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1. ABSTRACT 
 

Many time series microarray experiments have 
relatively short (less than ten) time points and lack in 
repeats, weakening the confidence of results. Combining 
the microarray data from different groups may improve the 
statistical power of detecting differentially expressed genes. 
However, few efforts have been taken to combine or 
compare the time-course array datasets generated by 
independent groups. Here we demonstrated a suitable 
strategy for meta-analysis of short time series microarray 
datasets and implemented this strategy on four published 
heat shock microarray datasets of Saccharomyces 
Cerevisiae. We first assessed the significance of each gene 
in each datasets based on area calculation and the null 
distribution of the areas. Then the similarity of significance 
values across datasets was assessed with meta-analysis 
methods, yielding a set of transient heat shock stress 
sensitive genes. Following correlation calculation helped us 
to combine the transformed data at the same time points of 
each gene. Further bioinformatic investigation showed the 
significance of our strategy, and also indicated some 
interesting features of regulatory systems in S. cerevisiae 
during transient heat stress. 
 

 
 
 
 
 
2. INTRODUCTION 
 

To get a comprehensive view of the 
transcriptome in different organisms at different stages, 
numerous microarray experiments have been carried out 
during the past few years. Accordingly, more and more 
related microarray datasets are publicly available. With the 
accumulation of these datasets submitted by independent 
groups, a corresponding step in analyzing the expression 
data is to combine the results of these studies, which has 
been called meta-analysis generally. Although combining 
array data from different groups or platforms remains a 
challenge, it is still feasible and necessary for avoiding 
artifacts of individual studies (1). Until now, several 
reported meta-analysis of microarray data have focused on 
cancer research to find commonly dysregulated genes in a 
particular cancer (2-6) or other diseases (7, 8), or to identify 
common transcriptional profiles of diverse cancer 
microarray datasets (9). From these studies, a number of 
amazing robust statistical methods have been developed, 
which can effectively combine and compare the related 
expression datasets generated by different groups and can 
even integrate datasets from different array platforms, 
oligonucleotide arrays and cDNA arrays (2). 
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Table 1. Datasets included in this meta-analysis 
Data Reference Number Chip type Strain Reference Sample Samples (Time Points) 
1 18 cDNA Wild Type Mixed samples 25oC 1 (0) 

37oC 1 (5/15/30/45/60) 
2 18 cDNA Wild Type Mixed samples 25oC 1 (0) 

37oC 1 (5/10/15/20/30/40/50/60) 
3 19 cDNA Wild Type 25oC 1 37oC 1 (5/10/15/20/30/40/60/80) 
4 20 cDNA Wild Type 30oC 1 25oC 1 (0) 

37oC 1 (0/5/15/30/60) 
5 21 oligo Wild Type 25oC 1 37oC 1 (15/30/45/60/120) 

1 The temperatures�25oC and 37oC represent the cell culture conditions of samples and reference pools in heat shock 
experiments. Since the reference pools in individual studies were not consistent, zero transformation was performed (see 
Materials and Methods). 

 
Microarray datasets can be divided into two 

classes: static and time series data. Static expression 
experiments, in which a snapshot of gene expression levels 
is taken, are often used in detecting expression levels of 
tumour cells from different cancer types. In time series 
microarray experiments, a temporal process is measured 
(for example, response to environmental conditions or the 
cell cycle). Time series array datasets provide a precise 
view of the instantaneous expression level at a particular 
time point and also exhibit the gene expression changes 
along time. So it has become a useful approach for 
exploring biological processes. A number of statistical 
methods have been produced to identify the differentially 
expressed genes in time-course microarray data (10-13). 
However, many time series microarray experiments contain 
relatively short time points (less than ten) and lack in 
repeats, weakening the confidence of results. In individual 
short time series microarray experiments, there would be 
some error brought by technical and biological sources of 
variability that may lead to wrong cognizance of the hidden 
temporal genetic response. Combining the short time series 
microarray datasets from independent groups may improve 
the statistical power of detecting differentially expressed 
genes. However, few efforts have been taken to combine 
and compare the short time-course expression datasets 
generated by independent groups. Combination of time-
course microarray datasets is hindered by biological and 
experimental inconsistencies such as differences in 
sampling rates, variations in the timing of biological 
processes, and the lack of repeats (14). Whereas, if similar 
time-course expression experiments are performed under 
the same condition, combination of these time-course array 
datasets may be feasible and lead to a more robust result. 
 

