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1. ABSTRACT 
 

Heparan sulfate proteoglycans (HSPGs) are 
glycoconjugates that are implicated in various biological 
processes including development, inflammation and repair, 
which is based on their capacity to bind and present several 
proteins via their carbohydrate side chains 
(glycosaminoglycans; GAGs). Well-known HSPGs include 
the family of syndecans and glypicans, which are expressed 
on the plasma membrane and perlecan, agrin and collagen 
type XVIII, which are present in basement membranes. In 
this review, we provide an overview of the current 
knowledge on the role and regulation of HSPGs in 
leukocyte extravasation. In the non-inflamed endothelial 
glycocalyx HSPGs are anti-adhesive, and there are several 
indications that active regulation of HSPG core protein 
expression and/or GAG modification occurs upon 
inflammation. We address the current evidence for the role 
of HSPGs in leukocyte extravasation through interaction 
with the leukocyte adhesion molecule L-selectin, 
chemokines and other binding partners. Finally, a number 
of possibilities to use HSPGs as therapeutics or targets in 
anti-inflammatory strategies are discussed. 

 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Upon inflammation, leukocytes migrate from the 
bloodstream through the vessel wall towards the site of 
inflammation. The process of leukocyte transendothelial 
migration involves several sequentially acting molecules. 
The complexity of this system prevents inappropriate 
inflammatory responses, and enables combinatorial specificity 
(1). The multistep paradigm of leukocyte transmigration 
initially comprised leukocyte rolling (step 1), activation (step 
2), firm adhesion (step 3) and transmigration (step 4) (2,3). 
However, the original paradigm has been expanded and 
modified based on new findings (1,4,5). The involvement of 
the family of heparan sulfate proteoglycans (HSPGs) at 
multiple levels in this process is becoming increasingly clear. 
The vast majority of functions ascribed to HSPGs depends on 
their ability to bind different cytokines, chemokines, growth 
factors and the leukocyte adhesion molecule L-selectin. This 
review describes our current knowledge of the role of 
HSPGs in leukocyte extravasation and trafficking, 
regulation of their expression and binding properties, and a 
number of possibilities to use HSPGs as therapeutic agents 
or targets in anti-inflammatory strategies.  
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Figure 1. HSPG molecular structure and GAG-chain biosynthesis/modification. (A) HSPGs consist of a core protein with 
covalently linked GAG-chains. Cell surface HSPGs belong to the family of syndecans (transmembrane) or glypicans (GPI-
linked). Apart from syndecans and glypicans, ‘part-time’ cell surface HSPGs include CD44v3 and betaglycan. (B) Schematic 
representation of HS synthesis/modification reactions and enzymes involved. Filled square = N-acetylglucosamine; Top-filled 
diamond = glucuronic acid; Bottom-filled diamond = iduronic acid; Filled square with ‘NS’ annotation = N-deacetylated, N-
sulfated glucosamine; 2S =sulfate at C2 position, 3S= sulfate at C3 position, 6S= sulfate at C6 position (symbol nomenclature 
used as described at http://www.functionalglycomics.org/static/consortium/Nomenclature.shtml). (C) The coordinated activity of 
these enzymes results in a typical domain organization, in which highly modified (NS) domains are flanked by moderately 
modified (NA/NS) domains, interspersed with stretches of unmodified (NA) domains. This sequence repeats a number of times 
throughout the HS-chain. Note that the enzyme reactions typically do not proceed to completion, resulting in a highly 
heterogeneous HS structure. Adapted from (16).  

 
3. HSPG STRUCTURE, BIOSYNTHESIS AND 
PROTEIN BINDING PROPERTIES 
 

Proteoglycans consist of a core protein to which 
extended linear carbohydrate chains (glycosaminoglycans; 
GAGs) are attached (Figure 1A). Based on the GAG-
composition, proteoglycans are divided in different types, 
being heparan sulfate (HS), chondroitin sulfate (CS), 
dermatan sulfate (DS), or keratan sulfate (KS) (6,7). 

Proteoglycans are not to be confused with N-linked 
glycoproteins, which bear relatively short, branched 
carbohydrate structures containing mannose, fucose and 
sialic acid residues.  
HSPGs are expressed on the cell surface and in the 
extracellular matrix (ECM). Based on their core proteins, 
the majority of cell-surface HSPG belong to the family of 
syndecans or glypicans (Figure 1A). Four mammalian 
syndecans are known (syndecan-1 to -4), which are 
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transmembrane molecules with typically three to five HS-
chains, although also CS/DS-chains can be attached to 
syndecan core proteins (8,9). Glypicans are linked to the 
cell surface by a glycosylphosphatidylinositol anchor, and 
six mammalian glypicans have been described (glypican-1 
to -6) (10). Syndecan HS-chains are located distal from the 
plasma membrane, whereas glypican HS-chains are located 
close to the membrane (Figure 1A). Apart from syndecans 
and glypicans, also ‘part-time’ cell surface HSPGs are 
known, e.g. CD44 and betaglycan (11,12). ECM HSPGs 
include agrin, perlecan and collagen type XVIII, which are 
typically found in basement membranes (13,14). Another 
familiar molecule in this context is the pharmaceutical 
heparin, which is a highly sulfated free HS-chain that 
contains a high amount of iduronic acid. Heparin is only 
attached to a core protein (serglycin) inside the granules of 
its producing cell, the mast cell (15). 
 

