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1. ABSTRACT 

 
Fibrosis is a scarring process that is a common 

feature of chronic organ injury. It is characterized by 
elevated activity of transforming growth factor-beta 
resulting in increased and altered deposition of extracellular 
matrix and other fibrosis-associated proteins. Recent work 
has demonstrated that bone morphogenetic protein-7 blocks 
transforming growth factor-beta signaling. Moreover, 
member of the CCN family, Endoglin, Sclerostin, 
Sclerostin domain-containing proteins, Gremlin, Noggin, 
Chordin, and Kielin/Chordin-like protein influence the 
biological activity of both cytokines. As a consequence, 
they modulate cellular proliferation, migration, adhesion 
and extracellular matrix production. This tight protein 
network consisting of transforming growth factor-betas, 
bone morphogenetic proteins and various binding partners 
includes potential novel molecular targets and biomarkers 
useful for prognostication, disease monitoring and therapy. 
We here summarize recent advances in understanding bone 
morphogenetic protein-7 function and signaling and the 
current attempts to use this critical modulator as a 
pharmacological device to reverse transforming growth 
factor-beta-induced fibrogenesis. 

 
 
 
 
 
 
 
2. INTRODUCTION 

 
Since the first identification of human bone morphogenetic 
protein-7 (BMP-7, formerly known as osteogenic protein-1 
or OP-1) as a factor involved in bone formation in 1990 (1), 
this member of the transforming growth factor-beta (TGF-
beta) superfamily has addressed the curiosity of many 
scientists. BMP-7 physiologically acts as a major and 
essential morphogen and survival factor in the development 
of kidney, bone and eye. This is substantiated by the 
finding that respective homozygous null mice exhibit 
arrested kidney development and dysplastic kidneys, and 
die soon after birth (2, 3). Although, the precise 
physiological function in kidney and other organs has not 
been completely assigned, it is obvious that BMP-7 is an 
endogenous regulator of organ homeostasis and 
regeneration (4, 5). Moreover, the finding that recombinant 
BMP-7 (rBMP-7) reduces the severity of injury after acute 
and chronic organ failure (6) by counteracting TGF-beta1-
mediated profibrotic effects, this member of the TGF-beta 
superfamily, including its signaling pathways and 
biological modifiers have become attractive targets for 
modulation of profibrotic TGF-beta1 activity in 
experimental and clinical settings of various
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Table 1. BMP and GDF family members 
BMP 
member1 Alternative names Chromosomal 

localization Functions and activities 

BMP-1 Tolloid, PCP2 8p21 laminin-5 processing, chordin antagonist, metalloprotease that proteolytically 
removes the C-propeptides of procollagens I-III, determination of dorsal-ventral 
pattering in embryogenesis, activator of other members of the TGF-beta superfamily 

BMP-2 BMP2A 20p12 bone and cartilage formation, binds to members of the CCN family (i. e. NOV), 
stimulate the entire process of stem cell differentiation in vitro 

BMP-3 osteogenin 4q21 bone formation (controversially discussed), antagonistic activity against BMP-2 
BMP-3B GDF10 10q11.1 inducer of endochondral bone formation, antagonistic activity against BMP-2 
BMP-4 BMP2B, BMP2B1 14q22-q23 formation of teeth, limbs and bone, tooth development, limb formation, bone 

induction, and fracture repair, stimulate the entire process of stem cell 
differentiation in vitro, potentiates growth factor-induced proliferation of mammary 
epithelial cells, cofactor in angiogenesis, binds to chordin-like 1 

BMP-5 MGC34244 6p12.1 cartilage development, chondrocyte differentiation (in vitro and in vivo), osteoclast 
generation, formation of multiple skeletal features 

BMP-6 Vgr-1, GDF3 6p24-p23 osteoblast differentiation, osteoclast generation, promotes E-cadherin expression, 
inhibits growth of mature human B cells 

BMP-7 OP-1 20q13 osteoblast differentiation, osteogenic transformation, cartilage repair, counteract 
epithelial-to-mesenchymal transition, counteracts TGF-beta-mediated fibrosis, 
stimulate the entire process of stem cell differentiation in vitro, inhibits smooth 
muscle cell proliferation, binds members of the CCN family (i. e. CTGF) 

BMP-8 OP-2, BMP-8B 1p35-p32 bone and cartilage development, induce ectopic bone growth 
BMP-9 GDF2 10q11.22 induce the expression of choline acetyltransferase and vesicular acetylcholine 

transporter, regulator of acetylcholine synthesis, differentiating factor for 
cholinergic central nervous system neurons; anti-angiogenic factor, interferes with 
IGF-I signaling 

BMP-10  2p13.2-2p14 essential in normal embryonic heart development 
BMP-11 GDF11 12q13.13 regionalizes the anterior-posterior axis, involved in retina development 
BMP-12 GDF7, CDMP3 2p24-p23 inhibits terminal differentiation of myoblasts 
BMP-13 CDMP2, GDF6 8q22.1 inhibits terminal differentiation of myoblasts; regulate growth and maintenance of 

articular cartilage 
BMP-14 GDF5, CDMP1, LAP4, LPS-

associated protein 4 
20q11.2 long bone fracture healing 

BMP-15 GDF9B Xp11.2 oocyte and follicular development 
BMP-16 Nodal 10q22.1 inducing and patterning mesoderm and endoderm, regulating neurogenesis and left-

right axis asymmetry; mesoderm formation 
GDF8 Myostatin, MSTN 2q32.2 not known 
GDF15 Mic-1, PLAB, PDF 19p13.2-p13.1 associated with pregnancy, involvement in iron metabolism 

1Although BMPs are consecutively numbered, the nomenclature partially overlaps with those of the GDF subfamily. In regard to 
fibrogenesis, it is most interestingly that BMP-7 counteracts TGF-beta activity and inhibits EMT. 2Abbreviations used are: 
CDMP: cartilage-derived morphogenetic protein; GDF: growth/differentiation factor; LAP: lipopolysaccharide-associated 
protein; MIC: macrophage-inhibiting cytokine; OP: osteogenic protein; PCP: procollagen C proteinase; PDF: prostate-derived 
factor; PLAB: bone morphogenetic protein from placenta; Vgr-1: VG1-related sequence. 
 
acute and chronic diseases. It is now generally assumed that 
in normal tissue a balance of biological active TGF-beta1 
and BMP-7 exists that shifts toward TGF-beta1 during 
inflammation and fibrogenesis. This balance is further 
modulated by several extracellular proteinogenic modifiers 
and the overall regulation of this network is still elusive and 
topic of many past and ongoing investigations. Key 
questions addressed were its physiological functionality in 
embryogenesis and development, its extra- and 
intracellular-signaling pathways, its competition with TGF-
beta pathways, its regulation by secreted modulator 
proteins, and its potential versatility in different animal 
models relevant for fibrogenesis and clinical applications. 

