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1. ABSTRACT 
 

Diabetic retinopathy is the leading cause of 
blindness and visual disability in the industrialized world. 
The mechanisms of how diabetic retinopathy develops are 
still an open question. Alterations contributing to oxidative 
and nitrosative stress, including elevated nitric oxide (NO) 
and superoxide production, overexpression of different 
isoforms of nitric oxide synthase (NOS), nitrated and 
poly(ADP-ribosy)lated proteins,  downregulation of 
antioxidative enzymes, have been implicated in the 
pathogenesis of this ocular disease. The possible roles of 
these components in the development of diabetic 
retinopathy are reviewed here, and their values as 
therapeutic targets for inhibiting or delaying the 
development of diabetic retinopathy are highlighted.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. DIABETIC RETINOPATHY 
 

Diabetic retinopathy is the most common cause 
of acquired blindness and visual disability afflicting 
adults in the industrialized world. Most persons who 
have had Type I and Type II diabetes for 20 years have 
been found to have some retinopathy (1-3).The rising 
incidence of Type II diabetes in world undoubtedly will 
lead also to an increase in the numbers of patients 
having the retinopathy and suffering its effects on vision. 

 
The retinopathy classically has been regarded 

as a disease of the retinal micovasculature, and has been 
divided into two stages: an early, nonproliferative stage, 
and a later, proliferative stage. Nonproliferative diabetic 
retinopathy currently is diagnosed opthalmoscopically 
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based on the presence of retinal vascular abnormalities, 
including retinal microaneurysms, intraretinal microvascular 
abnormalities (which include intraretinal new vessels), areas of 
capillary nonperfusion, retinal hemorrhages, cotton wool spots 
(infarctions within the nerve fiber layer), edema, dilation of 
retinal veins, and exudates. All these signs indicate regional 
failure of the retinal microvascular circulation, which 
presumably results in ischemia. Proliferative diabetic 
retinopathy is diagnosed based on the presence of new blood 
vessels on the surface of the retina. New vessels can extend 
into the vitreous cavity of the eye, and can hemorrhage into the 
vitreous, resulting in visual loss. Development of a 
fibrovascular membrane on the retinal surface also can cause 
tractional retinal detachment from the accompanying 
contractile fibrous tissue. 

 
Laser photocoagulation therapy has been 

demonstrated to inhibit severe vision loss in patients who 
already have proliferative diabetic retinopathy and have 
diabetic macular edema (4-6). The onset and progression of the 
retinopathy also can be inhibited by improved glycemic 
control on type I or type II diabetes (7-9) or by tight blood 
pressure control on type II diabetes (10). Since good glycemic 
control and tight blood pressure control can be difficult to 
maintain in many patients, however, new therapies that can 
prevent or delay the retinopathy still are needed.  
 

Recently, several laboratories have implicated 
oxidative and nitrosative stress in the development of this 
ocular disease. In this review, we focus on the possible roles of 
NO, NOS, superoxide, peroxynitrite and poly(ADP-ribose) 
polymerase (PARP) in the pathogenesis of diabetic 
retinopathy. 
 
3. NO, NOS AND DIABETIC RETINOPATHY 
 
3.1. NO and NOS in retina 

NO is known to play a major role in a variety of 
biological processes including blood pressure homeostasis, 
immune regulation, and nervous system signal transmission 
(11-14). NO is generated from L-arginine by the catalytic 
reaction of different isoforms of NOS in the presence of 
oxygen and NADPH, including neuronal NOS (nNOS), 
endothelial NOS (eNOS), and inducible NOS (iNOS).  

 
NO can be made by every retinal cell type, and it is 

an important signaling molecule that regulates 
neurotransmitters release and modulates gap junction 
conductivity in retina (15). NO is selectively activated and 
trapped in the retinal cells which made it, not being as freely 
diffusible as previously thought (15). In the retina, the NO 
produced by the constitutive NOSs, eNOS and nNOS, 
contribute to regulate normal ocular hemodynamics and cell 
viability, and to protect retinal cells against different stresses 
(see the reviews of (16, 17)). NO derived from retinal 
constitutive NOSs have been found to be neuroprotective in 
retinal preconditioning ischemia and in primary open angle 
glaucoma (18, 19). Larger amounts of NO, such as that 
generated by iNOS, however, have been implicated in 
the development of several ocular diseases, including 
glaucoma, retinal ischemia and reperfusion, light-

induced retinal degeneration, and ocular 
neovascularization (20-24). Elevated levels of NO and it 
sequelae are suggested also to have a pathogenic role in the 
development of diabetic retinopathy (17, 25-30). 
 