HSPGs are very heterogeneous molecules based 
on the large variation in their HS-chain composition. HS-
chains are initially synthesized as alternating glucuronic 
acid (GlcA) and N-acetylglucosamine (GlcNAc) residues 
(Figure 1B). These residues can subsequently be modified 
by the coordinated action of various enzymes, resulting in 
varying degrees of sulfation (N-sulfation and O-sulfation at 
various positions) and epimerization (converting GlcA to 
iduronic acid) (Figure 1B). Several isotypes have been 
identified for many HS modifying enzymes, adding to the 
complexity of the system. Theoretically, over 20 differently 
modified disaccharide units can be synthesized, and their 
combined diversity can result in highly heterogeneous HS-
chains, which can all encode a different ‘message’. 
Typically however, HS-chains are organized in highly 
modified domains with high N-sulfation (NS), O-sulfation 
and iduronic acid content, flanked by moderately modified 
(NA/NS) domains, interspersed with stretches of 
unmodified (NA) domains (Figure 1C). For further 
description of HS-biosynthesis we refer to excellent 
reviews on this topic (16-18).  

 
As mentioned above, HSPGs are able to bind 

various cytokines, chemokines, growth factors and L-
selectin through their HS-chains. Interestingly, different 
HSPG binding partners tend to require somewhat different 
GAG modification for binding (16,17,19). Important 
determinants for binding include degree and position of 
GAG-chain sulfation, epimerization, but also 3D-
conformation (20,21). Therefore, differences in HS-chain 
fine-structure could affect the function of HSPGs and their 
binding partners in certain locations and under certain 
conditions, including inflammation. 
  
4. HSPGS ON THE ENDOTHELIUM – STICKY OR 
NOT 
 
4.1. Anti-adhesive HSPGs in the non-inflamed 
endothelial glycocalyx 

Under non-inflamed conditions, the endothelial 
surface is covered with a relatively thick sheath of 
glycosylated molecules, referred to as the glycocalyx 
(22,23). HS is regarded to be the dominant GAG within the 
glycocalyx, although also CS/DSPGs and hyaluronic acid 

are present, and relative amounts can differ between 
different endothelial cell preparations (22). Together with 
sialylated glycoproteins, HSPGs are partly responsible for 
conferring the negative charge to the glycocalyx (Figure 
2A) (22). In the absence of an inflammatory insult, the 
endothelial glycocalyx serves as an anti-thrombotic, anti-
proliferative, and anti-inflammatory sheath. These actions 
are likely to depend both on masking of the underlying 
endothelial plasma membrane and its associated molecules, 
and on charge repulsion (both glycocalyx and leukocyte 
cell surface are negatively charged) (23). Upon 
inflammation, (part of) the glycocalyx can be shed, 
facilitating cell-cell interactions by reducing negative 
charge, and exposing underlying and newly synthesized 
molecules (Figure 2B) (22,24-27). Interest in the role of 
HSPGs in the endothelial glycocalyx has increased over the 
last few years and has been subject of several independent 
studies. Injection of heparitinase I (which specifically 
degrades HS) into mouse cremaster muscle venules 
increased the number of adherent leukocytes, indicating 
that HS in non-inflamed venules is anti-adhesive (28). 
Interestingly, Ox-LDL also induced degradation of the 
glycocalyx and increased adhesion of leukocytes (28). This 
effect could be inhibited by HS/heparin, which were bound 
to the luminal side of the endothelium, likely reflecting 
reconstitution into the degraded glycocalyx (28). These 
results suggest that changes in the glycocalyx, and its 
HSPGs, may play a role in atherothrombosis and -sclerosis 
(23,29). In addition, HSPGs were shown to function as 
endothelial sensors of blood flow (30,31), which may also 
play a role in atherosclerosis (local perturbations in blood 
flow) as well as other types of inflammation (e.g. reduced 
blood flow due to vasodilatation and endothelial swelling). 
In turn, recent studies show shear-dependent alterations in 
glycocalyx composition (23).  

 
Although various studies show that the 

endothelial glycocalyx is (at least partly) shed upon 
inflammation, both shedding and increased exposure of one 
of its components, syndecan-1, has been reported in 
inflammatory settings (24,25,32). This apparent 
contradiction may be due to differences in glycocalyx 
composition in cultured cells compared to in vivo, 
inflammatory stimuli, and possibly vascular beds. It is 
however an important point, as the presence of a particular 
HSPG at the inflamed endothelium dictates whether it can 
be involved in leukocyte extravasation.  
 