 
The concept that BMP-7 counteracts the 

profibrogenic activity of TGF-beta1 was confirmed in 
independent studies. Moreover, it was found that BMP-7 is 
effective in inhibition of epithelial-to-mesenchymal 
transition (EMT) which triggers the fibrogenic response by 
generation of fibroblasts. These are the two general 
mechanisms causally involved in initiation and progression 
of fibrosis. Both processes, EMT and activation of 
fibroblasts, induce a tight network of genes. These lead to 
loss of cell-cell adhesion and E-cadherin expression, 

elevated and de novo expression of specific mesenchymal 
markers (e. g. beta-catenin, SNAIL, fibroblast specific 
protein 1 = FSP1), and production of typical profibrotic 
extracellular matrix (ECM) molecules (e.g. collagen type I 
and III, fibronectin) and intermediate filament proteins (e. 
g. alpha-smooth muscle actin = alpha-SMA, desmin). 

 
Undoubtedly, recent advances and emerging 

insights in TGF-beta-/BMP-signaling and the identification 
of several independent proteins that bind and modulate the 
activity of TGF-beta or BMP, regulate their cellular 
secretion, interfere with receptor binding and alter the 
biological balance of both cytokines have exposed 
attractive novel targets in the treatment of fibrotic lesions. 
 
3. INDIVIDUAL SECTIONS 
 
3.1. Structural insights of BMPs 

At least 35 structurally related members of the 
transforming growth factor-beta (TGF-beta) superfamily 
have been identified that are subdivided in (i) TGF-betas, 
(ii) activins/inhibins, (iii) bone morphogenetic proteins 
(BMPs)/growth and differentiation factors (GDFs) and (iv) 
the more distantly related group of GDNFs (Figure 1). Like 
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Figure 1. The TGF-beta superfamily. Based on their structural features the 35 mammalian members of the TGF-beta family are 
subdivided into (i) TGF-betas, (ii) activins/inhibins, (iii) bone morphogenetic proteins (BMPs)/growth and differentiation factors 
(GDFs), and (iv) the more distantly related group of GDNF ligands. The affiliation to one of these subgroups is ambiguous and 
handled somewhat irregular. TGF-beta1, BMP-7, BMP-2 and BMP-4 (all marked in red) are those cytokines with outstanding 
importance in control of fibrogenesis. 

 
the classical TGF-betas, the different BMPs/GDFs (Table 
1) bind to two different serine/threonine kinase receptors, 
and mediate their signals through Smad-dependent and -
independent pathways (7). The BMPs were originally 
identified and characterized two decades ago from bovine 
bone matrix by their ability to induce cartilage and bone 
formation (8). Structurally, BMPs and other TGF-beta 
family members are synthesized as larger monomeric pre-
pro-forms consisting of a signal sequence, a long latency-
associated peptide (LAP) and the mature cytokine that 
shows the highest degree of conservation (Figure 2). After 
synthesis, the precursors dimerize before enzymatic 
cleavage at characteristic R-X-X-R proteolytic processing 
sites, which leads to the release of the biologically active 
(mature) carboxy-terminal domain. The individual 
monomers of each dimer are linked by an intermolecular 
disulphide bond, while the monomers are characterized by 
a tight network of three (BMPs, GDFs) or four (TGF-betas, 
inhibin-betas) intramolecular disulphide bonds (Figure 3A), 
resulting in the typical butterfly-like structures that are 
characteristic for members of the TGF-beta superfamily 
(Figures 3B and 3C). 

 
The different ligands act as morphogens during 

embryonic development, organogenesis, bone formation, 
and are indispensable in other physiological processes. For 
example, BMP-7 (OP-1) plays a key role in transformation 
of mesenchymal cells into bone and cartilage and rBMP-7 
was effective in the repair of a resistant tibial non-union 
(9). Therefore, recombinant BMP-7 was introduced as a 

novel surgically effective therapeutic. Moreover, BMP-7 
reduced the severity of injury after ischemic acute renal 
failure in rats (6). Recently, the concept that BMP-7 
treatment abolishes the formation of EMT-derived 
fibroblasts by directly counteracting TGF-beta-induced 
Smad signaling has been established in various organs (10). 

 
3.2. BMP signaling: Modes of signal transmission and 
their regulation 
3.2.1. The BMP subgroups 

Based on functional and structural aspects, 
especially with respect to the fibrotic response, the different 
members of the BMP subfamily can be divided into several 
subgroups. A first group, i.e. the BMP-2/4 group, includes 
BMP-2, BMP-4, and their Drosophila ortholog 
decapentaplegic (dpp). The second group, i.e. the 
osteogenic protein-1 (OP1) group, encompasses BMP-5, 
BMP-6, BMP-7, BMP-8 (OP-2) and the dipteran homolog 
that is known as the glass bottom boat (gbb)-60A gene 
product. GDF-5, also termed cartilage-derived 
morphogenetic protein-1 (CDMP-1), GDF-6 (CDMP-2 or 
BMP-13), and GDF-7 (BMP-12) form the third BMP group 
(GDF-5 group) (11). Expression of members of the BMP-
2/4 and the OP-1 group has been reported in kidney, lung 
and liver, all representing tissues that are susceptible for 
fibrogenesis. Therefore, it is commonly suggested and in 
part experimentally shown that these groups are involved in 
control processes, which regulate organ injury and 
fibrogenesis. Comparable to TGF-beta-signaling, BMP-
signal transduction is subject to diverse levels of 
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Figure 2. Structural features of BMP-7 and TGF-beta1. (A) Both, BMP-7 and TGF-beta1 share the same modular structure 
typical for members of the TGF-beta superfamily. The N-terminal leader sequence (in red) is necessary for targeting to 
endoplasmic reticulum (ER) and subsequent cellular secretion. The latency-associated peptide (in blue) is required for masking 
(latency), stabilization and extracellular matrix deposition. The mature (biologically active) peptide (in green) is located at the C-
terminus of the pre-propeptide. Locations of amino acid positions are given for human BMP-7 (Swiss-Prot P18075) and TGF-
beta1 (Swiss-Prot P01137). (B) Sequence alignment of human TGF-beta1 and BMP-7. The regions of the signal region, latency-
associated peptide, and mature cytokine are given in red, blue, and green, respectively. (C) Schematic overview about sequence 
similarities between BMP-7 and TGF-beta1. The highest degree of similarity (~40-70%) of both cytokines is found at the C-
terminal regions harboring the mature peptides. 
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Figure 3. Two- and three-dimensional structure of mature TGF-betas and BMPs. (A) Members of the TGF-beta/BMP/GDF 
family are only active as dimers in which the individual monomers are linked by a single disulphide bond that is in human TGF-
beta1 located at position 77 of the mature peptide (position 356 from the Start-ATG). In addition, the TGF-beta monomers 
contain four intrachain disulphide bonds (solid lines) that are conserved in TGF-betas and inhibin-betas, while the other members 
of this family lack the first bond (speckled line). The dimers are bridged by one intermolecular disulphide bond (dotted line). The 
sequence positions of cysteines involved in disulphide bonding correlate to those counted from the beginning of human mature 
TGF-beta1 (for orientation refer to Figure 2B). (B, C) The tight network of intramolecular disulphide bonds and the single 
intermolecular linkage of two monomers cause the butterfly-like tertiary fold that is typical for dimers of the TGF-beta family. 
For this analysis the minimized average nuclear magnetic resonance (NMR) structure of human TGF-beta1 (B) or the crystal 
structure of human BMP-3 (C) that are deposited in the Brookhaven Protein Databank (PDB) under accession numbers 1KLC 
and 2QCQ, respectively, were taken for molecular visualization using the RasMol program (Windows version 2.7.4.2). For more 
structural details, refer to the original literature describing the respective three-dimensional structures of these TGF-beta 
superfamily members (151, 152). 
 
modulation. These include receptor-binding, receptor 
activation, modulation of Smad activity and lastly 
interaction of Smads with other transcription factors. As a 
consequence, BMP-signaling induces a wide variety of 
responses with a limited set of molecular components. 

