrepresentation of each such substring is calculated in
comparison with a random sequence. The authors claim
that their technique results in the rediscovery of known
motifs and the prediction of new ones.

Tan, et al. discover correlated linear motifs from
sparse and noisy protein interaction data (19).

4.2.2.2. Singular sequence data algorithms

Algorithms that make use of singular sequence
data exclusively can further be classified into those that
look for arbitrary patterns and those that look for specific
patterns. In this paper we concentrate on three specific
patterns, namely, Simple Motif Search (SMS), (l,d)-motif
search (LDMS) and Edit-distance based motif search
(EMS). Section 4.2.2.3 considers arbitrary patterns
algorithms. Sections 4.2.2.4, 4.2.2.5, and 4.2.2.6 are
devoted for SMS, LDMS, and EMS, respectively. In
Section 4.2.2.7 we give a brief introduction to algorithms
that find spaced motifs, i.e., motifs that have several
segments separated by non-conserved characters.

 4.2.2.3. Algorithms for finding arbitrary patterns

 Brazma, et al. is an excellent survey paper that
discusses the problem of identifying arbitrary patterns
automatically from biological (DNA, RNA and protein)

sequences (20). Patterns of interest are Generalized Regular
Patterns. An example of a PROSITE pattern is C-x (2,4)-C-
x (3)- (LIVMFYWC)-x (8)-H. This stands for any string
that starts with C, followed by 2 to 4 arbitrary symbols,
followed by C, followed by 3 arbitrary symbols, followed
by a member of {L,I,V,M,F,Y,W,C}, followed by 8
arbitrary symbols, followed by H. Many different
algorithmic approaches have been employed by researchers
to identify arbitrary patterns. We enumerate some of them
next.

4.2.2.3.1. Learning

Brazma, et al. pose the problem of finding
patterns as a learning task (20). Two problems are
considered. The first problem is to find a classifier function
for a family of sequences. This function will take as input a
query sequence and output YES if the sequence is a
member of the family and NO otherwise. The
corresponding learner will be trained with both positive and
negative examples. The function to be learnt should have a
“short description” and it should be correct with high
probability. The second problem takes as input a collection
of sequences belonging to the same family and the goal is
to infer patterns characteristic of the family. These authors
also acknowledge that the ultimate test of whether a pattern
is biologically significant or not lies only in experimental
verifications. This paper provides a summary of prior
works that address variants of the pattern identification
problem.

4.2.2.3.2 Bottom-up processing

Jonassen, et al. present a bottom-up approach for
identifying patterns (21). Any bottom-up approach
enumerates all possible patterns, calculates the “fitness” of
each pattern, and finally outputs the best scoring patterns.
There are a number of ways for defining the fitness of a
pattern. Fitness of a pattern, for example, could be the
number of example sequences in which the pattern either
occurs exactly or approximately. Jonassen, et al. represent
the pattern space as a tree and perform a depth-first search
of this tree (21). They also employ an elegant data structure
called block data structure that enables one to efficiently
find the set of substrings matching each pattern. This
algorithm is able to identify patterns having both
ambiguous positions and gaps. An improved version of this
algorithm has been given by Jonassen (22). For example
this improved version enables the use of branch-and-bound
and heuristics to make the search efficient.

Jonassen & Eidhammer and Jonassen report

variations of the above algorithm called PRATT and
PRATT2 (23, 22). These algorithms define a pattern graph.
Each path in this graph corresponds to a set of patterns.
Here also, a depth-first search through the graph is made
looking for conserved patterns that have the highest fitness
scores. A pattern is said to be conserved if it occurs in at
least Nmin of the positive examples given. Here Nmin is a
user-specified number.

4.2.2.3.3. Top-down processing

Top-down approaches for finding patterns are
based on optimally aligning the input sequences and

Computational techniques for motif search

5057

enumerating longest common subsequences. Since the
problem of multiple sequence alignment is known to be
NP-complete, several heuristics are employed for aligning
sequences. The algorithm of Smith and Smith uses the
dynamic programming algorithm to construct a
dendrogram for the sequences (24). This dendrogram can
be thought of as an estimated phylogenic tree. Each leaf of
this dendrogram corresponds to an input sequence. The
dendrogram is a binary tree where at each internal node a
pairwise alignment is performed to identify the common
pattern between the two children of this node. A child
could either be a pattern or an input sequence. Pairwise
alignments are always performed with sequences or
patterns that are the most similar. For example, if the input
sequences are 54321 ,,,, SSSSS and if 1S is similar to

2S ; 3S is similar to 4S ; and 5S is the most dissimilar

from the others, then, 1S and 2S will be aligned to

identify the pattern 1P between them; 3S and 4S are

aligned to get the pattern 2P ; 1P and 2P are aligned to

get 3P ; Finally 3P and 5S are merged to get 4P ; 4P is
the pattern identified to be common among the five input
sequences. If there are k sequences and the average length
of each sequence is n, then the run time of this algorithm is

)(2knO . Since the construction of dendrograms is a
common data clustering technique, Smith and Smith’s
algorithm can also be used to cluster the input sequences
(24).

 4.2.2.3.4. Clustering approaches

Zhong, et al. employ clustering techniques to
explore local protein sequence motifs representing common
structural property (25). The authors argue that systems
such as PROSITE, PRINTS, and BLOCKS are based on
searching sequences for conserved patterns (including
experimentally validated motifs). In other words, these
systems make use of apriori information on the datasets to
be analyzed and frequent human intervention. In contrast,
clustering techniques do not require any such prior
knowledge. Zhong, et al. make use of k-means clustering to
cluster data so that each cluster will have proteins with
similar characteristics (25). K-means clustering has been
used before by Han and Baker to find recurring local
sequence motifs in proteins (26). Zhong, et al. modify the
k-means clustering algorithm with a new greedy
initialization technique (25). The clustering applied by the
authors is based on recurring sequence motifs. They also
study the structural similarity of proteins in each cluster
thus obtained.