It has been pointed out that for short time series 
microarray experiments, two error based methods (such as 
area calculation) are better than the cubic spline fitting 
based methods which are appropriate for relatively long 
experiments (15). In this study, we designed an area 
calculation and permutation based approach for meta-
analysis of short time series microarray studies, and 
illustrated its application on four publicly available time-
course array datasets pertaining to transient heat shock 
response in wild S. cerevisiae (from 25oC to 37oC). Firstly, 
we assessed the significance of each gene in each dataset 
based on area calculation and the null distribution of the 
areas. Then the similarity of significance values across 
datasets was assessed with meta-analysis methods, helping 

us to identify a set of commonly transient heat stress 
sensitive genes (CTHS genes). Subsequently, after we 
transformed the data to a comparable form, correlation 
coefficients were calculated to select the genes with high 
time point correlation among different datasets. Lastly, we 
combined the time-course data of these handpicked CTHS 
genes and clustered these genes according to their time-
dependent characteristics. 
 

Transient heat shock microarray datasets of S. 
cerevisiae have been chosen as a case study for this meta-
analysis. Heat shock is a kind of environmental stress that 
alters gene expression in prokaryotic and eukaryotic cells. 
The response to heat shock is characterized by a rapid 
induction of a conserved group of heat shock proteins 
(HSPs) (16). In S. cerevisiae, this response involves two 
regulatory systems: the heat shock transcription factor 
(Hsf1) and the Msn2 and Msn4 (Msn2/4) transcription 
factors. However, the contribution of each system 
independently is just beginning to emerge (17). Using 
available literatures and databases, we validated the results 
obtained by our strategy and found some interesting genetic 
response tendencies and regulatory manners in S. cerevisiae 
during transient heat shock. 
 
3. MATERIALS AND METHODS 
 
3.1. Data collection and preprocessing 

Five normalized time-course array datasets 
generated by four independent groups (18-21) were 
downloaded from public websites including GEO (Gene 
Expression Omnibus) (22) and SMD (Stanford Microarray 
Database) (23). Missing data were allowed. Four of the 
experiments used cDNA array and one used 
oligonucleotide array (Table 1). All of them contained short 
time points (less than ten) and lacked in repeats. The heat 
shock process was from 25oC to 37oC. Although cells 
grown at 25oC were collected for the zero time point 
reference in most datasets, original references used in the 
five array experiments were not consistent. For 
comparison, data were mathematically zero transformed by 
dividing the expression ratios of each gene at each time 
point by the corresponding ratios measured for the 
unshocked cells (25oC, 0 time point). To see if the timings 
of biological process in the five datasets were similar, we 
roughly judged the number of differentially expressed 
genes at each time point in each array experiment by a log 
ratio threshold. Dataset 5 was then filtered out. 
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Figure 1. Four major steps in our meta-analysis strategy for short time series microarray datasets. Step 1: Data collection and 
preprocessing, including data filter and zero transformation. Step 2: Differential expression analysis in each dataset, including 
area calculation and a Monte Carlo procedure. Step 3: Meta method for yielding commonly transient heat-shock sensitive genes 
(CTHS genes). Step 4: Data merging and further bioinformatic investigation, including clustering analysis and promoter analysis. 
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3.2. Differential expression analysis in each dataset 
Our analysis was performed with custom 

software written in Perl. Considering the time-ordered 
aspect and short time points of the data, in each dataset, 
we calculated the area (S value) bounded by the 
expression profiles for each gene in 37oC and 25oC 
conditions (X axis after zero transformed, Figure 1). 
Let's call X (Tn) the log-expression ratios in 37oC 
condition, available for a generic gene X at time sample 
Tn (n = 1, ..., k, with k number of time samples). Then S 
value was calculated for each gene as the sum of the 
contributions of partial areas from consecutive samples 
(equation 1). Each contribution Sn was calculated from 
the deviation of expression in 37oC and 25oC conditions 
(X axis here) between neighbouring time points. To 
decide the induced or repressed genes during the heat 
shock process, we also adopted S’ value computed by 
subtracting the area below X axis from the area above X 
axis for each gene. Genes with positive S’ values were 
decided to be induced and genes with negative S’ values 
were considered to be repressed 

∑
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1

k

n
nSS     (equation 1) 