 
3.2.2. BMP receptors 

Similar to the prototype ligand TGF-beta, BMPs 
are bound by a set of membrane inserted type I and type II 
receptors (12) that are divided into different evolutionarily 
conserved subgroups (Figure 4). In contrast to TGF-beta, 
BMPs bind to another subset of type II receptors (Figure 5) 
that subsequently activate the activin-like receptor-kinase 
(ALK)-2, ALK-3, and ALK-6 (13, 14). The ligands of the 
BMP2/4 group preferentially bind to ALK-3 and ALK-6, 
whereas proteins of the OP-1 group have affinity for ALK-
2 and ALK-6 (15). Members of the GDF-5 group bind 
primarily to ALK-6, although it was recently shown that 
GDF-9 may signal via the classical TGF-beta-receptor 
ALK-5 (16). Beside these classical BMP receptors, ALK-1 
is able to bind BMP-9 and BMP-10 (17, 18). The 
implication of ALK-1 in BMP-signaling implies another 

level of complexity into signaling crosstalk (19), since 
ALK-1 mediates TGF-beta responses during angiogenesis 
in endothelial cells (20). In this setting, TGF-beta/ALK-1 
counteracts TGF-beta/ALK-5 responses (21, 22). The 
possible activation of ALK-1 by TGF-beta is of great 
importance for the interplay of TGF-beta vs. BMP-type 
signaling. TGF-beta was shown to mediate activation of 
intermediates and target genes that were previously 
categorized as being specific for BMPs via ALK-1 (21-25). 
The corresponding type II receptors for BMP-ligands are 
BMPRII, ActRII, and ActRIIB, which upon ligand binding 
activate the type I receptors through phosphorylation (26, 
27). 

 
In addition to the signaling receptors, which are 

essential for ligand responses, BMP-receptor binding and 
signal transmission is fine tuned by accessory (co-) 
receptors. These include for example the pseudo receptor 
BAMBI that is transcriptionally induced by BMPs and 
binds to the BMP type I receptors ALK-3 and ALK-6 
thereby interfering with type I/ type II receptor complex 
formation (28, 29). In addition, membrane-associated 
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Figure 4. TGF-beta/BMP receptors. (A) The type I receptors are further grouped into three subgroups. The ALK-1 group 
contains ALK-1 and ALK-2, the ALK-6 group contains ALK-3 and ALK-6, while the ALK-5 group contains ALK-4, ALK-5 
and ALK-7. The protein sequences of the different ALKs from rat were taken as input for this dendrogram. (B) The type II 
receptors BMPRII, ActRIIA and ActRIIB are specific for BMPs, while TGFbetaRII is specific for TGF-betas. In this dendrogram 
the following proteins were aligned: human ActRIIA (hActRIIA), human ActRIIB (hActRIIB), human TGFbetaRII, murine 
BMPRII (mBMPRII), human Mast cell immunoreceptor signal transducer (hMIST-II), Drosphophila melanogaster receptors 
Wishful Thinking (dwit) and Punt (dpunt), and Caenorhabditis elegans Cell surface receptor of the abnormal dauer formation 
family member (cdaf-4). 

 
receptors of the repulsive guidance molecule (RGM) family 
modulate BMP-signaling (30, 31). RGM receptors are 
critical regulators of iron balance and may cause 
hemochromatosis upon mutations in RGMc (hemojuvelin). 
RGMc is essential as co-receptor for BMP-2/4-induced 
hepcidin expression in hepatocytes (32, 33). Beside afore 
mentioned receptors, there are two type III TGF-beta 
receptors, which are not only involved in TGF-beta- but 
also in BMP-signaling. Betaglycan (also termed TbetaRIII) 
is more or less ubiquitiously expressed, binds to BMP-2, 
BMP-4, and BMP-7 and promotes BMP-2-induced EMT 
(34). Endoglin (CD105) shows a more restricted expression 
pattern, being highly expressed in endothelial cells, 
activated macrophages and hepatic stellate cells (35-37). 
Endoglin binds in the presence of the corresponding type II 
receptor to BMP-2, BMP-7, and BMP-9 (Figure 6) and 
increases BMP-7- and BMP-9-mediated responses (38, 24, 
17, 18). However, the underlying mechanisms for this 
activation are currently unknown. 
 
3.2.3. Secreted BMP signaling modulators 

The receptor equipment endows a cell with 
versatile signaling machinery. Moreover, the signal 

transmission is regulated by ligand affinities and the 
occurrence of different intracellular pathways. Several 
secreted proteins of different families encompassing 
Noggin, Chordin, Gremlin and Dan have been 
characterized. These proteins antagonize BMP-signaling by 
binding to the ligands thereby inhibiting association with 
their cognitive receptors. In a similar fashion, members of 
the CTGF/CYR61/NOV (CCN) family, that include the 
connective tissue growth factor (CTGF) and the 
Nephroblastoma-overexpressed protein (NOV), antagonize 
BMP responses, whereas the Kielin/Chordin-like protein 
(KCP) was shown to enhance BMP-7 signal transduction 
(39). The relevance of these secreted modulators is evident 
from their regulatory functions under fibrotic conditions 
(see 3.6). 
 
3.2.4. BMP intracellular signaling pathways 

In general, ligand binding to the membrane 
receptors leads to activation of the type I receptor kinases 
that in turn phosphorylate intracellular Smad mediators 
(40). There are two groups of receptor-regulated Smads 
(RSmads); e.g. the “TGF-beta"-Smads comprising Smad2 
and Smad3, and the “BMP”-RSmads (BRSmads) 
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Figure 5. Receptor for BMP-7 and TGF-beta. BMP-7 bind to the type II receptors BMPRII, ActRIIA and ActRIIB that 
subsequently activate with different specificities the type I receptors ALK-3, ALK-6 or ALK-2. In contrast, TGF-beta binds to 
TGFbetaRII that subsequently transphosphorylate ALK-1 and ALK-5. 
 
 

 
 
Figure 6. Modulation of BMP/TGF-beta signaling by Endoglin. The accessory type III receptor Endoglin has affinity for 
individual members of the TGF-beta superfamily that influences the affinity for individual type II receptors. In the presence of 
Endoglin, BMP-7 signaling is increased. 

 
comprising Smad1, Smad5 and Smad8. The signaling in 
response to BMPs leads to the activation of the BRSmads 
through phosphorylation of the most C-terminally located 
serine residues by the type I receptor kinase (41-43). 
Structurally, RSmads are composed of three functionally 
different modules, e.g. the MAD homology domain 1 
(MH1), MH2 and the connecting linker region. DNA and 
co-factor binding is governed by the N-terminal MH1 
domain, whereas interaction and phosphorylation by the 
type I receptor at the SSXS-motif (phosphorylated serines 
are underlined) occurs within the MH2 domain. The linker 
region is substrate for mitogen-activated protein (MAP) 
kinases, which regulate the nuclear translocation of 
RSmads. Smurf proteins also bind to the linker region and 
mediate the ubiquitinylation of specific residues within the 
linker to mark RSmads for degradation (40). 