4.2.2.3.5. Heuristics

Other heuristics are reported by Roytberg,
Schuler, et al., Vingron, et al., etc. (28-30). Brazma et al.
have developed a fitness measure based on minimum
description length principle and use it to automatically find
significant patterns in unaligned sequences (30). Here also
the authors state: “Evaluating whether these relations have
biological significance is outside the scope of the method

and have to be explored individually in each case.” More
patterns finding algorithms can be found in (31-32).

In addition to the above techniques for
identifying patterns, clustering, etc., three formal versions
of the motif search problem have been identified in the
literature see e.g., (33). In the next three subsections we
introduce these problems and provide a summary of
algorithms that have been employed to solve them.

4.2.2.4. Simple motif search (SMS)
 A pattern is a string of symbols (also called
residues) and ?’s. A “?” refers to a wild card character. A
pattern cannot begin or end with ?. AB?D, EB??DS?R, etc.
are examples of patterns. The length of a pattern is the
number of characters in it (including the wildcard
characters). The problem of SMS is to take as input a
database DB of sequences and to identify all the patterns of
length at most P (with anywhere from 0 to  2/P wild
card characters). All the patterns together with a count of
how many times each pattern occurs should be output (34).
Optionally a threshold value for the number of occurrences
could be supplied.
 Rajasekaran, et al. have derived the above motif
model and this model has been derived as follows (34).
They have generated a list of 312 minimotifs (i.e., motifs of
short length) that have defined biological functions. They
have used this list to select parameters for a de novo
analysis of novel minimotifs in the human proteome. The
authors suggest a value of 10 for P. The average minimotif
in their list has 2.1 wildcard positions for any amino acid.
Wildcards signify any of the 20 amino acids. Since only 13
% of minimotifs in the list have more than 50% wild card
positions, they have chosen P/2 or 5 wild cards as the
maximal number in the algorithm.

4.2.2.4.1. Biological significance of SMS

A problem similar to SMS has been addressed by
Rigoutsos and Floratos (35). Their algorithm is called
TEIRESIAS. Core histones play a central role in the
packaging of DNA within the cell. Crystallographic
techniques have established the presence of the core
histone motif common to all the histone proteins (36).
There are two families of histone proteins, namely, H3 and
H4. Members of each family are known to be highly
similar. However, similarity across the two families was
not known until the application of TEIRESIAS.
TEIRESIAS was able to identify a large number of patterns
shared by the two families (35, 37). SMS algorithm has
been employed in MnM to identify potential motifs which
are then scored using three metrics. Davey, et al. have
employed TEIRESIAS and BLAST to identify putative
motifs (38).

4.2.2.4.2. An algorithm for SMS

Rajasekaran, et al. have given a simple algorithm
for this problem that takes less time than that of
TEIRESIAS (34). Note that SMS identifies all the patterns
of length at most P (with anywhere from 0 to  2/P
wild card characters). For every pattern, the number of
occurrences should be output.

Computational techniques for motif search

5058

Let a (u, v)-class be a class of patterns such that each
pattern has length u and has exactly v wild card characters.
For example, GA??C?T belongs to (7, 3)-class. Clearly,

there are vu

v
u −Σ







 −
||

2
 patterns in a (u, v)-class. To

identify the patterns in a (u, v)-class, they perform








 −
v

u 2
sorts. In particular, for each possible placement

of v wild card characters (excluding at the end positions) in
a sequence of length u, they perform a sorting. For
example, when u=6 and v=2, there are six possible
placements: C??CCC, CC??CC, CCC??C, C?C?CC,
CC?C?C, and C?CC?C. Here C corresponds to any residue.
Every such placement is called a (u, v)-pattern type.

For every (u, v)-pattern type, the following steps are
performed.
1. If R is a pattern type in (u, v)-class, generate all
possible u-mers in all the sequences of DB. If the
sequences in DB have lengths nlll ,,, 21 K , respectively,

then the number of u-mers from iS is 1+−uli , for

ni ≤≤1 .
2. Sort all the u-mers generated in step 1 only with
respect to the non-wild card positions of R. For example, if
the pattern type under concern is CC??C?C, generate all
possible 7-mers in DB and sort the 7-mers with respect to
positions 1,2,5, and 7. Employ radix sort. See e.g., (39).
3. Scan through the sorted list and count the number of
occurrences of each pattern.

The run time of the above algorithm is
















 −
w
uM

v
u

O
2

 for a (u, v)-class, where M is the

total number of residues in DB and w is the word length of
the computer. Thus the run time of the entire algorithm is

)(2/ MPO P (35).

4.2.2.4.3. Algorithm TEIRESIAS

The TEIRESIAS algorithm addresses a problem
similar to SMS (35, 37). They define a pattern to be a
string of symbols (also called residues) and ?’s. A "?" is a
wild card character. A pattern cannot begin or end with ?.
AB?D, EB??DS?R, etc. are examples of patterns. The
length of a pattern is the number of characters in it
including the wildcard characters. For any pattern P, any
substring of P that itself is a pattern is called a subpattern
of P. AB is a subpattern of AB?D, for example. P is called
a <l, W> pattern if every subpattern of P of length W or
more contains at least l residues. A pattern P’ is said to be
more specific than a pattern P if P’ can be obtained from P
by changing one or more wild card characters of P into
residues and/or by adding one or more residues or wild
card characters to the left or right of P. ABCD and
E?AB?D are more specific than AB?D. We call a pattern P

maximal if there is no pattern P’ that is more specific than
P and which occurs the same number of times in a given
database DB as P. The problem TEIRESIAS addresses
takes as input a database DB of sequences, the parameters l,
W, and q and outputs all <l, W> maximal patterns in DB
that occur in at least q distinct sequences of DB.

The run time of TEIRESIAS is)log(NNWO l ,
where N is the size of the database (i.e., the number of
characters (or residues) in the database). TEIRESIAS
algorithm consists of two phases. In the first phase
elementary <l, W> patterns are identified. An elementary
<l, W> pattern is nothing but a pattern which is of length
W and which has exactly l residues. This phase runs in time

)(lNWO . In the second phase (known as the
convolution phase), elementary patterns are combined (i.e.,
convolved) to obtain larger patterns. As an example,
AS?TF and TFDE can be combined to obtain AS?TFDE.
All the convolved patterns that pass the support level and
which are maximal will be output. The run time of this

phase is)log(NNWO l .