 
 The gene X is considered differentially 

expressed if the area S of this gene was greater than the 
threshold, which was in correspondence to a significant 
level based on the null hypothesis distribution of the areas. 
Since the four datasets were in data-poor condition, i.e. a 
sufficient number of replicates was not available, a Monte 
Carlo procedure was used to derive the null distribution of 
the S values. A more detailed explanation of this procedure 
was previously described (15). Briefly, the null distribution 
of the expression level at each time sample was derived 
from the true expression values obtained from available 
replicates (at least two replicates for each time sample 
would be necessary), then R profiles of length k were 
sampled (here R = 104) from the null distribution of the 
expression level at each time sample and the S values of R 
profiles were calculated. Subsequently, different 
distribution models (Gamma, Log-normal and Weibull) 
were used to fit the entire set of S values of R profiles and 
the best model was chosen on goodness of fit. Once the null 
hypothesis of S values was obtained, gene-specific P values 
were assigned according to the true S values of the genes. 
To calculate the gene-specific false discovery rate (called Q 
value here), genes were sorted by P, and then the ratio of 
the expected number of occurrences at or better than each P 
to the actual number of occurrences was calculated 
(equation 2, N denotes total number of genes, I denotes 
number of genes at or better than P) 

I
NPvalueQ *

=−     (equation 2) 

 
3.3. Meta-analysis and identification of commonly 
transient heat stress sensitive genes 

The meta-method was modified from Rhodes et 
al. (24). For each possible combination of four datasets, we 
performed a meta-analysis to test the null hypothesis that 
significant results from individual studies do not 

correspond to the same genes. For each gene, a P meta 
statistic (M) was computed using the Ps from individual 
datasets (equation 3, n denotes dataset number). 

 

)log(2...)log(2)log(2 21 nPPPM −−−−=                                      
(equation 3) 

 
Then meta P value were calculated by a 

comparison to 100,000 meta values generated by randomly 
selecting a P from each dataset contributing to the 
respective meta-analysis. The meta statistic P value equaled 
the fraction of random summary statistics that were 
greater than or equal to the actual. For each meta-
analysis, we sorted genes by meta P value, calculated 
the meta Q value of a gene as the ratio of the expected 
number of occurrences at or better than the P of the 
gene to the actual number of occurrences (same equation 
2). We assimilated results from all of the meta-analyses 
by selecting the minimum meta Q value for each gene. 
Finally, all the genes were ranked by their minimum 
meta Q values and the commonly transient heat stress 
sensitive genes (the CTHS genes) were identified 
according to the meta Q value threshold (minimum meta 
Q value < 0.1). 
 
3.4. Selective combination of time series data for further 
bioinformatic analysis 

Since the four time series datasets were not 
sampled uniformly, a standard linear interpolation was 
performed to make the time points come into line. The 
points were joined by straight line segments and each 
segment can be interpolated independently, in 
consistence with the S value calculation. We selected 
five time points: 5, 15, 30, 45, 60 min to parallel for 
further combination. All the four datasets contained 5, 
15, 30 and 60 min time points and we just needed to 
interpolate the 45 min for dataset 2, 3, 4. Interpolation 
was performed using equation 4. Xi, X2 and X1 are the 
expression values at the interpolating time point and two 
source time points, respectively. ti, t2 and t1 are the 
corresponding time points. After interpolation, the four 
datasets were transformed to a comparable form. This 
process was carried out using equation 5. Xt and Xi 
mean transformed and untransformed values at the same 
time point in each array dataset, mu and sigma are the 
mean and SD of distribution of Xi. Therefore all the 
values in each array dataset were turned into variables 
which were normally distributed with mean amounted to 
0 and SD to 1. 
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For better combination, the correlation 

coefficients were calculated between two random array 
datasets for each CTHS gene. Equation 6 shows that the 
correlation coefficient rxy is computed using transformed 
values Xi, Yi of each gene and their means at all time points 
between two given array datasets. For each CTHS gene, the 
array datasets whose rxy was greater than or equal to 0.6
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Table 2. The number of promoter elements in each cluster 
Label Elements Total Early Middle Late 
 Single 38 4 24 101 
H1 Perfect HSE 17 2 9 6 
H2 Gap HSE 17 1 141 2 
H3 Step HSE 4 1 1 2 
 Mixed 46 162 26 4 
H12 (Perfect + gap) HSE 5 3 2 0 
H123 (Perfect + gap + step) HSE 1 1 0 0 
SH1 STRE + perfect HSE 13 3 9 1 
SH2 STRE + gap HSE 18 5 12 1 
SH3 STRE + step HSE 5 1 2 2 
SH12 STRE + (perfect + gap) HSE 3 2 1 0 
SH23 STRE + (gap+ step) HSE 1 1 0 0 

1 Weakly correlated (not significant) with the corresponding phase (P < 0.09) and 2 Significantly correlated with the 
corresponding phase (P < 0.05, X2 test). 
 
were chosen to combine the transformed values at each 
time point. Combined values were the mean of transformed 
values of correlative array datasets. 