4.2. HSPGs on the inflamed endothelium: interaction 

with L-selectin 
The first phase of transendothelial migration is 

defined as selectin-mediated ‘rolling’ of the leukocyte over 
activated endothelium. E- and P-selectin are expressed on 
activated endothelium (as well as on platelets for P-
selectin), whereas L-selectin is constitutively expressed on 
leukocytes. All three selectins bind glycoproteins decorated 
with (sulfated) sialyl Lewisx residues (33,34). In addition, 
binding of P- and especially L-selectin to HSPGs is now 
established, whereas binding of E-selectin to HSPGs 
remains controversial (35-40). Sulfation of HS is critical 
for both P- and L-selectin binding, and heparinoids inhibit 
inflammation by blocking P- and L-selectin activity 
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Figure 2. Inflammation can induce changes in vascular HSPGs facilitating leukocyte extravasation. (A) In the non-inflamed 
endothelium, HSPGs in the endothelial glycocalyx serve as anti-adhesive molecules, preventing leukocyte adhesion. (B) Upon 
inflammation, the anti-adhesive endothelial glycocalyx is at least partly shed, exposing underlying and newly synthesized 
molecules. Inflammation-induced changes in HSPGs (dark coloured GAGs) can affect leukocyte extravasation through 
interaction with L-selectin and chemokines. HSPGs able to bind L-selectin may be present at the endothelial cell surface, 
facilitating leukocyte rolling, and in the vascular basement membrane, enhancing leukocyte transmigration and possibly 
activation. Chemokines are transcytosed and presented by luminal HSPGs, which activates leukocytes and induces firm adhesion, 
and in the subendothelial matrix enhancing transmigration. (C) Leukocyte-derived enzymes can cleave of proteins (MMPs) and 
HS (heparanase) to facilitate extravasation. Heparanase acts at slightly lower than physiological pH and releases fragments that 
may still be able to bind chemokine. Local presentation of chemokines on HSPGs and/or HS fragments enhances directional 
migration. 
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(38,39,41). However, if endogenous HSPGs are involved in 
leukocyte transmigration in vivo, it should be possible to 
demonstrate P-selectin binding HSPGs on leukocytes 
(section 7) and/or L-selectin binding HSPGs on inflamed 
endothelium. Several groups have shown binding of 
recombinant L-selectin to HSPGs expressed by cultured 
endothelial cells intracellularly (42), associated with the 
cell-surface and/or ECM, or in the culture medium (43,44). 
Support for a functional role of the interaction between L-
selectin and HSPGs is provided by Wang et al. who 
elegantly showed that reducing endothelial HS sulfation by 
inactivating N-deacetylase N-sulfotransferase-1 (NDST-1) 
impairs neutrophil extravasation (45). This could be 
partially explained by reduced binding of L-selectin to 
NDST-1-deficient endothelial cells in vitro, resulting in 
increased neutrophil rolling velocity and reduced firm 
adhesion. Similarly, leukocyte rolling and adhesion to 
endothelial cells of different origins is reduced after 
enzymatic removal of HS, or by antibodies that target N- 
and 6-O-sulfated HS domains (44,46,47). Interestingly, 
there are clear indications that HSPGs are not only 
involved in leukocyte-endothelial interactions, but also in 
adhesion of hematopoietic progenitor cells to bone marrow 
endothelial cells (48). Adhesion of progenitor cells was 
reduced when the bone marrow endothelial cells were 
cultured in the presence of chlorate, which inhibits GAG-
chain sulfation, and by enzymatic removal of HS (48). 
Blocking studies indicated L-selectin to be one of the 
binding partners involved (48). 

 
Although several studies describe a role for the 

interaction between L-selectin and endothelial HSPGs in 
leukocyte transmigration (Figure 2B), to our knowledge no 
single HSPG expressed on the endothelial cell surface has 
yet been identified as direct ligand for L-selectin. 
Endothelial syndecans have been proposed as likely 
candidates, although also glypicans, and the part-time 
HSPG CD44 can be considered (49-53). Examination of L-
selectin ligands in situ using recombinant L-selectin 
proteins as probes has been performed, predominantly in 
various types of renal inflammation (54-56). In the non-
inflamed kidney, L-selectin binding HSPGs are present in 
tubular basement membranes, but not associated with the 
endothelium (41,57-59). In both experimental and human 
renal inflammation tissues, L-selectin binding HSPGs are 
detected at the abluminal side of peritubular capillaries (but 
not at the endothelial surface), and these HSPGs are likely 
to be perlecan, collagen type XVIII and/or agrin (55,56). 
Mice deficient for perlecan-HS and collagen type XVIII 
showed reduced/delayed inflammation-induced monocyte 
influx, and the induction of perivascular L-selectin binding 
HSPGs in human renal biopsies correlates with increased 
leukocyte counts, indicating that these subendothelial 
HSPGs do contribute to leukocyte extravasation (55,56). 
Possibly, inflammation-induced endothelial damage 
exposes the vascular basement membrane components to 
leukocytes. Formally it cannot be excluded that L-selectin 
binding HSPGs are expressed on the luminal side of 
endothelial cells in these settings, as levels may be too low 
for detection or binding sites may be masked by plasma 
proteins adsorbed to HS. However, a recent study in mouse 

cremaster muscle venules, commonly used to study 
leukocyte rolling, has doubted whether L-selectin ligands 
are expressed at all at the luminal side of endothelial cells, 
as L-selectin coated beads did not significantly adhere to 
the endothelium but rather to adherent leukocytes (60). In 
this study, L-selectin mediated rolling was completely 
explained by secondary tethering (rolling of leukocytes 
over adherent leukocytes) (60). In parallel, wildtype and L-
selectin knockout mice showed similar leukocyte rolling, 
although extravasation and extravascular locomotion was 
reduced in L-selectin knockout mice (61). An interesting 
possibility is that HSPGs do not (only) function as adhesive 
ligands for leukocytes via L-selectin, but may (also) 
activate transmigrating leukocytes via the same molecule 
(Figure 2B). L-selectin cross-linking was shown to activate 
leukocytes (62,63), and the repetitive HS domain structure 
could be a likely candidate to cause L-selectin cross-
linking.  
 