4.2.2.4.4. Apriori principle based algorithms

Ye, et al. consider an extension of TEIRESIAS
(40). They concentrate on three types of patterns: Type I,
Type II, and Type III. Type I patterns are the same as the
simple patterns defined in (35, 37). A type II pattern is a
PROSOITE-like pattern. For instance, Sx(2,3)AF is a type
II pattern that has three residues and a variable wildcard
region. A type III pattern is of a given length and in which
a set of residues occurs in a predefined order. For example,
a type III pattern of length 8 could have the residues A, T,
and F in this order. This pattern could be denoted as
A*T*F. Six different algorithms for finding these three
types of patterns are given in (40). These algorithms
employ the Apriori principle and is similar to the pattern
growth algorithm PRATT of (21). The apriori principle
states that any super-pattern of an infrequent pattern cannot
be frequent. This principle has been employed, for
example, to identify association rules in databases (41).

The input to the algorithms are a dataset S. Input
also are integers min_support, min_non_wc, and max_wc_l.
Here, min_support refers to the minimum number of
sequences in which the pattern should occur; min_non_wc
is the minimum number of non-wildcard characters in each
pattern; and max_wc_l is the maximum number of
consecutive wildcard characters allowed in any pattern. A
pattern is said to be frequent if it occurs in at least
min_support input sequences. If a pattern is frequent and
obeys the other two constraints, call it a valid pattern. The
algorithms output all the valid patterns. The algorithm
starts by finding all the valid patterns of length one each.
For every such one-pattern it tries to expand it on the right
by one more symbol and checks if the resultant pattern is
valid or not. As a result, valid patterns of length 2 are
obtained. In a similar manner, patterns of length more than
2 are also identified. Ye, et al. have compared their
algorithms with PRATT2 and TEIRESIAS (40). Their
algorithms perform better than PRATT2 in terms of

Computational techniques for motif search

5059

efficiency as well as the diversity of patterns found (21-22).
Also, they are comparable to TEIRESIAS in terms of
performance but are better in terms of the diversity of
patterns.

4.2.2.5. (l, d) motif search (LDMS)

The second version of interest is called
),(dl motif search (LDMS) and has been introduced in

(42). The input consists of n sequences of length m each.
Two integers l and d are also input. The problem is to find
a motif (i.e., a sequence) M of length l. It is given that each
input sequence contains a variant of M. The variants of
interest are sequences that are at a Hamming distance of d
from M.

4.2.2.5.1. Biological significance of LDMS

Buhler and Tompa have employed LDMS
algorithms to find known transcriptional regulatory
elements upstream of several eukaryotic genes (43). In
particular, they have used orthologous sequences from
different organisms upstream of four types of gene:
preproinsulin, dihydrofolate reductase (DHFR),
metallothioneins, and c-fos. These sequences are known to
contain binding sites for specific transcription factors. The
authors point out the differences between experimental data
and synthetic data that LDMS algorithms are typically
tested with. For example, the background DNA in
experimental data is not random. Their algorithm
successfully identified the transcription factor binding sites.
They have used the values of l=20 and d=2. The same sites
have also been found using PMS2 of Rajasekaran, et al.
(44). Buhler and Tompa have also employed their
algorithm to solve the ribosome binding site problem for
various prokaryotes (43). This problem is even more
challenging since here the number of input sequences could
be in the thousands.

 Eskin and Pevzner used LDMS algorithms to
find composite regulatory patterns (45). They point out
that traditional pattern finding techniques (on unaligned
DNA sequences) concentrate on identifying high-
scoring monads. A regulatory pattern could indeed be a
combination of multiple and possibly weak monads.
They employ MITRA (a LDMS algorithm) to locate
regulatory patterns of this kind. The algorithm is
demonstrated to perform well on both synthetic and
experimental data sets. For example, they have
employed the upstream regions involved in purine
metabolism from three Pyrococcus genomes. They have
also tested their algorithm on four sets of S.cerevisiae
genes which are regulated by two transcription factors
such that the transcription factor binding sites occur
near each other.

 Price, et al. have employed their
PatternBranching LDMS technique on a sample
containing CRP binding sites in E.coli, upstream regions
of many organisms of the eukaryotic genes:
preproinsulin, DHFR, metallothionein, & c-fos, and a
sample of promoter regions from yeast (46). They report
finding numerous motifs in these sequences.

Though the),(dl motif problem is defined for
arbitrary sequences, all the algorithms in the literature
assume DNA sequences. The literature contains numerous
algorithms for solving the LDMS problem. These
algorithms can be classified into two. Those algorithms that
may not output the correct answer(s) always are referred to
as approximation algorithms (or heuristic algorithms) and
those that always output the correct answers are called
exact algorithms.

4.2.2.5.2. Approximation algorithms

Examples of approximation (or heuristic)
algorithms include Random Projection, PatternBranching,
MULTIPROFILER, CONSENSUS, and ProfileBranching
(43, 46, 42, 47, 46). These algorithms have been
experimentally demonstrated to perform well. We provide
summaries of Random Projection and PatternBranching
next.

4.2.2.5.2.1. Random projection algorithm

The algorithm of Buhler and Tompa is based on
random projections (43). Let the motif M of interest be an
l-mer and C be the collection of all the l-mers from all the n
input sequences. The algorithm projects these l-mers along
k randomly chosen positions (for some appropriate value of
k). We can think of the projection of each l-mer as an
integer. We group the projected values (which are k-mers)
according to their integer values. In other words, we hash
all the l-mers using the k-mer of any l-mer as its hash
value.

The main idea of the algorithm is the observation

that many instances of M will have the same projected
value. If a hashed group has at least a threshold number s
of l-mers in it, then there is a good chance that M will have
its k-mer equal to the k-mer of this group. Since there are

)1(+− lmn l-mers in the input and there are k4
possible k-mers, the expected number of l-mers that have

the same hash value is k

lmn
4

)1(+−
. The threshold s is

chosen to have twice this expected value and k is chosen

such that klmn 4)1(<+− . This will ensure that the
expected number of random l-mers that have the same hash
value is less than one. Also k has to be less than (l-d).
Typical values used for k and s are 7 and 3, respectively.