 

∑ ∑

∑

= =

=

−−

−−
=

5

1

5

1

22

5

1

)()(

))((

i i
ii

i
ii

xy

YYXX

YYXX
r

        (equation 6) 

 
3.5. Clustering method and promoter analysis 

First, we analyzed the functional distribution of 
the CTHS genes according to CYGD database. Then we 
imported the combined time course data to Genesis 
software (version 1.7.0) developed by Alexander Sturn. 
Genesis is a platform independent Java package of tools to 
simultaneously visualize and analyze a whole set of gene 
expression experiments (25). By using the expression view 
function of this software, we obtained the overall genetic 
response tendency of heat stress sensitive genes. 
Hierarchical clustering analysis was used to the CTHS 
genes from a case functional category since it has been 
reported that hierarchical clustering method could produce 
the same result as which were produced by the complex 
hidden Markov model based clustering algorithm when 
dealing with short time series microarray data (14). 
 

For further promoter analysis, we analyzed 1000 
base pairs upstream of the start codon of the loci verified 
using a single pattern identification program (programmed 
using Perl). Sequences were retrieved from SGD database. 
We concentrated on three reported types of HSEs and 
STRE. HSEs consist of three inverted repeats of the 
nGAAn unit in perfect, gap and step arrangements. The 
perfect HSE consists of contiguous units, either 
GAAnnTTCnnGAA or TTCnnGAAnnTTC. The gap HSE 
consists of 5 any base pair gap units, 
TTCnnGAAnnnnnnnGAA and its complement 
TTCnnnnnnnTTCnnGAA. The perfect and gap type also 
allow a single mismatch, such as GAR or YTC. R is any 
purine base and Y is any pyrimidine base. The step type has 
five base pair inserts between three direct repeat units, 
TTCnnnnnnnTTCnnnnnnnTTC or 
GAAnnnnnnnGAAnnnnnnnGAA. STRE is a core promoter 
sequence CCCCT bound by Msn2/4. We labelled perfect 

HSEs as H1, gap HSEs as H2, step HSEs as H3 and STRE 
as S for convenience. If the promoter region of a locus 
contained mixed elements, we composed these labels such 
as SH1, H23 etc (Table 2). Hierarchical clustering analysis 
was performed on the CTHS genes which contained such 
elements in their promoter regions. 
 
4. RESULTS 
 

A flow diagram showing the strategy of our meta-
analysis is seen in Figure  1. There are four major steps in 
our strategy: 1) Data collection and preprocessing 
(including data filter and zero transformation); 2) 
Differential expression analysis in each dataset (based on 
area calculation and the null distribution of the areas); 3) 
Meta method for yielding commonly transient heat shock 
sensitive genes (CTHS genes); 4) Data merging and further 
bioinformatic investigation. Details of each step are 
described in Materials and Methods. The results found by 
using this strategy are presented below. 
 
4.1. Collection of short time series microarray datasets 

We downloaded five time-course microarray 
datasets generated by four independent groups (18-21) 
(Table 1). These datasets pertained to transient heat shock 
response in wild type S. cerevisiae (from 25oC to 37oC). All 
of them contained short time points (less than ten) and 
lacked in repeats. Since reference samples used in different 
array experiments were not consistent, the datasets were 
mathematically zero transformed by dividing the expression 
ratios of each gene at each time point by the corresponding 
ratios measured for the unshocked cells (25oC, 0 time). A 
critical prerequisite for combination of time series datasets is 
that the timings of biological process in these datasets are 
similar. We then roughly determined the number of 
differentially expressed genes at each time point in each 
array experiment by a log ratio threshold (log ratio > 1 or < 
-1). As shown in Figure 2, dataset 1-4 showed a similar 
expression tendency that the number of differentially 
expressed genes reached the peak at 15 min but dataset 5 
did not, suggesting the timing of biological process in 
dataset 5 was not as same as that in other datasets. Hence, 
we selected dataset 1-4 for further meta-analysis.
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Figure 2. A rough investigation of the expression changes 
in each datasets. DE genes means differentially expressed 
genes identified using expression level thresholds (log ratio 
value >1 or <-1) at each time point in individual microarray 
datasets. Solid curves represent a computer described best 
fit to the data obtained. 