Summarizing, there is compelling evidence 
indicating that an interaction between L-selectin and 
vascular HSPGs enhances leukocyte extravasation, 
although the exact mechanism deserves additional research. 
 
4.3. Other adhesive interactions with endothelial HSPGs 

Apart from L-selectin, other leukocyte adhesion 
molecules have been shown to interact with HSPGs, 
thereby potentially affecting extravasation. Especially the 
interaction between HSPGs and integrins is interesting in 
this respect. Binding of leukocyte-expressed integrin Mac-1 
(CD11b/CD18) to HS has been demonstrated years ago, 
and this interaction was shown to cause firm adhesion after 
initial rolling over P/E-selectin under flow (64,65). Also 
binding of HSPGs to other adhesion molecules, including 
CD45 and CD31 (PECAM-1) has been reported, although 
the functional relevance of these interactions is unclear (65-
67). Interestingly, mammalian heparanase, which is mainly 
known to degrade HS at low pH (section 6), can in its 
inactive form also induce T-cell adhesion under shear flow 
conditions, although the exact mechanism remains to be 
determined (68). 
 
5. HSPGS AND CHEMOKINES: SELECTIVE 
PRESENTATION 
 
5.1. HSPGs present chemokines to facilitate directional 
migration 

In the second step of transmigration, binding of 
chemokines to high-affinity receptors on leukocytes causes 
integrin activation and firm adhesion (69). Both cell-
surface and extracellular matrix HSPGs can bind 
chemokines via their HS-chains (Figure 2B). In this way, 
chemokines are retained locally, prevented from 
degradation (70), and presented to leukocytes. In addition, 
chemokines bound to HSPGs may serve as local storage 
depots, or could be functionally scavenged away (69). 
Interestingly, both chemokines and HS show a certain 
amount of specificity in their interaction. Different 
chemokines use different protein domains for their binding 
to HS, which may confer HS-chain selectivity, and has 
even been suggested to potentially control chemokine 
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receptor selectivity (71,72). HS-chains in turn have 
different sulfation patterns favoring binding of certain 
chemokines over others, which may help attract different 
leukocyte subsets (73). This mutual selectivity can offer 
another level of regulation of chemokine function, which is 
thereby determined by cells producing the chemokine as 
well as their environment (74).  

 
The notion that chemokine binding to GAGs is 

important for leukocyte extravasation has been elegantly 
demonstrated using GAG-binding mutant chemokines, 
which can bind and activate their high-affinity receptors, 
but have mutated GAG-binding domains. For example, 
monocyte transmigration was significantly reduced using 
GAG-binding mutant CCL5/RANTES compared to the 
wildtype chemokine (75). Similarly, experiments using 
GAG-binding mutant CCL2/MCP-1 and CCL4/MIP-1beta 
show a reduction in leukocyte transendothelial migration in 
vitro, and leukocyte emigration towards the peritoneal 
cavity in vivo (75-77).  
 
5.2. Chemokine presentation by HSPGs at the 
endothelial surface 

Chemokines are considered to bind to luminal 
endothelial cell proteoglycans to prevent them from being 
washed away by blood flow and to enhance clustered 
presentation (78-80). A number of studies have shown HS-
mediated binding of chemokines to the luminal surface of 
(activated) endothelial cells (81-83). Dermally injected 
CXCL8/IL-8 was shown to localize to postcapillary 
venules and small veins, where it is internalized 
abluminally by endothelial cells, transcytosed to the 
luminal surface, and presented on endothelial cell 
projections (83). Importantly, the heparin binding domain 
of CXCL8/IL-8 is necessary for binding and transcytosis, 
and in vivo activity of the chemokine (83). In line with 
these findings, binding and transcytosis of CXCL8/IL-8 
was significantly impaired in endothelial cells with reduced 
HS sulfation due to NDST-1 inactivation (45). Hardi et al. 
showed that exogenously added CCL2/MCP-1 is presented 
apically on endothelial-like cells in a clustered fashion, 
although HS was present all over the cell surface, 
indicating preferential binding to a certain HSPG or HS-
domain (82). This again stresses that endothelial cells may 
not necessarily bind a particular chemokine even though 
they express HSPGs, based on HS-chain dependent 
selectivity (55,73).  

 
Chemokine binding at the endothelial lumen is 

generally considered to be mediated by syndecans, 
although only a limited number of studies show an actual 
interaction between syndecans and chemokines. Syndecan-
1 and/or -2 derived from human umbilical vein endothelial 
cells were shown to bind CXCL8/IL-8 (32,84). Syndecan-3 
was proposed as the dominant HSPG to bind the same 
chemokine on inflamed synovial endothelium (85). As 
HSPG core protein expression and HS-chain modification 
may be different in various vascular beds, it would be 
interesting to examine more specifically which endothelial 
HSPGs bind and present which chemokines under 
inflammatory conditions in situ (e.g. in tissue sections) 
(80). 