The above process of random hashing is repeated
r times (for some relevant value of r) so as to be sure that a
bucket of size s≥ is observed at least once. Calculation
of r can be done as follows. The probability p that a given
instance of M has the same hash value as M is given by

















 −

k
l
k

dl

. Since there are n instances of M, the

probability that fewer than s of them have the same hash

Computational techniques for motif search

5060

value is given by ∑
−

=

−−







=

1

1
)1('

s

i

ini pp
i
n

p .

Therefore, the probability that less than s instances have the

same hash value in each of the r trials is rpP)'(= . The

value of r is thus 







'log

log
p
P

. Buhler and Tompa employ a

value of 0.05 for P (43). The algorithm collects all the k-
mers (and the corresponding l-mers) that pass the threshold
and these are processed further to arrive at the final answer
M. Expectation maximization (EM) technique of Lawrence
and Reilly is employed to process these l-mers (48). The
EM formulation employs the following model. Each input
sequence has an instance of M (where |M|=l) such that
these instances are characterized by a l×4 weight matrix
W with],[jiW being the probability that base i occurs

in position j for 41 ≤≤ i and lj ≤≤1 . Occurrences
of bases in different positions are assumed independent.
Bases for the remaining m-l positions in each sequence are
governed by a background distribution B. If S is the set of
input sequences, then the EM-based technique of Lawrence
and Reilly determines a weight matrix model W* that

maximizes the likelihood ratio
)/Pr(

)*,/Pr(
BS

BWS
.

4.2.2.5.2.2. Pattern branching

A local searching algorithm called
PatternBranching has been given in (46). This algorithm
falls under the approximation category. If u is any l-mer,

then there are d

d
l

3







 l-mers that are at a Hamming

distance of d from u. Refer to each such l-mer a neighbor
of u. One strategy to solve the LDMS problem is to start
from each l-mer u in the input, search the neighbors of u,
score them appropriately and output the best scoring
neighbor. Note that there are a total of)1(+− lmn l-
mers in the input.

Let S = S1,S2,…,Sn be the collection of n given

input sequences. PatternBranching only examines a
selected subset of neighbors of any l-mer u of the input and
hence is more efficient. For any l-mer u, let)(uDi stand
for the set of neighbors of u that are at a Hamming distance
of i from u (for di ≤≤1). For any input sequence jS ,

let),(jSud denote the minimum Hamming distance

between u and any l-mer of jS (for nj ≤≤1). Let

∑
=

=
n

j
jSudSud

1
),(),(. For any l-mer u in the input

let BestNeighbor(u) stand for the neighbor v in)(1 uD

whose distance),(Svd is minimum from among all the

elements of)(1 uD . PatternBranching starts from a u,

identifies)(1 uorBestNeighbu = ; Then it identifies

)(12 uorBestNeighbu = ; and so on. It finally

computes du . The best du from among all possible u's is
output.

4.2.2.5.3. Exact algorithms

Many exact algorithms are known as well.
Examples include the ones given by Martinez, Brazma,,
Galas, et al., Sinha & Tompa, Staden, Tompa, van Helden,
et al., Rajasekaran, et al., Davila & Rajasekaran, and
Davila, et al. (49-55, 44, 56-57). However, as pointed out
by Buhler and Tompa, these algorithms "become
impractical for the sizes involved in the challenge problem"
(43). A challenging instance of LDMS is an instance where
the probability of finding a supurious motif (i.e., a motif
that occurs by random chance) is greater than or equal to 1.
Exceptions are the MITRA algorithm and the algorithms of
Rajasekaran, et al. (45, 44, 56-57). MITRA solves for
example the (15, 4) instance in 5 minutes using 100 MB of
memory (45). This algorithm is based on the WINNOWER
algorithm and uses pairwise similarity information (58). A
new pruning technique enables MITRA to be more
efficient than WINNOWER. MITRA uses a mismatch tree
data structure and splits the space of all possible patterns
into disjoint subspaces that start with a given prefix. The
same (15,4) instance is solved in 3.5 minutes by PMS2
(44).

It is noteworthy here that approximation

algorithms such as CONSENSUS and ProfileBranching
take much less time for the (15, 4) instance (46). However
these algorithms fall under the approximate category and
may not always output the correct answer.

The largest challenging instances that have been

solved thus far are (17,6) and (19,7). These instances have
been solved by an algorithm called PMSprune (59).
PMSprune is an exact algorithm and it can be thought of as
an extension of PMS1. This algorithm takes 69 minutes and
9.2 hours to solve the instances (17,6) and (19,7),
respectively.

We now provide summaries of some of the
algorithms that have been proposed for LDMS.

4.2.2.5.3.1. Algorithms WINNOWER and SP-STAR

WINNOWER algorithm of Pevzner and Sze
works as follows (58). If A and B are two instances (i.e.,
occurences) of the motif in two different sequences, then
the Hamming distance between A and B is at most 2d. It
can be shown that the expected Hamming distance between

A and B is
l

dd
3

42
2

− . WINNOWER constructs a

collection C of all possible l-mers in the input. A graph
),(EVG is constructed in which each l-mer of C will be

Computational techniques for motif search

5061

a node. Two nodes u and v in G are connected by an edge if
and only if the Hamming distance between u and v is at
most 2d and they come from two different sequences.

Since the n instances of the motif M will form a
clique in G, the problem of finding M reduces to that of
finding large cliques in G. Unfortunately, the problem of
finding large cliques in a graph is NP-hard and also there
will be numerous 'spurious' edges (i.e., edges that do not
connect instances of M) in G. Pevzner and Sze observe that
the graph G constructed above is 'almost random' and is
multipartite and use this observation to eliminate edges
(58). If { }kvvvQ ,,, 21 K= is any clique, node u is

called a neighbor of Q if { }uvvv k ,,,, 21 K is also a
clique. If u is a neighbor of Q, then Q can be extended to
get a larger clique. A clique is said to be extendable if it
has at least one neighbor in every part of the multipartite
graph G. WINNOWER is based on the observation that
every edge in a maximal n-clique belongs to at least









−
−

2
2

k
n

 extendable cliques of size k.