 
4.2. Differential expression analysis in each dataset 

We evaluated the results of the individual 
datasets before performing the interstudy analysis. For each 
gene in each study, we calculated the area (named as S 
value) bounded by the expression profile and X axis 
(Figure 1). The S value reflects the intensity of the gene 
expression change during transient heat stress. To decide 
the induced or repressed genes during heat shock process, 
we also computed the S’ value by subtracting the area 
below X axis from the area above X axis. Because the four 
datasets lacked in repeats, a Monte Carlo procedure was 
used to derive the null distribution of areas (see Materials 
and Methods). P values (Ps) were assigned to each gene 
according to the Gamma distribution which was the best fit 
for the distribution of S values. For multiple tests, we then 
adjusted the P values by calculating the estimated lowest 
gene-specific false discovery rates (Q values), which have 
been suggested as a measure of significance analogous to 
Ps but adapted to multiple inference scenarios. Q values 
were calculated by ranking genes in each dataset by their 
Ps and then calculating the ratio of expected random 
occurrences at or better than a P of a gene to the actual 
number of occurrences. Figure 3A depicts the Q value plot 
of the four datasets analyzed (the X axis is the rank index 
sorted by Ps). All the four datasets, especially dataset 3 and 
4, had hundreds of genes with Q value much less than one, 
suggesting that many genes were differentially expressed 
during transient heat shock. 
 
4.3. Meta-analysis and identification of commonly 
transient heat stress sensitive genes (CTHS genes) 

We then implemented a meta-analysis model 
modified from Rhodes et al. (24) to assess the similarity of 
the results between studies to identify reliable sets of 
commonly transient heat stress sensitive genes (named as 
CTHS genes). In-silico interstudy validation and 
significance analysis were carried out for all the genes by 
integrating the methods of meta statistics (M value) and 
false discovery rates (see Materials and Methods). Briefly, 

to test the null hypothesis that the significant results in the 
four individual datasets do not correspond to the same 
genes, we performed a meta-analysis for each possible 
combination and then assimilated the results. In each 
possible combination, we calculated the meta M statistics 
for each gene, and evaluated the significance (meta P 
value) of M value based on a distribution of randomly 
generated meta M statistics. Finally, to estimate the false 
discovery rates of meta P value, a meta Q value was 
assigned to each gene in each combination. If a gene 
significantly responded to transient heat stress, the meta-
analysis M statistic of a gene would also be significant 
(represented by a low meta Q value). On the contrary, if a 
gene was significant in only one dataset, the M value would 
not be significant. The meta Q value plot showed that all of 
the possible combinations of datasets yielded sets of 
significantly similar genes (Figure 3B). As expected, 
increasing the number of datasets in the combination 
increases the significance and number of commonly 
differentially expressed genes, for example, the 
combination of all four datasets (Data1234, Figure 3B) 
yielded the largest number of significantly similar genes. 
Such a result suggests that our meta-analysis of short time 
series microarray dataset improves the statistical power of 
detecting differentially expressed genes. 

 
Results from the various combination analyses 

were assimilated by selecting the lowest meta Q value for 
each gene and then sorting genes based on the meta Q 
values. At a meta Q value < 0.1, 972 commonly sensitive 
loci were identified during heat shock. By importing these 
loci to SGD database (26), 826 loci were verified. 
Approximately 14� of the genes in the yeast genome were 
found to be involved in the response to heat stress, showing 
a complex process during heat stress. This finding of a 
large number of genes enabled us to give a functional 
interpretation to the genetic response to heat stress. The 
subcellular localization of these proteins was shown in 
Figure 4 according to CYGD database (27). The largest two 
groups of identified proteins originated from the cytoplasm 
and nucleus. It is noteworthy that 13.85� proteins were 
originated from mitochondria and 5.79� from ER. Among 
the CTHS genes, 625 (528 verified) were induced and 347 
(298 verified) were repressed during heat stress. The 
induced and repressed genes were functionally categorized 
according to CYGD database (Figure 5). The total gene 
number was greater than 972, because many genes were 
found in many categories. The number of induced genes 
was larger than that of the repressed genes in most 
functional categories, especially in “Energy”, “Protein 
activity of regulation” and “Cell rescue, defence and 
virulence”. However, the number of repressed genes in 
category of “Protein synthesis” and “Transcription” was 
larger than that of the induced genes, in agreement with a 
previous expression profiling study of heat shock stress in 
wild S. cerevisiae (28). 
 