 
The signal transfer of BMPs to the intracellular 

side is best characterized for BMP-2 and involves two 
different modes. In the first mode, BMP-2 binds to 
preformed type I/type II receptor heteromeric complexes, 
while in the second mode, BMP-2 binds to type II and type 
I receptors to form the hetero-oligomeric complexes. The 
binding of BMP-2 to preformed receptor complexes 
induces phosphorylation and activation of Smad-dependent 
pathways, while the sequential recruitment of receptors 
activates a different, Smad-independent pathway resulting 
in induction of the p38 MAP kinase (44). Activation of the 
receptor facilitates the interaction of special receptor 
binding proteins called X-linked inhibitor of apoptosis 
(XIAP), TGF-beta-activated kinase 1 (TAK1), TAK 
interacting protein 1 (TAB1) and consecutive activation of 

the p38 MAP kinase (45).The RSmads Smad2 and Smad3, 
which are substrates for the TGF-beta-activated ALK-5 
receptor, are differentially activated by TGF-beta and play 
functionally different roles in several cells (46). In a similar 
manner Smad1 and Smad5 are differentially activated but 
this phenomenon has not been investigated in detail. This 
differentiation may be achieved by the usage of alternative 
BMP type I receptors or may arise from a differential 
expression of the Smad protein, itself (47, 48). Although 
it has been regarded as a paradigm that TGF-beta 
ligands activate Smad2 and Smad3 and on the other 
hand BRSmads are specifically activated by the BMP-
receptor kinases, it was recently recognized that there 
are some exceptions to this rule. ALK-1, a receptor of 
the “BMP-receptor group” transmits signals of TGF-
beta via phosphorylation of Smad1 and/or Smad5 (43, 
49), and GDF-9 has been shown to signal via the 
classical TGF-beta receptor ALK-5 to activate signaling 
involving Smad2/Smad3 (16). Once activated, Smad 
proteins interact with the common Smad4 and 
translocate into the nucleus to regulate transcription of 
target genes. 

 
Negative and positive crosstalk between the 

Smad- and the MAPK-pathways is given by the fact, that 
linker phosphorylation of Smads by MAP kinase 
modulates the transcriptional activity of Smads (50). 
Nevertheless, the BMPRII receptor is also able to 
directly interact with cytoskeletal associated proteins, e.g. 
LMK1 and Tctex1, similar to the interaction of Endoglin 
with Tctex2 (51). The binding regulates the overall 
function of these cytoskeletal-associated proteins (52, 53).
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Figure 7. BMP signal transduction. Signaling by members of the BMP-subfamily of ligands is initiated by binding to a 
heteromeric complex of type I receptors, e.g. ALK-2, ALK-3 and ALK-6, as well as type II receptors, e.g. BMPRII, ActRII and 
ActRIIB. The access of ligands to the receptors is regulated by secreted proteins like CTGF (negatively) or KCP (positively). In 
addition, type III receptors like Betaglycan or Endoglin modulate the signal transmission. Intracellular mediators belong to the 
family of MAP kinases (p38, Erk1/2; left) or to the Smad family (right), depending on the composition of the formed receptor 
complex. BRSmads are activated by phosphorylation through the corresponding type I receptor, associate with the co-Smad4 and 
translocate into the nucleus to regulate transcription of target genes in conjunction with co-repressors and co-activators. The 
signaling circuit (green) is controlled by the inhibitory Smad (i.e. Smad6) at several steps. The activated forms of type I receptors 
and Smads are deactivated through dephosphorylation by specific phosphatases and these components are marked for 
degradation with ubiquitin by the ubiquitin ligase Smurf. Abbreviations used are: CTGF: connective tissue growth factor; KCP: 
Kielin/Chordin-like protein; BMP: bone morphogenetic protein; ECD: extracellular domain; TM: transmembranal domain; KD: 
kinase domain; P: phosphate; Ubq: ubiquitin; MH1/MH2: MAD homology domain 1/2; TF: transcription factor 

 
 

3.2.5. BMP-mediated transcriptional control 
Once the phosphorylated Smads are translocated 

into the nucleus, they regulate the transcription of target 
genes (Figure 7). Since the Smads have only a low intrinsic 
DNA binding affinity (54), they associate with co-factors to 
facilitate the integration of different signaling inputs to 
generate positive and negative gene responses. This 

interaction is most likely the most important mechanism 
accounting for the high diversity of gene responses 
regulated by the few Smad proteins. A growing number of 
proteins were identified that interact with Smads to regulate 
transcriptional responses (55). The group of runt domain 
transcription factors (Runx) are involved in various 
biological processes, including haematopoiesis and bone 
formation. The family consists of the three homologous 
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proteins Runx1, Runx2, and Runx3. Runx2 is 
transcriptionally induced by BMP-2, involving the 
transcription factor Dlx5 (56, 57). Upon BMP stimulation, 
Runx2 and BRSmads physically interact, are subsequently 
positioned into the nucleus and co-operatively regulate 
transcription of target genes (58). The CREB binding 
protein (p300/CBP) that has histone acetylase activity is 
another transcriptional co-activator. p300/CBP binds to 
BRSmads and governs their access to transcriptional 
initiation sites by changing the chromatin structure (59). 
Tob has been described as a specific negative regulator of 
BMP-2 responses (60). It is induced by BMP-2, associates 
with BRSmads and the common Smad4 (co-Smad4) and 
inhibits transcriptional activity of BRSmads (60). Although 
c-Ski and the Ski-related protein SnoN are inhibitors of 
Smad2 and Smad3 (61), they also reduce BMP-signaling 
mediated by Smad1 and Smad5 (62). The inhibitory effect 
of c-Ski is mediated by binding to co-Smad4 and 
recruitment of a histone deacetylase to this complex. This 
ability is lost upon modification of c-Ski (ARPG mutation), 
which abolishes binding of c-Ski to co-Smad4 binding (63). 
 
3.2.6. BMP target genes 

The best characterized bona fide target genes of 
BMP-signaling are the Xenopus Vent2 gene and the Id 
genes, including Id1, Id2, Id3 and Id4 (64-68). The 
respective promoters contain specific Smad binding 
elements (SBEs) confering binding of Smad1 and Smad5 
that are necessary and sufficient for BMP-responsiveness 
(69, 70, 66). These elements have been cloned into 
different reporter systems allowing to monitor BMP 
activity (71, 72), and to identify further genes that are 
targets of BMPs (73). Both genes, Xvent2 and Id1, are 
potently induced by BMPs (74, 75, 76, 24). Another family 
of target genes of the BMP-signaling cascade are the Runx 
transcription factors (see also 3.2.5) that are essential for 
the commitment of the osteogenic program and are in turn 
pivotal regulators of Smad-signaling itself (see 3.2.7). As a 
member of the inhibitory Smads (ISmads), Smad6 has been 
identified to be an essential feed-back regulator of BMP-
signaling (77, 78). Smad6 belongs to the inhibitory Smads, 
e.g. Smad6 and Smad7, and is up regulated as an 
immediate early gene in response to BMP-stimulation (79). 
In detail, it was shown that upon BMP-2 administration the 
Smad6 gene is regulated by Smad1 in co-operation with 
Runx2 (80). With respect to EMT it is worth to note that 
BMP4 is able to induce typical marker proteins like SNAIL 
and SLUG that reduce E-cadherin expression (81), both 
components of the “EMT proteome” (see 3.5.) and potently 
up-regulated by TGF-beta (82). 
 