WINNOWER iteratively constructs cliques of

larger and larger sizes. If N=mn, then the run time of the

algorithm is)(12 +dNO . This algorithm runs in a
reasonable amount of time in practice especially for small
values of d. Pevzner and Sze have also given another
algorithm called SP-STAR that is faster than WINNOWER
and uses less memory (58). WINNOWER algorithm treats
all the edges of G equally without distinguishing between
edges based on similarities. SP-STAR scores the l-mers of
C as well as the edges of G appropriately and hence
eliminates more edges than WINNOWER per iteration.

4.2.2.5.3.2. Algorithm PMS1

This algorithm is based on radix sorting and has
the following steps: 1) Generate all possible l-mers from
each of the n input sequences. Denote by iC the collection

of l-mers from iS , for ni ≤≤1 ; 2) For all ni ≤≤1

and for all iCu∈ generate all l-mers v such that u and v
are at a Hamming distance of d. Let the collection of l-mers

corresponding to iC be '
iC , for ni ≤≤1 ; 3) Employ

radix sort to sort all the l-mers in every niCi ≤≤1,' and

eliminate duplicates in every '
iC . Let iL be the resultant

sorted list corresponding to '
iC ; and 4) Merge all the iL s

)1(ni ≤≤ and output the generated (in step 2) l-mer that
occurs in all the iL s (44). Many fundamentally new ideas
that can be used to improve the performance of PMS1 have
also been given in (44).

The exact algorithms of Eskin & Pevzner and
Rajasekaran, et al. are able to solve the challenging

instances (9, 2), (11, 3), and (13, 4) in a reasonable amount
of time using a PC (45, 44). However for the (15,5)
instance they either take a long time or call for too much of
memory. Chin and Leung have proposed a technique called
voting which can be thought of as a combination of the
techniques of Buhler & Tompa and Rajasekaran, et al. (60,
43-44). They have reported solving the (15, 5) instance in
around 22 minutes. In a recent work Davila, et al. have
improved the performance of the algorithms of
Rajasekaran, et al. with some crucial ideas (44, 57). The
largest challenging instances that have been solved thus far
are (17,6) and (19,7). See (56, 59). The algorithms used to
solve these instances are based on PMS1 (44). PMS1 takes
an approach much different from the others in the
literature. It has yielded the best performance thus far.
Also, PMS1 and related algorithms use simple data
structures such as arrays.

4.2.2.6. Edited motif search (EMS)

The input for this problem is a database DB of
sequences nSSS ,,, 21 K . Input also are integers P, D,
and q. The output should be all the patterns in DB such that
each pattern is of length P and it occurs in at least q of the
n sequences. A pattern U is considered an occurrence of
another pattern V as long as the edit distance between U
and V is at most D.

4.2.2.6.1. Biological significance of EMS

EMS has applications in finding the DNA
binding sites. Rocke and Tompa have used Gibbs sampling
techniques to solve EMS (61). They have tested their
technique on the noncoding regions of the full H.influenzae
genome and found many interesting motifs. Also, since
EMS is closely related to LDMS (LDMS being a special
case of EMS), all the applications relevant for LDMS can
also be handled by EMS techniques.

Note that EMS is more general than LDMS.
From a biological point of view EMS is perhaps more
relevant than EMS since in the process of evolution, inserts
and deletes are common and LDMS rules out these.

4.2.2.6.2. Algorithms for EMS

An algorithm for EMS has been given by Sagot

that has a run time of)||(2 ddmlnO Σ where m is the
average length of the sequences in DB and Σ is the alphabet
from which the input sequences are generated (62). It is

based on suffix trees and uses)/(2 wmnO space where
w is the word length of the computer. An algorithm with an
expected run time of

)log)(()(1 nmnmdnmO pow ε++ where ld /=ε

and)(εpow is an increasing concave function has been

given in (63). The value of)(εpow is roughly 0.9 for
protein and DNA sequences. This algorithm is also suffix-
tree based.

A sorting based algorithm similar to PMS1 has been given
in (34). This algorithm runs in time

Computational techniques for motif search

5062

Table 1. A comparison of different web-based motif search systems
System Freq. Analysis SNP Comparisons # of motifs in proteomes Links to Literature Domain mappings Subcellular

localization
MnM Yes Yes Yes Yes Yes Yes
ELM No No No Yes Yes Yes
Scansite No No No No No No
Prosite No No No Yes Yes No
DILIMOT No No No No No No

)||(2 ddmlnO Σ . The space used is

)||(ddnmlO Σ . The space used can be reduced to

)||(ddlnmdO Σ+ . Since this algorithm uses arrays
only, the underlying constants will be small and hence can
be expected to perform well in practice.

4.2.2.7. Finding spaced motifs

Some classes of motifs, called spaced motifs,
have the following property: Each motif consists of several
segments located closer to each other. All the algorithms
discussed above assume monad (i.e., single segment)
motifs. A number of algorithms have been proposed in the
literature for finding spaced motifs. Examples include
MITRA and SPACE (45, 64). The problem of finding
spaced motifs is made difficult by the presence of non-
conserved characters (called spacers) in between two
segments (i.e., monads). Several different techniques have
been used to find spaced motifs. For example, Favorov, et
al. assume that the spacers in the same motif are of the
same length (65). The algorithm of Sinha and Tompa tries
out all possible spacer lengths (52). The algorithm of
Carvalho, et al. uses suffix trees to locate regularly spaced
monads and combine them to form spaced motifs (66).
Eskin and Pevzner have defined a special data structure
called the mismatch tree data structure and used this in
their algorithm MITRA (45). MITRA first identifies
monads and then combines them to get spaced motifs.

The algorithms of Favorov, et al., Sinha &

Tompa, Carvalho, et al., and Eskin & Pevzner have been
used to find dyads, i.e., motifs consisting of two monads
(65, 52, 66, 45). On the other hand, the SPACE algorithm
has been employed to find spaced motifs with more than
two monads as well (64). SPACE is similar to TEIRESIAS
and it poses the spaced motif finding problem as a frequent
itemset mining problem. There are three steps in SPACE.
In step 1, candidate motifs are found; in step 2 these
candidates are refined into spaced motifs; and in step 3, the
spaced motifs are ranked using a scoring scheme and a
sorted list of the spaced motifs is output.