3.2. NO and NOS in diabetic patients with retinopathy 

An association of NO with the development of 
diabetic retinopathy has been demonstrated by several studies 
that investigated the levels of NO in serum, plasma, vitreous of 
diabetic patients. Increased serum levels of NO (estimated by 
measuring serum nitrite and nitrate (NO2- + NO3-)) and 
inflammatory cytokines (including soluble IL-2 receptor, IL-8, 
and TNF-alpha) have been found in diabetic patients with 
retinopathy compared with diabetic patients without diabetic 
retinopathy or healthy controls (31, 32). In those studies, serum 
NO levels in the patients with proliferative diabetic retinopathy 
were significantly higher than the levels in the patients with 
nonproliferative retinopathy.  Likewise, plasma NO and IL-8 
levels were higher in patients with proliferative diabetic 
retinopathy than in controls (33, 34). It is interesting that basal 
levels of plasma nitrate were increased in diabetic type II 
patients having retinopathy, but there was no difference in 
basal plasma nitrite level between the these patients and 
nondiabetic subjects (35). Plasma nitrate levels also were 
suggested positively correlated with advanced microvascular 
complications, serum lipid peroxide, and advanced glycation 
end products in these patients (35).  
 

Elevated metabolites of the L-arginine-NO pathway 
have been detected also in the vitreous of eyes from diabetic 
patients (27, 36-38). However, a study of patients having 
retinal detachment (rhegmatogenous or tractional) due to 
proliferative diabetic retinopathy observed no statistical 
significant change in nitrite levels in vitreous of the diabetic 
patients compared to nondiabetic subjects (39). Greater than 
normal levels of the specific NOS by-product, NG -hydroxy-L-
arginine, have been detected in the ocular aqueous humor of 
diabetic patients (with and without diabetic retinopathy) 
compared with that in non-diabetic controls (40).   
 

Increased iNOS immunostaining has been 
demonstrated in retinas of diabetic patients with 
nonproliferactive retinopathy, and that immunostain was 
localized on retinal Muller cells.  In contrast, there was no 
iNOS immunoreactivity in retinas from subjects without 
diabetes and any ocular diseases (25). The increased iNOS 
immunostaining was colocalized in the same area of increased 
VEGF immunostaining on retinas of diabetic patients (41). 
There are no published studies on nNOS and eNOS levels in 
the retinas from diabetes patients, but polymorphism studies 
indicated that polymorphic variability of eNOS as well as 
iNOS gene are associated with severe diabetic retinopathy in 
multiple ethnic populations (42-44).  

 
3.3. NO and NOS studies in experimentally diabetic 
animals and retinal cells incubated in diabetic-like 
concentrations of glucose 
3.3.1. NO in retinas or retinal cells incubated in 
diabetic-like conditions 

Elevated NO production (estimated by 
measurement of nitrites and nitrates) has been reported in
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Figure 1. Vascular lesions of retinopathy in mice made by 
diabetic by injection of streptozotocin.  Typical acellular 
capillary (arrow; Figure A) and pericyte ghost (arrow; 
Figure B) in retinal capillaries from mice diabetic for 10 
months are shown. (PAS and hematoxylin staining). 

 
retinas of experimentally diabetic rats (45, 46) and mice (30, 
47, 48), and experimentally galactosemic rats (a model that 
develops a diabetic-like retinopathy due to chronic hexose 
elevation) (45, 49). The elevation of retinal NO in those 
animal models was not transient, remaining elevated for at 
least 1 year (45, 48). 

 
Most retinal cells, including endothelial cells and 

Muller cells cultured in high glucose conditions (25 mM 
glucose) have been reported to generate elevated levels of NO 
compared to those cultured under normal (5 mM) glucose 
conditions (45, 50).  Importantly, inhibition of this glucose-
induced increase in NO production in these cells inhibited 
death of the same cells (50). Cultured retinal pericytes are an 
exception, because elevation of glucose in the media resulted 
in a decrease of NO production (51). Treatment of the 
pericytes cultured in high glucose with troglitazone, a potent 
agonist of peroxisome proliferator activated receptor-gamma, 
reversed glucose-induced inhibition of NO production.  
 

Evidence that elevated NO level might cause retinal 
neurodegeneration was demonstrated by intravitreal injection 
of a NO-releasing compound (NOC 12) in rats. NOC 12 
resulted in a decrease of cell density in the ganglion cell layer 
and reduction of retinal thickness of the rat retina (52).  Both of 
these findings are similar to the neurodegeneration reported in 
retinas of diabetic rats (53). Since the NO level in the retinas 
after NOC 12 injection was not reported in this study, a direct 
correlation of NO after NOC 12 injection to the level of NO 
due to diabetes was not established.  

 
Elevated NO level seems also to cause breakdown 

of the retinal blood barrier, a vascular lesion associated with 
edema in diabetic retinopathy. NG-monomethyl-L-arginine (L-
NMMA), a general NOS inhibitor, and aminoguanidine, a 
nonselective iNOS inhibitor, were demonstrated to block the 
VEGF-induced and diabetes-induced vascular 
hyperpermeability in retina (12, 54, 55). 
 