 
Apart from presentation of chemokines at the 

endothelial lumen, it has been suggested that (HS)PG-
generated concentration gradients across the endothelium 
could be important for leukocyte extravasation (79). To our 
knowledge, a concentration gradient of chemokine in 
between endothelial cells has not been demonstrated (82). 
It seems more likely that the presence of immobilized 
chemokine on one side of the leukocyte would be sufficient 
to polarize the leukocyte and thereby direct migration (86). 
 
6. BEYOND THE ENDOTHELIUM: HSPGS IN THE 
VASCULAR BASEMENT MEMBRANE 
 

After passing the endothelial cell layer, 
extravasating leukocytes encounter the vascular basement 
membrane. This membrane consists of a dense network of 
ECM proteins, providing stability to the vascular structure. 
Leukocyte migration through this barrier is considered to 
involve local degradation of matrix molecules by specific 
enzymes, including matrix metalloproteinases (MMPs) and 
ectoenzymes (87), although specific matrix protein low 
expression regions have also been identified as preferential 
exit points for neutrophils (1,88,89).  

 
HSPGs are vascular basement membrane 

components that help provide structural stability (14). In 
addition and as described above, subendothelial HSPGs can 
bind chemokines and L-selectin under inflammatory 
conditions (55,90), which may enhance extravasation, as 
well as directed migration by the formation of a haptotactic 
gradient (91). Cleavage of HSPGs is considered to be 
necessary for leukocyte migration through the 
subendothelial matrix (Figure 2C). Leukocytes, endothelial 
cells and platelets express the HS-specific endoglycosidase 
heparanase (92-96). Heparanase acts at pH 6 but not at 
physiologic pH, is resistant to protease activity, and is 
relocated to the leading edge of migrating leukocytes, 
supporting its role in HS degradation at the site of 
inflammation (92,95,97-99). This enzyme specifically 
cleaves HS-chains within a sequence that has not been 
defined completely yet, resulting in HS fragments of 10-20 
carbohydrate units that retain biological activity 
(96,98,100). Inhibition of heparanase activity by a 
polysulfated polysaccharide was shown to inhibit 
experimental autoimmune encephalitis, although this 
compound likely interfered with other processes involved 
in leukocyte extravasation apart from heparanase activity 
alone (101). The role of heparanase in extravasation has 
been demonstrated more specifically by Edovitsky et al, 
who locally administrated siRNA to target endothelial 
heparanase, resulting in decreased delayed-type 
hypersensitivity inflammatory response in vivo (102). Apart 
from heparanase, leukocytes can also produce reactive 
oxygen species (ROS), which can cause HS 
depolymerization (103-105). However, to our knowledge 
the importance of ROS-induced HS degradation in 
leukocyte extravasation has not been shown to date.  

 
Degradation of subendothelial HS could both 

loosen the matrix to facilitate leukocyte migration, and 
release locally bound cytokines and chemokines, which can 
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affect cell migration and/or activation (106). Interestingly, 
fragments of several extracellular matrix proteins have also 
been shown to activate immune cells directly via 
interaction with toll like receptors (TLRs), which may 
function to monitor tissue damage. For example, soluble 
HS can bind TLR-4 on dendritic cells, which results in 
dendritic cell maturation (7,107). In addition, HS/heparin 
di/trisaccharides have been shown to affect T-cell 
intracellular signaling, adhesion and migration, as well as 
macrophage function (108-111). The combined roles of 
ECM HSPGs could thereby significantly influence the 
inflammatory response, both at the level of cell migration 
and activation. 
 
7. HSPGS ON LEUKOCYTES 
 

Apart from the endothelium, also leukocytes 
express HSPGs (112-117). Leukocyte HSPGs may 
influence transendothelial migration by interacting with P-
selectin, or by presenting chemokines to their high affinity 
receptor in a trimolecular complex on the leukocyte cell 
surface (in cis). However, no leukocyte-expressed HSPG 
that binds P-selectin has been reported to date. In addition, 
GAG-binding mutant chemokines which lack GAG-
binding capacity can still efficiently signal through their 
chemokine receptor and induce chemotaxis in a free 
diffusion solute gradient, suggesting that presentation of 
chemokines by HSPGs in cis is not of major importance 
(76,118,119). However, there are studies indicating that 
binding of chemokines to cell surface HSPGs could directly 
result in intracellular signaling, independent of G-protein 
coupled chemokine receptors, as shown for 
CCL5/RANTES and CD44 (120,121). In addition, T-cell 
adhesion and migration was shown to be triggered by 
binding of cyclophilin B to syndecan-1 HS, which 
enhances syndecan-1 association with CD147 and 
subsequent intracellular signalling (117,122,123). 