4.4. Combination of time series data finds overall 
genetic response tendency 

To further investigate the expression response 
tendency of the CTHS genes, we managed to combine the 
four time series datasets. First, we should make the time 
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Figure 3. Q-value and meta Q-value plots. (A) Evaluating 
individual time series datasets by estimated lowest false 
discovery rates (Q-value). The X axis represents the gene 
index as ranked by P-values generated from the null 
hypothesis distribution of the S values, and the Y axis 
represents Q-value. (B) Comparison of meta Q-value plots 
for analyses of different combinations of the four datasets. 
The X axis represents the gene index as ranked by meta P-
values generated from random permutation test, and the Y 
axis represents meta Q-value. 

 
points come into line because the four series were not 
sampled uniformly (Table 1). Since the datasets contained 
relatively short time points and lacked in repeats, it is not 
suitable for adopting the well developed method such as the 
continuous representation which requires relatively long 
time samples (12). To avoid too much interpolation, we 
picked some common time points (5, 15, 30, 60 min) in 
four datasets and linearly interpolated the 45 min time point 
for dataset 2-4. Subsequently, the four datasets were 
transformed to a comparable form and normalized values of 
each CTHS gene were attained at each time point (5, 15, 
30, 45 and 60 min). Finally, we combined the normalized 
values of each CTHS gene at the same time points based on 
a correlation coefficient threshold (see Materials and 
Methods). 

 
To get an overall view of the expression changes 

of the CTHS genes along time, the combined values of the 
CTHS genes were imported into Genesis software (25). As 

shown in Figure 6A and B, most genes were induced or 
repressed to the maximal extent at 15 min and showed a 
similar expression level at the start point 5 min and the 
ending point 60 min. Analogous tendencies of CTHS genes 
from individual functional categories were seen in Figure 
6C and D. These results suggest that 15-30 min is the most 
active period for genetic response to transient heat shock in 
S. cerevisiae and the overall genetic response activity 
decreased later, in consistence with a previous study of 
transient heat shock in yeast (29). This finding suggests the 
robustness and adaptability of the genetic system to 
transient heat stress in S. cerevisiae. 
 
4.5. Clustering analysis of a case category identifies 
detailed response trends 

It has been pointed out that the interpretation of 
clustering results could be problematic when a large 
number of genes were present in the dataset (17). As the 
heat shock response process was complicated and the 
CTHS genes were from different functional categories, we 
focused on 118 induced CTHS genes categorized in “cell 
rescue, defence and virulence” and clustered the genes as a 
case study (Figure 7). In this category, we found many well 
known molecular chaperones such as SSE2, SSA4, SSC1, 
LHS1, SSE1 from HSP70 family, HSC82 and HSP82 from 
HSP90 family, HSP78, HSP104 from HSP100 family. The 
118 induced CTHS genes were divided into 3 clusters: the 
early, middle and late phases. In the early phase, almost all 
genes were induced to their maximal extent within 5 min 
after exposed to 37oC. Genes in the middle phase were 
approximately induced to their maximum from 15 min to 
45 min and were also divided into 3 clusters: middle-1, 
middle-2 and middle-3 phases according to their values at 
45 min. Genes in the late phase were induced to the 
maximum during 45 min and 60 min. These results suggest 
that the clustering algorithm successfully identifies 
cooperatively regulated genes according to the combined 
values. A majority of the 118 genes including most HSPs 
were classified to the middle phase, whereas SIS1, SSA4, 
HSP42, HSP78, HSP104 were classified to the early phase 
and only SCJ1, LHS1 were classified to the late phase. 
These HSPs may be regulated in a different manner as 
compared to other HSPs during transient heat stress. We 
also found that the transcription factor Msn2 reached peak 
in the early phase and Msn4 peaked in a relatively early 
period (the middle-1 phase). In contrast, the heat shock 
transcription factor Hsf1 was weakly induced from 15 min 
to 45 min in the middle-3 phase. Msn2/4 are non-essential 
transcription factors that recognize stress response elements 
(STREs) found in the promoters of most HSPs. Whereas, 
Hsf1 is an essential protein, S. cerevisiae utilizes it to 
activate the expression of a wide variety of genes even in 
the absence of heat shock. Under heat stress, the induction 
of Hsf1 may not be as great as Msn2/4. Previous studies 
have pointed out that Msn2/4 and Hsf1 regulatory systems 
control the expression of genes classified as different 
functional groups (30-32): Msn2/4 controls the genes from 
chaperons, carbon metabolism and oxidative stress, while 
Hsf1 controls the genes from chaperons, energy generation 
and cell wall maintenance. The difference in the inducing 
tendency between Msn2/4 and Hsf1 indicates the different 
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Figure 4. Subcellular localization distribution of the 972 identified ORFs as defined by the CYGD database. The percentage of 
ORFs present in each subcellular localization is given in parentheses. 
 

 
 
Figure 5. The overview of CTHS genes functionally categorized using the CYGD database. White and black bars represent the 
numbers of induced and repressed CTHS genes in each functional category, respectively. 
 
functional roles of these two transcription factors during 
heat shock process. 
 