5. CONCLUSIONS

 In this paper we have provided a survey of
various techniques that are currently being employed for
the discovery of short motifs. Finding motifs is an
important problem and there is still room for improvement
as far as the computational techniques are concerned.
Numerous techniques have been proposed in the literature
for motif search. Each of these techniques addresses a
specific aspect of motif search. We can categorize motif
search methods into two: experimental and computational

 Experimental techniques are very time consuming. Given
the large number of putative motifs, experimental
techniques may not be feasible for an exhaustive search.
This is where computational techniques could be of great
help.

 Computational techniques could be categorized
into two: stochastic and discrete algorithms based.
Stochastic techniques (STs) are often fast but may not find
complete or optimal results. On the other hand, discrete
algorithmic techniques (DATs) typically find optimal
solutions. Some of the problem formulations in DATs are
NP-hard and hence can take a very long time to solve in
practice.

Based on the data used to find motifs, DATs can
further be classified into those that employ interaction data
and those that make use of singular sequence data.
Algorithms that use interaction data are typically very
effective in finding domains whereas those that employ
singular sequence data are effective in finding short motifs.

DATs that use singular sequence data can further
be categorized into those that find arbitrary patterns and
those that look for specific patterns. Algorithms that find
arbitrary patterns make use of techniques such as learning,
bottom-up processing, top-down processing, clustering, and
heuristics.

Three specific patterns of interest are simple
motifs and variants (such as type I, type II, and type III
patterns),),(dl motifs, and edit-distance based motifs.
We can think of simple motifs as a slightly restricted form
of arbitrary patterns. Patterns here are represented using
PROSITE-like expressions.),(dl motifs primarily
assume substitutions whereas edit-distance based motifs
permit substitutions, inserts, and deletes. Algorithms for all
these three specific patterns have been used to solve some
important problems in biology.

Algorithms known for),(dl motif search
(LDMS) can be grouped into two: approximate and exact.
An exact algorithm always comes up with the correct
answer (s). An approximate (or heuristic) algorithm may
not always come up with the correct answer(s). Algorithms
such as Random Projection, PatternBranching,
MultiProfiler, Consensus, Weeder, ProfileBranching, etc.
fall under the approximation group. Examples of exact
algorithms include WINNOWER, SP-STAR, MITRA,
PMS1, PMS2, PMS3, Voting, PAMPA, PMSprune, etc.
Approximation algorithms, in general, are very fast but
may not always come up with the correct answer(s). On the
other hand, exact algorithms perform an exhaustive search
and hence always produce correct answer(s). By nature,

Computational techniques for motif search

5063

they take a long time to terminate. In fact the largest
challenging instances of LDMS that have been solved so
far are by an exact algorithm (PMSprune).

Some of the motif techniques assume DNA
sequences. Examples include algorithms for LDMS and
EMS. These algorithms will work on protein sequences as
well. However, the run times of some of these algorithms
are exponential in the size of the alphabet. Therefore, they
will take a very long time on protein sequences. All the
algorithms that have been described in Section 3.2.1 (web
based systems) work on protein sequences.

In conclusion, computational techniques are of
great help in motif search. The particular choice of
technique will depend on various factors such as the type of
data used, performance measures of interest, types of
patterns desired, etc.

6. ACKNOWLEDGEMENTS

This research has been supported in part by the
NIH Grant 1R01GM079689-01A1 and NSF Grant ITR-
0326155.

7. REFERENCES

1. Falquet, L, M. Pagni, P. Bucher, N. Hulo, C. J. Sigrist,
K. Hofmann, A. Bairoch: The PROSITE database, its status
in 2002. Nucleic Acids Res 30, 235-238 (2002)

2. Letunic, I, L. Goodstadt, N. J. Dickens, T. Doerks, J.
Schultz, R. Mott, F. Ciccarelli, R. R. Copley, C. P. Ponting,
P. Bork: Recent improvements to the SMART domain-
based sequence annotation resource. Nucleic Acids Res 30,
242-244 (2002)

3. Hodgman, T. C: The elucidation of protein function
by sequence motif analysis, CABIOS Rev 5 (1), 1013
(1989).

4. Josephson, K, N. J. Logsdon, M. R. Walter: Crystal
structure of the IL-10/IL-10R1 complex reveals a shared
receptor binding site. Immunity 15, 35-46 (2001)

5. Sidhu, S.S, W. J. Fairbrother, K. Deshayes: Exploring
protein-protein interactions with phage display.
Chembiochem 4, 14-25 (2003)

6. Clemmons, D. R: Use of mutagenesis to probe IGF-
binding protein structure/function relationships.
Endocrine Reviews 22, 800-817 (2001)

7. Edwards, R. J, N. Moran, M. Devocelle, A. Kiernan,
G. Meade, W. Signac, M. Foy, S. D. E. Park, E. Dunne,
D. Kenny, D. C. Shields: Bioinformatic discovery of
novel bioactive peptides. Nature Chemical Biology 3
(2), 108-112 (2007)

8. Austin, R. S, N. J. Provart, S. R. Cutler: C-terminal
motif prediction in eukaryotic proteomes using
comparative genomics and statistical over-

representation across protein families. BMC Genomics,
8:191 (2007)

9. Deng, M, S. Mehta, F. Sun, T. Chen: Inferring
domain-domain interactions from protein-protein
interactions. Genome Res 12, 1540-1548 (2002)

10. Reiss, D. J, B. Schwikowski: Predicting protein-
peptide interactions via a network-based motif sampler.
Bioinformatics 20 Supplement 1, I274-I282 (2004)