 
In vitro, transendothelial migration was reduced 

when monocytes were cultured in the presence of chlorate 
(inhibiting GAG sulfation) or upon treatment with 
heparitinase (specifically degrading HS) (124). Evidence 
for a role of leukocyte HSPGs in extravasation in vivo has 
come from syndecan-1 deficient mice, which display 
increased leukocyte-endothelial adhesion in the ocular 
vasculature (125). This appeared to contradict the proposed 
role of HSPGs (including syndecan-1) in enhancing 
leukocyte rolling and adhesion, but the effect was shown to 
be mostly due to the lack of syndecan-1 on leukocytes 
(125,126). Similarly, leukocyte recruitment was increased 
in syndecan-1 deficient mice in both experimental anti-
glomerular basement membrane nephritis, and myocardial 
infarction (127,128). In the latter, systemic adenoviral 
overexpression of syndecan-1 reduced the number of 
inflammatory cells in the infarct area (128). Together, these 
studies indicate that leukocyte-expressed syndecan-1 can 
inhibit extravasation, possibly by scavenging chemokines, 
masking or competing for interactions with adhesion 
molecules, or simply by increasing cellular negative 
charge, thereby inhibiting cell-cell interactions. However, 
the observation that leukocyte extravasation was not 
affected by inactivation of NDST-1 in leukocytes indicates 

that leukocyte HS sulfation is of lesser importance for 
leukocyte extravasation, although it may play a role in T-
cell activation (45,129). An alternative explanation for the 
increased adhesion of syndecan-1 deficient leukocytes 
could be that the lack of syndecan-1 affects leukocyte 
adhesion by influencing integrin activation, as functional 
cooperation between syndecans and integrins in cis (on the 
same cell) has been shown to enhance cell adhesion due to 
cross-talk in intracellular signaling pathways (130).  
 
8. REGULATION OF HSPGS UPON 
INFLAMMATION 
 
8.1. Regulation of core protein expression 

As HSPGs are constitutively present on the cell 
surface and in the ECM, regulation of expression and/or 
binding capacities (section 8.2) of these molecules upon 
inflammation seems likely (data described below are 
summarized in Figure 3). Regulation of syndecan core 
protein expression has been studied most extensively 
(49,131). In vitro, upregulation of syndecan-1, -2 and –4, 
glypican-1 and the part-time HSPG CD44 has been shown 
on cultured endothelial cells stimulated with pro-
inflammatory cytokines TNF-alpha and/or IL-1beta 
(47,84,132). In vivo, syndecan-1 expression is induced in 
endothelial cells that revascularize healing wounds and in 
myocard infarct areas (128,133,134). In addition, 
endothelial syndecan-3 staining was increased, whereas 
syndecan-2 and glypican-1 and –4 staining was detected 
but not different, in inflamed compared to non-inflamed 
synovium (51,85).  

 
Several studies indicate that syndecan core 

protein expression can be regulated by the pro-
inflammatory NF-kappaB pathway (132,135). In addition, 
the syndecan-1 gene contains an FGF-inducible response 
element upstream from the promotor region, which appears 
to act as an enhancer of transcription (136-138). This 
clearly implicates regulation of syndecan-1 in inflammation 
and repair. Interestingly, several HSPGs also have putative 
target regions for microRNAs ( (139) and Celie, 
unpublished observation (Sanger microRNA database 
(http://microrna.sanger.ac.uk)), which are small non-coding 
RNA sequences that can regulate protein expression by 
inhibiting mRNA translation (140). 

 
In addition to regulation of 

transcription/translation, syndecans are susceptible to 
ectodomain shedding, which can affect their function. For 
example, human umbilical vein endothelial cells 
constitutively shed syndecan-1/IL-8 complexes under the 
influence of plasmin under culture conditions (32). This 
shedding can be inhibited by endothelial PAI-1, which 
appears to stabilize the syndecan-1/IL8 complex at the cell 
surface, facilitating neutrophil transmigration (32). 
Thrombin and EGF were shown to enhance endothelial 
syndecan-1 and -4 shedding (141). In contrast to stabilizing 
chemokine/HSPG complexes on the endothelial surface to 
enhance transmigration, MMP-7 induced shedding of 
syndecan-1/KC complexes directs transepithelial efflux of 
neutrophils in the inflamed lung (142). Interestingly, 
heparanase was also shown to induce syndecan-1 shedding 
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Figure 3. Model for regulation of endothelial HSPG core protein expression and HS GAG modification upon inflammation. Pro-
inflammatory cytokines can alter the expression of HSPG core proteins and HS modifying enzymes (located in the Golgi) 
through activation of NF-κB. Increased expression of PAPS transporter can provide sulfate donors required for increased HS 
sulfation. Extracellularly, reduced expression of HSulf-1/-2 and increased expression of heparanase results in highly sulfated HS 
fragments. Thrombin and EGF are known to induce syndecan shedding. FIRE= FGF-inducible response element. See text for 
further details. 

 
in multiple myeloma and breast cancer cells, and silencing 
of heparanase gene expression down-regulated syndecan-1 
mRNA (143,144). Future studies will further clarify the 
regulatory pathways involved in HSPG core protein 
expression upon inflammation.  
 