4.6. Promoter analysis of different heat shock elements 

As is described above, both Hsf1 and Msn2/4 
transcriptional systems modulate the induction of specific 
heat shock genes. However, the contribution of Hsf1, 
independent of Msn2/4, is only beginning to emerge. The 
heat shock elements HSEs and STRE play independent 
roles in these two systems, but the response changes along 
time of the cis-regulons controlled by these elements and 
the contributions of these elements to transient heat shock 
remain unclear. To address this, we searched the promoters 
of the CTHS genes for three types of HSEs and STRE and 
then clustered the genes containing these elements. 15.8% 
of the induced CTHS genes contained HSEs in their 

promoters and 42.1% contained STRE. 52.2% of induced 
gene contained at least one of these elements, indicating 
that the Hsf1 and Msn2/4 system are crucial for heat shock 
response. We also found that many induced genes 
contained mixed elements, which were labelled as SH1, 
H12, SH23, etc. Hierarchical clustering method was 
performed to 84 induced CTHS genes containing HSEs 
(Figure 8). These genes contained single elements: H1, H2, 
H3 or mixed elements: H12, H123, SH1, SH2, SH3, SH12 
and SH23. We counted the number of genes containing 
each kind of element in each phase (Table 2). The 
correlations between the genes containing given elements 
and the clustering phases were calculated using X2 test. 
Interestingly, a distinct correlation was found between the 
genes containing mixed elements and the early phase (P < 
0.05). Moreover, genes containing single elements showed 
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Figure 6. Expression levels (combined values) of the 
CTHS genes during heat shock are represented by the lines 
painted in gradient colour scale. Yellow denotes the 
average level of general combined values. Red and green 
denotes higher or lower levels, respectively. Mean lines are 
shown in black. This figure show the expression levels of 
(A) all the induced CTHS genes, (B) all the repressed 
CTHS genes, (C) induced CTHS genes from “cell rescue, 
defence and virulence” category and (D) repressed CTHS 
genes from “transcription” category. 

a weak but not significant correlation with the late phase (P 
< 0.09) and most genes containing single H2 elements 
tended to reach peak in the middle phase (P < 0.09), 
suggesting that the genes with mixed elements prefer to be 
induced earlier than the genes with single elements under 
transient heat stress. Since most of these mixed elements 
contained STRE recognized by Msn2/4, it seems that 
Msn2/4 regulatory system reacted more quickly and 
strongly than Hsf1 system. These findings were consistent 
with the results from “Clustering analysis of a case 
category”, indicating the validity of our combination 
method. Moreover, Msn2/4 system may assort with Hsf1 
regulatory system in some aspects under heat shock. 
Several studies have reported that some genes are regulated 
by cooperation between two systems, such as HSP26 and 
HSP104 (33). Based on our data, this cooperation may play 
an important role in the early inducing of the CTHS genes 
in S. cerevisiae. 
 
5. DISCUSSION 
 

While tens of thousands of genes are profiled at 
each microarray experiment, many time series datasets are 
short (less than ten) and noisy. With the combined power of 
biologically related but distinct datasets, a suitable meta-
analysis strategy for short time series array data were 
designed here and implemented on four independent short 
series pertaining to heat shock in yeast. This strategy is 
composed of four steps discussed below: data selection, 
differential expression analysis in each dataset, interstudy 
analysis and further bioinformatic investigation. 
 

Firstly, an important problem in data selection is 
that whether the different datasets are in the same genetic 
response rhythm. We performed a rough investigation of 
the differentially expressed genes at each time point of each 
dataset and excluded the dataset 5 as it had a distinct 
expression rhythm as compared to other four datasets. This 
procedure was a synchronization of different datasets and 
would improve the analysis of temporal process. Although 
the four datasets were all about the same biological process, 
the differences in chip platforms or experimental designs 
would affect the results of individual studies. For example, 
the dataset 5 were generated by using an oligo array 
platform which were different from other datasets (Table 
1). Secondly, in individual dataset analysis, area bounded 
by expression profile was used to represent the gene 
response intensity to heat stress. This method is suitable for 
short time series data since it has been demonstrated that 
the methods base on cubic spline fitting for time-course 
datasets needed long time points (12, 13) and the methods 
using area representation worked better than those based on 
curve fitting (15). In fact, the spline curve fitting methods 
led to an overfit when working on the short time series 
datasets (data not shown). Furthermore, since the four 
datasets lacked in repeats, the distribution model of S 
values could not be derived from ANOVA or other well 
developed model. The null distribution of S values was 
derived from a Monte Carlo procedure, which is applicable 
in data-poor condition (15). Thirdly, the meta method 
facilitated the validation and significance analysis of the 
four heat shock datasets. The combined significance (or 
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Figure 7. Clustering analysis of a case category using combined values. Hierarchical clustering analysis was performed on the 
induced CTHS genes classified in the category “cell rescue, defence and virulence”. Annotations for clusters are shown and 
genes classified to each cluster are listed in the right columns. Genes printed in red are the most important transcription factors 
implicated in heat shock response. Color scale for combined values is shown below. 