11. Bailey, T. L, C. Elkan: Fitting a mixture model by
expectation maximization to discover motifs in
biopolymers. Proc. Second International Conference on
Intelligent Systems for Molecular Biology, 28-36 (1994)
12. Puntervoll, P, R. Linding, C. Gemund, S. Chabanis-
Davidson, M. Mattingsdal, S. Cameron, D. M. Martin, G.
Ausiello, B. Brannetti, A. Costantini, F. Ferre, V. Maselli,
A. Via, G. Cesareni, F. Diella, G. Superti-Furga, L.
Wyrwicz, C. Ramu, C. McGuigan, R. Gudavalli, I. Letunic,
P. Bork, L. Rychiewski, B. Kuster, M. Helmer-Citterich,
W. N. Hunter, R. Aasland, T. J. Gibson: ELM server: a
new resource for investigating short functional sites in
modular eukaryotic proteins. Nucleic Acids Res 31 (13),
3625-3630 (2003)

13. Yaffe, M. B, G. G. Laparc, J. Lai, T. Obata, S. Volinia,
L. C. Cantley: A motif-based profile scanning approach for
genome-wide prediction of signaling pathways. Nat
Biotechnol 19, 348-353 (2001)

14. Hulo, N, A. Bairoch, V. Bulliard, L. Cerutti, B. A.
Cuche, E. de Castro, C. Lachaize, P. S. Langendijk-
Genevaux, J. A. Sigrist: The 20 years of PROSITE. Nucleic
Acids Res, 1-5 (2007)

15. Balla, S, V. Thapar, S. Verma, T. B. Luong, T. Faghri,
C.-H. Huang, S. Rajasekaran, J. J. del Campo, J. H. Shinn,
W. A. Mohler, M. W. Maciejewski, M.W. Gryk, B.
Piccirillo, S. R. Schiller, M. Schiller: Minimotif miner: a
tool for investigating protein function. Nature Methods 3
(3), 175-177 (2006)

16. Neduva, V, R. Linding, I. Su-Angrand, A. Stark, F. de
Masi, T. J. Gibson, J. Lewis, L. Serrano, R. B. Russell:
Systematic discoervy of new recognition peptides
mediating protein interaction networks. PLoS Biology 3
(12), 2090-2099 (2005)

17. Bennett, S. P, C. G. Nevill-Manning, D. L. Brutlag:
3MOTIF: visualizing conserved protein sequence motifs in
the protein structure database. Bioinformatics 19 (4), 541-
542 (2003)

18. Li, H, J. Li: Discovery of stable and significant binding
motif pairs from PDB complexes and protein interaction
datasets. Bioinformatics 21 (3), 314-324 (2005)

19. Tan, S. H, W. Hugo, W. K. Sung, S. K. Ng: A
correlated motif approach for finding short linear motifs
from protein interaction networks. BMC Bioinformatics 7,
502 (2006)

Computational techniques for motif search

5064

20. Brazma, A, I. Jonassen, I. Eidhammer, D. Gilbert:
Approaches to the automatic discovery of patterns in
biosequences. Report Number 113, Department of
Informatics, University of Bergen, Bergen, Norway,
December (1995)

21. Jonassen, I, J. F. Collins, D. G. Higgins: Finding
flexible patterns in unaligned protein sequences. Protein
Science 4(8), 1587-1595 (1995)

22. Jonassen, I: Efficient discovery of conserved patterns
using a pattern graph. Comput Appl Biosci 13, 509-522
(1997)
23. Jonassen, I, I. Eidhammer: Discovering patterns
conserved in sets of related protein sequences. Proc. of
Norwegian Informatics Conference, Tapir, Norway, 95-112
(1995)

24. Smith, R. F, T. F. Smith: Automatic generation of
primary sequence patterns from sets of related protein
sequences. Proc. National Academy of Science, USA,
January, 118-122 (1990)

25. Zhong, W, G. Altun, R. Harrison, P. C. Tai, Y. Pan:
Improved k-means clustering algorithm for exploring local
protein sequence motifs representing common structural
property. IEEE Transactions on Nanobioscience 4(3), 255-
265 (2005)

26. Han, K.F, D. Baker: Global properties of the mapping
between local amino acid sequence and local structure in
proteins. Proc Natl Acad Sci USA 93, 5814-8 (1996)

27. Roytberg, M. A: A search for common patterns in
many sequences. CABIOS 8(1), 57-64 (1992)

28. Schuler, G. D, S. F. Altschul, D. J. Lipman: A
workbench for multiple alignment construction and
analysis. PROTEINS: Structure, Function, and Genetics 9,
180-190 (1991)

29. Vingron, M, P. Argos: Motif recognition and alignment
for many sequences by comparison of dot-matrices. J Mol
Biol 218, 33-43 (1991)

30. Brazma, A, I. Jonassen, I. Eidhammer, E. Ukkonen:
Relation patterns and their automatic discovery in
biosequences. Report Number 135, Department of
Informatics, University of Bergen, Bergen, Norway, June
(1997)

31. Jonassen, I, I. Eidhammer, W. R. Taylor: Discovery of
local packing motifs in protein structures. PROTEINS:
Structure, Function, and Genetics 34, 206-219 (1999)

32. Jonassen, I, I. Eidhammer, D. Conklin, W. R. Taylor:
Structure motif discovery and mining the PDB. Proc.
German Conference on Bioinformatics (2000)

33. Rajasekaran, S: Algorithms for motif search. In:
Handbook of Computational Molecular Biology. Eds:
Aluru, S, Chapman & Hall/CRC Press, 37-1—37-21 (2006)

34. Rajasekaran, S, S. Balla, C.-H. Huang, V. Thapar, M.
Gryk, M. Maciejewski, M. Schiller: High performance
exact algorithms for motif search. Journal of Clinical
Monitoring and Computing, 19(4-5), 319-328 (2005)

35. Rigoutsos, I, and A. Floratos: Motif discovery without
alignment or enumeration. Proc. RECOMB, 221-227
(1998)

36. Arents, G, K. Moudrianakis: Topography of the histone
octamer surface: repeating structural motifs utilized in the
docking of nucleosomal DNA. Proc Natl Acad Sci USA 90,
10489-10493 (1993)

37. Rigoutsos, I, A. Floratos: Combinatorial pattern
discovery in biological sequences: The TEIRESIAS
algorithm. Bioinformatics 14(1), 55-67 (1998)