3.2.7. Regulation of intracellular BMP-signaling 

As mentioned above BMPs induce their own 
inhibitor, Smad6. In contrast to Smad7 (83, 84), Smad6 is 
primarily an inhibitor of BMP-signaling (77, 78) and has 
multiple capabilities to switch off and modulate the 
signaling cascade (55). Smad6 directly interacts with the 
activated type I receptors and inhibits further activation of 
BRSmads by the receptor (85). Smad6 also binds to 
BRSmads (Smad1) and abrogates their interaction with co-
Smad4 (78). In addition, HECT-type E3 ligases Smurf1 and 
Smurf2 interact with type I receptors and BRSmads (86). 

The binding of Smurfs to the activated type I receptor is 
enhanced by the binding of Smad6 and leads to 
ubiquitinylation of the receptors, which marks them for 
degradation (87, 88). A similar mechanism applies to the 
activated BRSmads that are also bound co-operatively by 
Smad6/Smurf1 and labelled with ubiquitin for degradation 
(89, 87). Since phosphorylation is an essential step in the 
activation of type I receptors and BRSmads, its reversal by 
specific phosphatases results in deactivation of these 
components (90). Smads are composed of three structurally 
and functionally different modules which are not only 
subject to protein-protein interaction but also substrates for 
direct post-translational modification, e.g. phosphorylation. 
Thereby, the Smad proteins function as integrators for 
signals of different sources, which modulate their activity. 
Smad phosphorylation by type I receptors occurs at the C-
terminal domain of Smads, whereas MAP kinases 
phosphorylate BRSmads at serine and threonine residues in 
the linker region (91). Erk1/2 phosphorylation of the 
Smad1 linker region leads to inhibition of nuclear 
accumulation of Smad1 (92). Smurf1 binds to this 
phosphorylated linker region and causes cytoplasmic 
retention and poly-ubiquitinylation of Smad1 (91) implying 
that only the phosphorylation at the C-terminal domain of 
Smads mediates down stream signaling. 
 
3.3. Physiological functions of BMP-7 in normal and 

fibrotic organs 
BMPs have a variety of different functions during 

embryonic development. In general, they are morphogens 
acting as graded positional cues to dictate cell fate 
specification and tissue patterning. They were first purified 
from bone and thought to play essential functions in 
chondrogenesis and osteogenesis. In the meantime, several 
lines of evidence indicate that the BMPs are influencing a 
wide range of tissues during development and are essential 
for organ homeostasis. Beside several other BMP knock-
out models, an unequivocal demonstration of their 
multifunctional morphogenic character came from mice 
that were deficient for BMP-7 (93). These mice clearly 
revealed that BMP-7 is not only an early inducer of 
glomeruli formation but is also involved in the formation of 
other organs and lens formation. The absence of 
endogenous BMP-7 led to small dysgenic kidneys with less 
glomeruli combined with hydroureters. Moreover, these 
mice have defects in eye formation and skeletal patterning, 
indicating that BMP-7 is also important for eye 
development and skeletogenesis. Most interestingly, mice 
lacking BMP-7 showed severe defects in the “nephrogenic 
process” in which metanephric mesenchyme undergoes an 
epithelial transition to form glomeruli and tubules of the 
nephron (93). This process is an important mechanism for 
cellular reorganization during kidney development and it is 
reasonable that vice versa BMP-7 is the driving force 
involved in controlling the ratio of mesenchymal to 
epithelial cells in morphogenesis. Following its inductive 
action in kidney development, BMP-7 in normal kidney 
continues to be heavily expressed specifically in podocytes, 
distal tubules and collecting ducts (47). In line, it has been 
demonstrated that the inhibition of endogenous BMPs in 
transgenic mice ectopically expressing the BMP antagonist 
Noggin in the glomerular podocytes resulted in a severe
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Table 2. Therapeutic effects of BMP-7 in experimental fibrosis 
Organ Injury model Treatment Antifibrotic effects References 

TAA1-treated rats adenoviral expression 
of BMP-7 

decreased expression of alpha-SMA and type I collagen, decreased 
hydroxyproline content 

(104) Liver 

CCl4-treated mice rBMP-7 decreased type III collagen accumulation, reduced number of 
FSP1+ and FSP1+/Alb+ fibroblasts, increased serum albumin 

(105) 

pressure overload in 
mice 

rBMP-7 reduced accumulation of extracellular matrix and fibroblasts, 
increased microvascular density, elevated left-ventricular end-
diastolic pressure 

(106) Heart 

chronic heart rejection 
in mice 

rBMP-7 reduced accumulation of extracellular matrix and fibroblasts, 
increased microvascular density, decrease in FSP1+CD31+- and 
alpha-SMA+CD31+-positive cells 

(106) 

STZ-treated C1 mice rBMP-7 inhibition of glomerular hypertrophy, reduced tubular damage and 
relative interstitial volume, decreased type III collagen 
accumulation, reduced serum creatinine 

(100) 

STZ-treated mice transgenic decreased expression of type I collagen and fibronectin, reduced 
glomerular and interstitial fibrosis level, elevated activity of renal 
MMP-2 and MMP-4 

(101) 

MRL/MpJlpr/lpr lupus 
mice 

rBMP-7 reduced glomerular hypertrophy and relative interstitial volume, 
reduced serum creatinine, decreased interstitial type I collagen 

(103) 

Col4A3-/- mice rBMP-7 reduced tubular atrophy and relative cortical interstitial volume, 
decreased renal pathology-related mortality rate, reduced serum 
creatinine, blood urea nitrogen, and urine protein 

(103) 

Kidney 

unilateral ureteral 
ligated rats 

rBMP-7 reduced tubular atrophy and relative cortical interstitial volume, 
decreased interstitial type IV collagen, recovery of glomerular 
filtration rate 

(97) 

Lung asbestos exposure in 
mice 

rBMP-7 reduced hydroxyproline contents (107) 

Eye capsular injury with 
hypodermic needle  

adenoviral expression 
of rBMP-7 

suppression of injury-induced EMT in lens, increased expression 
of Id2 and Id3 

(108, 153) 

1Abbreviations used are: Alb+: albumin positive; Col4A3-/-: deficient for the alpha3-chain of type IV collagen; MMP: matrix 
metalloproteinase; rBMP-7: recombinant BMP-7; STZ: streptozotocin; TAA: thioacetamide. 
 
phenotype that is characterized by mesangial matrix 
expansion. These results further strengthen the notion that 
BMPs have an important role in regulating glomerular 
structural homeostasis (94). The findings that BMP-7 
expression is down regulated in diseased kidney and that 
the balanced administration of recombinant BMP-7 reduces 
the progression of renal fibrosis in animals with 
experimental renal diseases further indicate that BMP-7 has 
therapeutic (antifibrotic) properties (95-98). 