8.2. Regulation of HS biosynthesis & modification; 
changes that affect chemokine/L-selectin binding 
  Regulation of HS biosynthesis and modification can 
have important effects on HSPG binding capacity, 
including binding to chemokines and L-selectin. GAG-
chain sulfation is an important determinant for both, and 
there is evidence showing that HS sulfation is altered upon 
inflammation. NDST-1 and -2 mRNA levels were 
transiently decreased in microvascular endothelial cells at 4 
hours of IFN-gamma or TNF-alpha stimulation, followed 
by an increase in NDST-1 expression at 16 hours (81). 
Binding of CCL5/RANTES to the endothelial cells, and 
transendothelial leukocyte migration paralleled the increase 
in NDST-1 expression (81). Similarly, TNF-α stimulation 
was shown to lead to an NF-kappaB-dependent increase in 
NDST-1 and -2, and 6-O-sulfotransferase-1 and -2 mRNA 
in glomerular endothelial cells (47). In the same cells 
expression of endo-6-O-sulfatase-2 (Sulf2) was decreased, 

whereas heparanase was increased, suggesting a shift 
towards more N- and 6-O-sulfated HS fragments (47). 
Increased HS-dependent binding of L-selectin and 
chemokines to endothelial cells has been shown upon 
stimulation in vitro, or when cells are derived from 
inflamed tissue (44,145). As described above, 
inflammation-induced L-selectin and chemokine binding to 
subendothelial HSPGs has been shown in situ in synovial 
tissue and the kidney (55,85,90). This may be at least 
partially due to modification of HS fine-structure, as no 
changes in core protein expression could be detected (55). 
Indeed, increased HS-mediated subendothelial binding of 
L-selectin and CCL2/MCP-1 coincided with reduced 
endothelial expression of the extracellular 6-O-sulfatase 
HSulf-1in acute renal allograft rejection (55). Although 
changes in expression of HSulf-2 were not detected in this 
study, this enzyme also has the potential to affect 
chemokine binding (146). Interestingly, mRNA for PAPS 
transporter, which transports sulfate-donors into the Golgi 
for use by various sulfotransferases, is increased in 
capillaries in both experimental heart and kidney 
transplantation-induced acute inflammation (147). Apart 
from inflammation, HSPGs have also been implicated in 
transendothelial migration of stem cells to the bone
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Table 1. HSPGs as therapeutics or targets in anti-inflammatory strategies; various HS-like or HS-targeting compounds with anti-
inflammatory effect in indicated settings 

 Compounds Setting 
HS (PGs) as therapeutics Heparin, low molecular weight heparin Cerebral ischemia (38), peritonitis (39,155,172), delayed type 

hypersensitivity (39), meningitis (173), allergic encephalomyelitis (174), 
airway (allergic) inflammation (175-179), hepatic ischemia/reperfusion 
(180), cutaneous inflammation (178,181), myocarditis (182), renal 
ischemia/reperfusion (183,184), renal allograft rejection (183,185) 

 Synthetic heparin mimetics Renal ischemia/reperfusion (186,187) 
 Small HS-mimetics Untested (159) 
HSPGs as targets Anti-HS antibodies In vitro leukocyte rolling & adhesion (47) 
 GAG-binding deficient chemokines Thioglycollate-induced peritonitis, allergic airway inflammation, allergic 

encephalomyelitis (77,188) 
 Small inactive chemokine fragments Untested (164) 

 
marrow, via presentation of the stem cell chemokine 
stromal derived factor-1 and adhesive interaction with L-
selectin (48,91,148). Interestingly, bone marrow 
endothelial cells were shown to express more highly 
sulfated HS than human umbilical vein endothelial cells, 
favoring both chemokine and L-selectin binding (149). 
Studies into the transcriptional regulation of HS 
biosynthetic enzymes involved, and resulting GAG-chain 
properties, would be interesting to gain more insight into 
the formation of these apparently constitutive 
‘extravasation-enhancing’ HS-types. 

 
In the recent years, interest has focused on the 

notion that not only HS sulfation, but also the resulting 3D-
conformation of HS-chains, spatially positioning certain 
sulfate groups in more or less flexible regions of the GAG-
chain, is important in determining binding activity and 
specificity (20,150,151). In addition, environmental factors, 
including pH and the presence of particular cations 
(including Zn2+ contained in platelets), can contribute to 
HS-chain conformation and/or binding properties, making 
the situation even more interesting, but also even more 
complex (21,151).  
 
9. HSPGS AS THERAPEUTICS OR TARGETS IN 
ANTI-INFLAMMATORY STRATEGIES 
 

Based on the variety of functions of HSPGs, 
these molecules could be interesting therapeutic agents, or 
possibly targets, in anti-inflammatory strategies (Table 1). 
This would be especially relevant in chronic inflammation 
and auto-immune diseases (e.g. artherosclerosis, 
inflammatory bowel disease, multiple sclerosis, rheumatoid 
arthritis). Other situations in which HSPGs are considered 
as therapeutic agents or targets include oncology, especially 
focusing on the potential of inhibiting growth factor 
signaling, angiogenesis and heparanase-induced 
degradation of ECM by tumor cells, which precedes 
metastasis (152-154). Heparin has been shown to bind and 
inhibit several molecules involved in leukocyte 
extravasation, including selectins, chemokines, leukocyte 
integrins, and heparanase (36,39,40,46,64,96,99,155), 
which can likely explain the anti-inflammatory effects 
observed after (low molecular weight) heparin 
administration in various models (Table 1). Interestingly, 
also tumor cells have been shown to exploit integrin- and 
selectin-mediated adhesion during metastasis (156-158).  
Nowadays, interest is focusing on the possibility to produce