 
meta Q value) increased with the number of datasets 
combined, suggesting that the four datasets had many 
common differentially expressed genes. The correlation 
coefficient calculation alleviated the risk resulting from the 
combination of the array data which were not significantly 
correlated and led to a precise combination of correlated 
time course data. Finally, further bioinformatic 
investigation confirmed the validity of our strategy. 
Functional categories of CTHS genes and the genetic 
response tendencies found by using combined values 
agreed with several previous studies in yeast. Moreover, 
Msn2/4 transcription factors peaked more quickly and 
strongly than Hsf1 in clustering analysis, in consistence 

with the results from promoter analysis, demonstrating the 
validity of the data combination. 
 

We reviewed the publications and found few 
suitable methods for meta-analysis of short time series 
datasets in poor condition. For example, Conesa et al. 
developed an approach named maSigPro for the analysis of 
multi-series time-course datasets (10). MaSigPro uses a 
two-step regression strategy to find genes with significant 
temporal expression alterations. Using MaSigPro to the 
four datasets we collected, 844 genes can be identified with 
significantly differential expression profiles. Then our 
CTHS genes were compared with these 844 MaSigPro-
identified genes. Although only 387 genes were 
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Figure 8. The results of promoter analysis are shown in the same manner as in Figure 7. The types of the promoter elements of 
84 induced CTHS genes (containing HSEs) classified to each cluster are listed in the right columns. Red denotes single promoter 
element types and black denotes mixed promoter element types. 

 
overlapped, most of genes implicated in the heat shock 
response were included in both MaSigPro-identified genes 
and our CTHS genes, such as HSP70 family, HSP90 family 
and some other molecular chaperones. As the most 
important transcription factor in heat stress in yeast, Hsf1 
can be identified in both gene subsets. However, Msn2 and 
Msn4 transcription factors can not reveal enough 
significance to be identified as MaSigPro-identified gene. 
Luckily, these two transcription factors were regarded as 
CTHS genes in our analysis, suggesting that our strategy 
enhanced the efficiency in identifying the CTHS genes and 
avoided neglecting important genes in short time series 
datasets. 

 
There are still some limitations in our strategy. 

The first limitation is the linear interpolation of missing 45 
min time points in dataset 2-4. The missing values ascribed 
to errors occurring in the time series experimental process 
that lead to corruption or absence can be estimated with 
several well-developed approaches, such as the continuous 
representation method (14). However, such method would 
lead to an overfit in short time series datasets. So the 
simplest technique standard linear interpolation (34) was 
used to make the time points come into line. Although the 

linear interpolation may take a risk of incorrectly 
estimating non-linear expression data, the problem is not 
prominent in our study because most of the datasets had 
similar time points. For more complicated short time series 
datasets, an alternative imputation approach needs to be 
constructed. Once an appropriate interpolative technique is 
available, our strategy can be more generally applicable. 
Secondly, the selective combination method base on a 
correlation threshold may lead to unbalanced contributions 
of different platforms to the combined values. Further 
investigation in balancing the combined values using 
uncorrelated platform is under our consideration. Finally, it 
also should be mentioned that our study focused on the 
statistical models for meta-analysis of short time series 
datasets and further experimental investigation is also 
needed to validate the findings in molecular regulatory 
systems in transient heat shock. 
 
6. SUMMARY 
 

For short time-course microarray datasets 
generated by independent groups, the limitation of data 
quality (short time points and lacking repeats) and the 
dynamic nature of experiments pose great challenges to 
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data analysis. Here we introduced a suitable and easy 
strategy in identifying sensitive genes in multi short time 
series array datasets and combining expression values to 
explore the genetic response tendencies. Additionally, the 
clustering and promoter analysis also provided insights for 
understanding the transcriptional regulatory mechanisms 
for several genes in transient heat shock of yeast cells. Up 
to now, many time series datasets in the microarray 
databases are short (less than ten) and lack in repeats, our 
study may help to shed some lights on the usage of this 
kind of datasets. 
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