 
Beside the important renal performance of BMP-

7, it has been shown that liver regeneration is also affected 
by this multifunctional cytokine. Systemic application of 
neutralizing antibodies targeting endogenous BMP-7 after 
hepatectomy in mice resulted in impaired hepatic 
regeneration, whereas administration of rBMP-7 led to an 
enhanced regeneration suggesting that BMP-7 is a 
physiological regulator of hepatocyte health (7). 

 
In recent studies, it became clear that some of the 

antifibrotic effects are mediated by the inhibition of 
profibrogenic TGF-beta (94). This mechanisms of 
balancing the “Good (i.e. BMP-7) against the Bad (i. e. 
TGF-beta)” has nowadays attracted many scientists and 
clinicians and was transferred to other organs, in which the 
final common pathways by which TGF-beta is establishing 
fibrosis are more or less the same. Therefore, many studies 
were recently initiated with the aim to clarify some of the 
basic aspects of the beneficial molecular and cellular 
mechanisms of this potential therapeutic. 
 
3.4. Efficacy of BMP-7 as physiological and therapeutic 

antifibrotic agent 
The important role of BMP-7 as a TGF-beta-

antagonist in maintenance of organ homeostasis was 

utilized to use BMP-7 as an antifibrotic agent in different 
models of organ fibrosis (Table 2). Applications of BMP-7 
in several rodent fibrosis models in liver, heart, kidney, 
lung, and eye revealed a high therapeutic potency without 
significant side effects or toxicity in vivo (99). Thus, renal 
fibrogenesis associated with ureter obstruction in mice was 
prevented by systemic application of rBMP-7, and fibrotic 
symptoms, e.g. interstitial accumulation of type IV collagen 
or tubular atrophy, were significantly reduced (95, 97). 
Remarkably, these studies found BMP-7 effectiveness 
superior to enalapril, a drug used to treat kidney disease 
related to diabetes. Another mouse model reflecting human 
diabetic nephropathy confirmed the benefit from BMP-7 in 
this pathological context (100). CD-1 mice were made 
diabetic with streptozotocin (STZ) and subsequently 
developed glomerular hypertrophy in combination with 
tubulointerstitial fibrosis. Systemic treatment of these mice 
with rBMP-7 regressed progression of diabetic 
nephropathy, as indicated by inhibition of glomerular 
hypertrophy and tubular damage, decrease of interstitial 
type III collagen, and reduction of serum creatinine, 
reflecting recovery of renal function. Additionally, 
transgenic mice expressing human BMP-7 under 
transcriptional control of a rat phosphoenolpyruvate 
carboxykinase promoter fragment showed only reduced 
glomerular fibrosis and expression of extracellular matrix 
components after STZ treatment (101). Prevention of 
glomerular sclerosis by BMP-7 treatment, superior to 
enalapril therapy, was also observed in a diabetic rat model 
(102) and a general reversion of impaired tubular 
architecture in a rat model of ischemic acute renal injury or 
in mice with nephrotoxic serum induced nephritis by BMP-
7 is described (6, 99). The antifibrotic efficiency of BMP-7 
has also been demonstrated in two genetic models of renal 
diseases. In both, MRL/MpJlpr/lpr mice, which develop a 
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lupus-like disease with progressive renal fibrosis, or mice 
lacking the type IV collagen-alpha3 gene, which develop 
progressive renal disease, the systemic administration of 
rBMP-7 resulted in reversion of glomerular and tubular 
homeostasis and reduction of serum creatinine (103). 

 
The therapeutic effects of BMP-7 were not only 

examined in renal fibrosis but also found in hepatic, cardiac 
and pulmonary fibrosis models. Adenoviral delivery of a 
construct that constitutively expressed murine BMP-7 in 
thioacetamide-treated rats, which develop hepatic fibrosis, 
resulted in a reduced expression of alpha-SMA and type I 
collagen that was accompanied by a decrease in liver 
hydroxyproline contents reflecting the antifibrotic potential 
of BMP-7 in this organ (104). In the same study, these 
effects were shown to be mediated by antagonism of TGF-
beta signaling in hepatic stellate cells that represent the key 
effector cell during hepatic fibrogenesis. Another 
chemotoxic animal model of liver fibrosis in which carbon 
tetrachloride (CCl4) was utilized as a hepatoxin revealed 
that rBMP-7 inhibited progression of liver fibrosis in mice 
by counteracting the TGF-beta-induced EMT of 
hepatocytes in the injured liver (105). Two different mouse 
models of cardiac fibrogenesis were used to assess the 
efficiency of systemic administered rBMP-7 (106). Both 
models, pressure overload by aortic banding or chronic 
allograft rejection by heart transplantation of MHC class II-
incompatible donors and recipients, are characterized by 
development of cardiac fibrosis and dysfunction. BMP-7 
therapy resulted in reduced accumulation of extracellular 
matrix and fibroblasts and increased microvascular density. 
Additionally, the chronic heart rejection model revealed a 
decreased number of fibroblast specific protein 1 (FSP1) or 
alpha-SMA positive cells, indicating reversal of TGF-beta-
induced EMT. In lung, it was recently demonstrated that 
rBMP-7 reduces the hydroxyproline content in mice that 
were exposed to asbestos (107). 

 
In vitro experiments revealed that the underlying 

mechanisms that regulate the interrelation between TGF-
beta and BMP-7 signaling are intracellularly transmitted by 
Id2, Id3 and Smad6 (104, 108, 109). These studies have 
already shown that BMP-7 increases the expression of 
Smad6 and Id proteins in several cellular systems, which 
directly lead to blockage of collagen expression. Moreover, 
transient expression of Id proteins had similar effects like 
overexpression of BMP-7 (104). 

 
In summary, a number of in vivo models in 

different organs demonstrated the high efficiency of BMP-
7 as therapeutic agent in fibrotic diseases. Nevertheless, no 
clinical approach has been made so far to transfer these 
promising data from animal models into human therapy. 
 