38. Davey, N. E, D. C. Shields, R. J. Edwards: SLiMDisc:
short linear motif discovery, correcting for common
evolutionary descent. Nucleic Acids Res 34(12), 3546-3554
(2006)

39. Horowitz, E, S. Sahni, S. Rajasekaran: Computer
Algorithms, Silicon Press, 2008.

40. Ye, K, W. A. Kosters, P. IJzerman: An efficient,
versatile and scalable pattern growth approach to mine
frequent patterns in unaligned protein sequences.
Bioinformatics 23(6), 687-693 (2007)

41. Agrawal, R, R. Srikant: Fast algorithms for mining
association rules. Proc. 20th International Conference on
Very Large Data Bases (VLDB), 487-499 (1994)

42. Keich, U, P. Pevzner: Finding motifs in the twilight
zone. Bioinformatics 18, 1374-1381 (2002)

43. Buhler, J, M. Tompa: Finding motifs using random
projections. Proc. Fifth Annual International Conference
on Computational Molecular Biology (RECOMB), April
(2001)

44. Rajasekaran, S, S. Balla, C.-H. Huang: Exact
algorithms for planted motif challenge problems. Journal
of Computational Biology 12(8), 1117-1128 (2005)

45. Eskin, E, P. Pevzner: Finding composite regulatory
patterns in DNA sequences. Bioinformatics S1, 354-363
(2002)

46. Price, A, S. Ramabhadran, P. Pevzner: Finding subtle
motifs by branching from sample strings. Bioinformatics
1(1), 1-7 (2003)

47. Hertz, G, G. Stormo: Identifying DNA and protein
patterns with statistically significant alignments of multiple
sequences. Bioinformatics 15, 563-577 (1999)

48. Lawrence, C. E, A. A. Reilly: An expectation
maximization (EM) algorithm for the identification and
characterization of common sites in unaligned biopolymer

Computational techniques for motif search

5065

sequences. Proteins: Structure, Function, and Genetics 7,
41-51 (1990)

49. Martinez, H. M: An efficient method for finding repeats
in molecular sequences. Nucleic Acids Res 11(13), 4629-
4634 (1983)

50. Brazma, A, I. Jonassen, J. Vilo, E. Ukkonen: Predicting
gene regulatory elements in silico on a genomic scale.
Genome Res 15,1202-1215 (1998)

51. Galas, D. J, M. Eggert, M. S. Waterman: Rigorous pattern-
recognition methods for DNA sequences: Analysis of promoter
sequences from Escherichia coli. J Mol Biol 186(1), 117-128
(1985)

52. Sinha, S, M. Tompa: A statistical method for finding
transcription factor binding sites. Proc. Eighth
International Conference on Intelligent Systems for
Molecular Biology, 344-354 (2000)

53. Staden, R: Methods for discovering novel motifs in
nucleic acid sequences. Computer Applications in the
Biosciences 5(4), 293-298 (1989)

54. Tompa, M, An exact method for finding short motifs in
sequences, with application to the ribosome binding site
problem. Proc. Seventh International Conference on
Intelligent Systems for Molecular Biology, 262-271 (1999)

55. van Helden, J, B. André, B., J. Collado-Vides:
Extracting regulatory sites from the upstream region of
yeast genes by computational analysis of oligonucleotide
frequencies. J Mol Biol 281(5), 827-842 (1998)

56. Davila, J, S. Rajasekaran: Extending pattern branching
to handle challenging instances. Proc. 6th International
Symposium on Bioinformatics and Bioengineering (BIBE),
65-69 (2006)

57. Davila, J, S. Balla, S. Rajasekaran: Space and time
efficient algorithms for planted motif search. Proc.
International Workshop on Bioinformatics Research and
Applications (IWBRA), Reading, UK, May (2006)

58. Pevzner, P, S.-H. Sze: Combinatorial approaches to
finding subtle signals in DNA sequences. Proc. Eighth
International Conference on Intelligent Systems for
Molecular Biology, 269-278 (2000)

59. Davila, J, S. Balla, S. Rajasekaran: Fast and practical
algorithms for planted (l,d) motif search. IEEE/ACM
Transactions on Computational Biology and
Bioinformatics, 544-555 (2007)

60. Chin, F.Y.L, H. C. M. Leung: Voting algorithms for
discovering long motifs. Proceedings of the Third Asia-
Pacific Bioinformatics Conference (APBC), 261-271
(2005)

61. Rocke, E, M. Tompa: An algorithm for finding novel
gapped motifs in DNA sequences. Proc. Second

International Conference on Computational Molecular
Biology (RECOMB), 228-233 (1998)

62. Sagot, M. F, Spelling approximate repeated or common
motifs using a suffix tree. Springer-Verlag LNCS 1380,
111-127 (1998)

63. Adebiyi, E. F, M. Kaufmann: Extracting common
motifs under the Levenshtein measure: theory and
experimentation. Proc. Workshop on Algorithms for
Bioinformatics (WABI), Springer-Verlag LNCS 2452, 140-
156 (2002)

64. Wijaya, E, K. Rajaraman, S.-M. Yiu, W.-K. Sung:
Detection of generic spaced motifs using submotif pattern
mining. Bioinformatics 23(12), 1476-1485 (2007)

65. Favorov, A. V, M. S. Gelfand, A. V. Gerasimova, D. A.
Ravcheev, A. A. Mironov, V. J. Makeev: A Gibbs sampler
for identification of symmetrically structured, spaced DNA
motifs with improved estimation of the signal length.
Bioinformatics 21 (10), 2240-2245 (2005)

66. Carvalho, A. M, A. T. Freitas, A. L. Oliveira, M-F.
Sagot: A highly scalable algorithm for the extraction of cis-
regulatory regions. Proc. Asia-Pacific Bioinformatics
Conference (APBC), 273-282 (2005)

Key Words: motif search, computational techniques,
patterns identification, exact algorithms, approximation
algorithms , review

Send correspondence to: Sanguthevar Rajasekaran,
Dept. of CSE, University of Connecticut, Storrs, CT
06269-2155, Tel: 860-486-2428, Fax: 860-486-4817, E-
mail: rajasek@engr.uconn.edu

http://www.bioscience.org/current/vol14.htm