 
small HS-mimetics, which may more specifically target a 
particular component of HS/heparin bioactivity (154,159). 
For this, it will be necessary to obtain pure, homogeneous 
oligosaccharide preparations, which can probably only be 
achieved by chemical synthesis. This approach has proven 
particularly challenging, but significant progress has been 
made in the last years, for example by the generation of 
heparin-glycan arrays to study heparin-protein interactions 
and the production and clinical use of Fondaparinux 
(synthetic heparin-like pentasaccharide) (73,160-163). 
Factors known to potentially influence the biological 
activity of these compounds, including multivalent linkage 
and 3D conformation, may be taken into consideration to 
find a balance between biostability, activity and specificity.  

 
The use of HSPGs as targets, for example using 

antibodies that recognize and thereby block specific HS-
motifs/domains, may also have clinical potential. This 
strategy has been exemplified in vitro by the demonstration 
that 6-O-sulfate specific anti-HS antibodies produced in a 
phage-display library can inhibit leukocyte rolling and firm 
adhesion to glomerular endothelial cells, whereas anti-HS 
antibodies with different specificities do not (47). GAG-
binding deficient chemokines can be used to specifically 
inhibit cell migration (164). In addition, small inactive 
chemokine fragments can be generated that block the 
HSPG-binding sites of their in vivo active counterparts 
(164). Together, there are many options for the use of 
HSPGs in therapeutic strategies, although many need 
further development and proof of efficacy in vivo. 
 
10. CONCLUSIONS & PERSPECTIVES 
 

In this review, we have described the current 
knowledge regarding the role and regulation of HSPGs in 
different steps of leukocyte extravasation. There are clear 
indications to show that in the non-inflamed endothelial 
glycocalyx HSPGs have anti-adhesive properties, whereas 
endothelial HSPGs can promote leukocyte extravasation 
upon inflammation through their interaction with different 
proteins, including L-selectin and chemokines. This may be 
explained by the observation that upon inflammation (part 
of) the anti-adhesive endothelial glycocalyx is shed. 
Theoretically, it is possible that pro-adhesive HSPGs are 
continuously expressed but masked by the glycocalyx, 
although this seems unlikely as the cellular machinery for 
HS synthesis and modification is considered to be shared 
by all HSPGs expressed by a certain cell, which should 
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result in similar HS profiles. Accumulating evidence shows 
inflammation-induced changes at the level of core protein 
synthesis, but importantly also of HS-chain modification, 
which may account for the change in HSPG properties 
from anti-adhesive to pro-inflammatory. Possibly, changes 
in HSPGs over time can help define and contain the 
inflammatory response, affecting the type of leukocyte that 
extravasates (71,72), the vascular bed through which 
extravasation occurs (165), and the transition from acute to 
chronic (or resolution of) inflammation. Interestingly, 
chemokine-induced leukocyte migration can be inhibited 
by the family Slit-proteins, and these proteins have been 
shown to bind HS (166-169). Emerging in vivo experiments 
show that Slit-proteins can inhibit leukocyte infiltration in 
various inflammatory models (170,171). Further research 
may direct at these topics, e.g. specifically examining 
HSPG binding properties or HS modification at different 
timepoints and under different inflammatory conditions. In 
addition, it would be interesting to examine whether HSPG 
subsets are located in membrane domains, where they may 
function to enhance the interaction between endothelial cell 
and leukocyte. A remaining challenge in this context is to 
prove causality between changes in expression of HSPG 
core proteins/modifying enzymes based on the high 
potential for redundancy (multiple core proteins as well as 
modifying enzymes) and post-translational regulation 
(enzyme activity, shedding of core proteins). In addition, 
HSPGs are known to be important in development and 
structural stability of tissues, and therefore tissue-specific 
and/or inducible knockout animals for different core 
proteins and/or modifying enzymes may significantly 
contribute to our understanding of the role of HSPGs in 
specific settings.  

 
Interestingly, HSPG binding properties may not 

only play a role at the endothelial surface but also in the 
underlying vascular basement membrane, affecting 
directional cell migration and activation. Degradation of 
HS by heparanase can both allow cell migration through 
this barrier and release bioactive HS fragments. The ability 
to interfere specifically with any of the above-mentioned 
roles of HSPGs may have significant therapeutic 
implications, and considerable effort is being invested in 
this direction. Typically, HS modifying reactions do not go 
to completion in vivo, and it would be interesting to 
consider the existence of inhibitors of the modifying 
enzymes in vivo, either at the transcriptional or translational 
level, or the development of compounds that block or skew 
away from a particular (undesired) reaction. 

 
In conclusion, there is compelling evidence that 

HSPGs play an important role in leukocyte extravasation. 
Future studies of the mechanisms, regulation and 
specificity of HSPG-mediated interactions in different 
inflammatory reponses will further increase our 
understanding of these intricate but intriguing molecules, 
and can open important new therapeutic possibilities. 
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