3.5. The complex regulatory network of BMP-7 and 
TGF-beta in epithelial-to-mesenchymal transition 

EMT is the phenomenon whereby fully 
differentiated epithelial cells transit into a mesenchymal 
phenotype giving rise to fibroblasts and myofibroblast that 
play an important role in tissue repair and fibrosis 
following epithelial injury. TGF-beta1, initially described as 
an inducer of EMT in normal mammary epithelial cells 

(110), has since been shown to mediate EMT in vitro in 
different epithelial cells, including renal proximal tubular, 
lens, alveolar epithelial-, cardiac endothelial- and most 
recently biliary endothelial cells and hepatocytes (111-116, 
106). EMT response to TGF-beta1 in fibrosis is 
predominantly mediated via Smad-dependent pathways, 
mainly Smad3 (117). In Smad-mediated pathways, TGF-
beta1 signals are transduced by transmembrane 
serine/threonine kinase type II and type I receptors. Upon 
TGF-beta1 stimulation, the receptors are internalized into 
early endosomes where Smad anchor for receptor 
activation (SARA) is localized and modulates the 
formation of ALK-5 complexes with Smad2 or Smad3. 
Smad2 and Smad3 are phosphorylated at serine residues by 
the type I receptor and associated with Smad4 and further 
translocated to the nucleus where they interact with other 
transcription factors to regulate the transcription of TGF-
beta-responsive genes such as CTGF, alpha-SMA, collagen 
1A2 and plasminogen activator inhibitor-1 (PAI-1) (118) 
(Figure 8). Non-Smad-dependent pathways implicated in 
TGF-beta-dependent EMT include RhoA, Ras, MAPK, 
PI3K, Notch, and Wnt. Stimulation of these cooperative 
pathways usually provides the context for induction and 
specification of EMT within a particular tissue, with Smads 
representing the dominant pathway (119). In addition, 
integrin-linked kinase (ILK), an intracellular 
serine/threonine kinase that interacts with the cytoplasmic 
domains of beta-integrins and cytoskeletal proteins, has 
been identified as a potential downstream mediator of 
Smad-mediated TGF-beta1 signaling, playing an important 
role in EMT (120). Modulation of the TGF-beta1-
dependent Smad pathway in animal models has provided 
strong evidence for a role of TGF-beta in fibrotic EMT in 
vivo. EMT was ameliorated in Smad3 knockout mice (121, 
113), and in hepatocytes overexpressing Smad7, an 
antagonist of TGF-beta signaling (122, 123). 

 
BMP-7 blunts TGF-beta1-induced EMT in adult 

organ fibrosis by directly counteracting TGF-beta-induced 
Smad3-dependent EMT, evidenced through the reduction 
of fibrosis occurring via EMT in vivo (124, 107, 103). In 
association with Smad2 downregulation, BMP-7 delayed 
EMT in lens epithelium, whereas overexpression of 
inhibitory Smad7 blocked EMT and decreased nuclear 
translocation of Smads2 and -3 (122). The underlying 
mechanism is thought to involve the induction of Id 
proteins by BMP-7 (125), which is then inhibited by TGF-
beta that promotes EMT. Ids lack a basic DNA binding 
region, but they possess an HLH dimerization motif that 
allows them to interact with and inactivate bHLH 
transcription factors that can potentially inhibit or activate 
transcription. CTGF, PAI-1 and thrombospondin-1 are 
among those TGF-beta responsive genes directly down 
regulated by BMP-7 (126). Blocking of TGF-beta-
dependent upregulation of PAI-1 by BMP-7 also results in 
induced expression of active MMP-2 that promotes 
degradation of the fibrotic matrix. BMP-7 counteracts 
TGF-beta1-induced EMT, reversing chronic renal injury 
through induction of E-cadherin, a key epithelial cell 
adhesion molecule, through direct antagonism involving 
Smad signaling pathways as evidenced by co-localization 
of phospho-Smad 2/3 and Smad 1 in nuclei (103).
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Figure 8. Complex pattern of interaction between TGF-β and BMP-7. BMP-7 supports the epithelial phenotype by inducing the 
expression of Smad7 through the Smad1/4/GATA complex that inhibits TGF-β signaling, and Id2/3 which inactivate the 
repressor E2A to permit expression of E-cadherin. Ids also inhibit several TGF-β responsive genes including CTGF and alpha -
SMA, Col 1 and PAI-1. On the other hand, TGF-beta supports the mesenchymal phenotype by the rapid induction of CTGF. 
CTGF binds BMP-7 and inhibits BMP-7 signaling as evidenced by lower levels of pSmad1/5 and Id1 mRNA (140). In addition, 
CTGF activates several receptor systems that integrate with TGF-β/Smad signaling leading to the induction of transcription 
repressors that inhibit E-cadherin. CTGF further inhibits the expression level of Smad7, thus enhancing the transcription of TGF-
beta-responsive genes. Moreover CREB, activated via CTGF, associates itself with the BMP/Smad complex, activating 
expression of Smad6 that not only inhibits the BMP-7 signaling pathway but also Id2/3 activity that leads to repression of E-
cadherin. TGF-beta-induced PAI-1 in turn inhibits the activities of uPA and tPA that can activate the MMPs. Integrin-linked 
kinase (ILK), an intracellular serine/threonine kinase, associates with beta-integrin and regulates E-cadherin at the transcriptional 
level via the transcriptional repressor SNAIL-1. In addition, ILK phosphorylates Akt (PI3K) and glycogen synthase kinase 
(GSK), phosphorylation of GSK-3 resulting in nuclear translocation of beta-catenin and activation of the Wnt signaling pathway, 
which has also been strongly implicated in EMT. 

 
BMP-7 regulates the expression of target genes 

that are characterized by BMP responsive elements (BRE) 
in their promoters. One of these BRE binds the 
Smad1/4/GATA complex, in the presence of GATA 
transcription factors and thus may enhance Smad7 
induction leading to a blockage of TGF-beta signaling and 
allowing BMP to signal, even at low concentrations (127). 
 
3.6. Functional interplay between BMP-7, connective 

tissue growth factor (CTGF/CCN2) and other 
crucial modifiers and regulators in organ fibrosis 

We and others have previously reported that 
hepatocytes substantially synthesize CTGF during culture 
and in injured liver, and that this cell type is a major source 
of CTGF in the liver (128-130). CTGF, a designation 
introduced in 1991 (131) is a 36-38 kD, cysteine-rich, 
heparin-binding and secreted protein, which was initially 
identified in the culture supernatant of vascular endothelial 

cells. It is now classified as the second of six members of 
the CCN gene family containing CTGF itself, Cysteine-rich 
protein 61 (CYR61), NOV, and others (132). These 
proteins share approximately 40 to 60% sequence similarity 
and are characterized as mosaic proteins that comprise four 
conserved structural modules (133). 

 
CTGF is suggested as an important downstream 

modulator protein of the profibrogenic master cytokine 
TGF-beta, amplifying its pro-fibrogenic action in a variety 
of tissues (133). Based on this function, CTGF has reached 
considerable pathophysiological relevance because of its 
involvement in the pathogenesis of fibrotic diseases, 
atherosclerosis, skin scarring, and other conditions with 
excess production of connective tissue (134). The strong 
expression of CTGF in fibrotic tissue occurs on the level of 
transcription and is stimulated by specific growth factors 
such as TGF-beta and endothelin-1, but also by 
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Figure 9. Pathogenetic concept of hepatic fibrogenesis. Upon injury, necrotic hepatocytes release mitogens (i. e. TGF-beta) that 
activate hepatic stellate cells (HSC). These cells produce large amount of proteoglycans, collagens, glycoproteins, and hyaluronic 
acid. Hepatocytes are further induced to undergo apoptosis or EMT. The resulting cells (i.e. myofibroblasts) lose their ability to 
express albumin while they become positive for the fibroblast-specific protein-1 (FSP1). In all these processes, TGF-beta acts 
profibrogenic while BMPs have opposing effects. The balance of both cytokines is further modulated by CTGF that increases 
TGF-beta and reduces BMP activities. 

 
environmental influences such as biomechanical stress and 
hypoxia (133). CTGF gene activation by TGF-beta is 
mediated by a functional SBE, which resides within the 
CTGF promoter (135). 

 
The CTGF protein consists of four functionally 

specialized modules with a proteinase-sensitive hinge 
region between modules II and III (136). Its molecular 
mechanism of action is still not known in detail, but its 
crucial role in fibrogenesis is documented by strong 
upregulation in fibrotic liver tissue (137, 138, 132), and 
even more importantly by recent studies, in which knock-
down of CTGF by siRNA lead to substantial attenuation of 
experimental liver fibrosis (139, 140). Recent reports gave 
evidence that upregulation of CTGF inhibits BMP-7 signal 
transduction in the diabetic kidney (141). Abreu and 
coworkers furthermore presented data that describe CTGF 
as extracellular trapping protein for BMP and TGF-beta 
thus modulating the activity of these cytokines (142). 
According to functional studies in Xenopus laevis, CTGF 
directly binds BMP and TGF-beta through their cysteine-
rich (CR) domain, thus antagonizing BMP activity by 
preventing its binding to BMP receptors. Of note, the 
opposite effect, enhancement of receptor binding, was 
observed for TGF-beta. These results suggest that CTGF 
inhibits BMP and activates TGF-beta signals by direct 
binding in the extracellular space. From this, CTGF would 
act profibrogenic by shifting the balance toward 

mesenchymal activity during hepatocellular EMT (143) 
(Figure 9). However, clarification is still pending. 

 
Comparable to CTGF, there are several other 

proteinogenic modifiers that interfere with the activity of 
BMP-7. BMP antagonists identified so far include those of 
the Dan/Cerberus group (e.g. Gremlin), Noggin, Chordin 
and Follistatin. Although there is presently only limited 
information about the affinity and specificity of these 
modifiers, it is known that Noggin, Chordin, and Follistatin 
can physically interact with BMP-7. Therefore, it is 
reasonable that these antagonists interfere with BMP 
signaling by sequestering BMP-7. The recent finding that 
Gremlin was up-regulated in asbestos-exposed mouse lungs 
and combined with a down-regulation of BMP signaling 
indicated by reduced levels of Smad1/5/8 and enhanced 
Smad2 phosphorylation suggests that Gremlin is potentially 
involved in blockade of BMP signaling (109). However, a 
direct interaction of Gremlin with BMP-7 was not reported. 
Therefore, the effects of Gremlin on BMP-7 might be 
attributed as indirect. Another suppressor of BMP-7 
activity is Sclerostin (also known as SOST) that was 
originally identified as the sclerostenosis-causing gene. It 
contains six conserved cysteine residues and one conserved 
glycine residue that are essential to form the cystine knot 
which binds to BMP-7 with high affinity and with unique 
ligand specificity (144). A similar protein containing such a 
sclerostin domain that is commonly known as uterine 
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sensitization-associated gene-1 (USAG-1 or SOSTDC1 for 
Sclerostin domain-containing protein 1) inhibits BMP-2, 
BMP-4, BMP-6, and BMP-7 activity in a mouse 
preosteoblast cell line (145). Interestingly, the ratio of 
USAG-1 to BMP-7 expression decreased with kidney 
damage but increased after subsequent kidney regeneration 
(146). 

 
Additionally, there are several secreted proteins 

that increase the activity of BMP-7. We have reported that 
the accessory type III receptor Endoglin enhances BMP-7 
signaling and vice versa suppresses the activity of TGF-
beta1 (24). In this study we further demonstrated that the 
transient overexpression of Endoglin, previously shown to 
inhibit TGF-beta1-induced ALK-5/Smad3 signaling, 
enhanced the BMP-7/Smad1/Smad5 pathway suggesting 
that Endoglin is another attractive target molecule when a 
lowered BMP-7 activity should be counteracted. The 
Kielin/Chordin-like protein (KCP) is a protein that was 
recently identified as an enhancer of BMP-7 signaling 
(147). KCP is a high molecular weight protein consisting of 
a signal peptide, followed by 18 cysteine-rich chordin 
repeats and a C-terminal von Willebrand factor type D 
domain. It binds to BMP-7 and enhances binding to the 
type I receptor. Animals lacking KCP are more susceptible 
to the development of renal interstitial fibrosis and are 
molecularly characterized by reduced levels of 
phosphorylated Smad1 again demonstrating that BMP-7 in 
conjunction with its modifiers is essential for proper organ 
development and function (147). 

 
3.8. BMP-7 as a novel diagnostic marker? 

Newly recognized pathogenetic mechanisms of 
fibrosis such as EMT offer several innovative options for 
therapy of liver fibrogenesis and non-invasive diagnostic 
strategies. Elevated levels of both BMP-7 (repressor of 
EMT) and TGF-beta (inducer of EMT) are found in serum 
and plasma of patients with liver fibrosis, most likely 
because transcriptional up-regulation in the hepatic cells, 
release from necrotic hepatocytes and reduced hepatic 
clearance, which suggests that the determination of BMP-7 
alone is not sufficient per se to estimate hepatic 
fibrogenesis (148-150). Therefore, the determination of the 
TGF-beta/BMP-7 ratio in serum or plasma is potentially 
promising, since this ratio might reflect the process of EMT 
and thus at least partially the rate of progression of fibrosis. 
A decrease of this ratio might indicate those patients with 
slow progression (slow fibroser), an increase a fast 
progression (rapid fibroser). 
 
However, the cytokine ratio in the circulation might be not 
an accurate reflection of their activity/concentration in the 
tissue at the immediate environment of epithelial cells and 
fibroblasts, respectively. Furthermore, it has to be kept in 
mind that the major fraction of these cytokines determined 
immunologically with an ELISA is bound to carrier 
proteins (e.g. alpha2-Macroglobulin) and, thus, in a 
biologically latent form. Therefore, the protein ratio does 
not necessarily mimic the diagnostically important activity 
ratio of these mediators and more well-designed clinical 
studies are required to identify the diagnostic value of 
BMP-7.  

 
4. SUMMARY AND PERSPECTIVES 

 
Many independent studies in animals provide 

supportive evidence for the potential efficacy of 
recombinant human BMP-7 in the setting of chronic organ 
damage. In experimental models of kidney injury it 
counteracts profibrogenic activities of TGF-beta, reduces 
inflammation, improves blood flow, and inhibits EMT 
representing the crucial cellular environment in which 
epithelial cells are metamorphosed into myofibroblasts that 
lose cell-cell adhesion and express large quantities of 
alpha-SMA and profibrotic molecules such as collagen 
types I and III and fibronectin. Similar beneficial effects 
of BMP-7 for maintenance of tissue homeostasis and 
regeneration were reported in liver, lung and heart. 
Therefore, it is reasonable that the rescue of BMP 
signaling activity is an effective means to treat fibrosis 
in various tissues and organs. It is noteworthy that the 
rapidly growing body of literature reporting insights in 
BMP-7 functionality, its signaling cascade, including 
receptors and modifiers, intracellular pathways and its 
signaling crosstalk has shown that BMP-7 is indeed a 
valuable drug candidate for the treatment of fibrotic 
lesions. Basic scientists will wait in suspense how these 
findings will translate into new knowledge to the clinic 
and help to develop effective novel antifibrotic 
therapies. 
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