3.3.2. NOSs in retinas or retinal cells in diabetic-like 
conditions 

The activity of NOS (assessed by the production 
of l-[(3)H]-citrulline) was found to be enhanced in retinas 
of diabetic rats compared to retinas from controls (56, 57 ). 
The L-arginine transport in retinas from streptozotocin-

induced diabetic rats had a carrier of lower affinity and 
higher capacity than in retinas from control rats, which was 
correlated with the increased NOS activity and depletion of 
the intracellular pool of L-arginine (56). In diabetic Goto-
Kakizaki rats (a model of Type II diabetes), elevated total 
NOS activity as well as elevated iNOS protein level were 
associated with elevated the blood retinal barrier 
permeability, compared to those in normal rats (57).  

 
Increased iNOS expression in retinas of Type I or 

Type II diabetic rats has been found in several studies (26, 
50, 57-59). Whether or not iNOS is present in vascular cells 
of the retina in diabetes is controversial.  iNOS has been 
detected in retinal capillary endothelial cells of BBZ/WOR 
rats (an Type II diabetic model) and experimentally 
galactosemic rats (26, 60), whereas it has not been detected 
in the retinal vasculature of streptozotocin-induced diabetic 
rats (46).  In vitro, elevated concentrations of glucose 
induced iNOS expression in cultured Muller cells (a 
nonvascular cells), but not in cultured endothelial cells (50). 
In contrast, high glucose has been reported to decrease 
iNOS expression in cultured retinal pericytes, another type 
of capillary cells (51).  

 
Beneficial effects of iNOS inhibitors on retinas of 

diabetic animals or retinal cells incubated in elevated 
concentrations of glucose have been reported in a number 
of studies (46, 49, 61-63). Aminoguanidine inhibited 
diabetes-induced increases in PKC activity, oxidative stress 
and NO production in retinas of rats diabetic or 
galactosemic for 2 months (46, 49). Subnormal responses 
of the retinal vasculature to changes in oxygen tension in 
diabetic rats and mice have been inhibited in iNOS 
deficient mice or using an iNOS inhibitor, L-NIL (62, 63). 
iNOS may contribute to high glucose induced retinal 
Muller cell death in vitro, since L-NIL inhibited the death 
of retinal Muller cells cultured in high glucose (50).  

 
Importantly, aminoguanidine also has been 

shown to inhibit the diabetes-induced degeneration of 
retinal capillaries in multiple experimental diabetic animal 
species, including diabetic dogs (64), rats (65-67), and mice 
(Kern, unpublished results). Acellular (degenerate) 
capillaries and pericyte “ghosts” are two histological 
markers of early lesions of diabetic retinopathy (see 
example in Figure 1). Since aminoguanidine might also 
inhibit dicarbonyl-mediated cross-linking and protein 
modification (68, 69), and inhibit eNOS under some 
circumstances (70), iNOS deficient mice were used to 
determine whether or not inhibition of iNOS was the 
critical step responsible for the aforementioned inhibition 
of retinopathy. Diabetic mice deficient in iNOS developed 
significantly less diabetes-induced capillary degeneration 
(Figure 2A) and retinal thinning than that found in wildtype 
diabetic mice, while having no effect on diabetes-induced 
abnormalities in the function of retinal neurons 
(demonstrated by electroretinogram) (30).Thus, iNOS 
seems to play critical role in the development, at least the 
vascular lesions, of diabetic retinopathy. Consistent with 
this, iNOS, but not eNOS, was found to be the source of 
NO responsible for peroxynitrite and nitrotyrosine 
formation in retina of the galactose-fed model of diabetic 



Oxidative and nitrosative stress in diabetic retinopathy 

3977 

retinopathy by using mice deficient in iNOS and eNOS 
(60). 

 
eNOS also has been found to be elevated in the 

retinas of diabetic animals (30, 71, 72). As a result of its 
vasodilatory actions, increased eNOS expression generally 
is considered to be beneficial. However, under certain 
pathophysiological conditions, eNOS itself can be a source 
of superoxide. eNOS uncoupling was shown in a variety of 
experimental and clinical vascular disease states, especially 

in diabetes. A highly specific VEGF-neutralizing Flt-Fc 
construct [VEGF Trap A(40)] was reported to suppress 
diabetes-induced leukocyte adhesion in retinal vasculature 
by inhibiting the expression of eNOS, a downstream 
mediator of VEGF activity (71). The diabetes-induced 
increase in expression of eNOS did not occur in retinas of 
iNOS-deficient mice (30), suggesting that the levels of 
iNOS or NO might directly or indirectly regulate 
expression of eNOS in the retina. Since diabetic iNOS-
deficient mice do not develop the early vascular lesions of 
retinopathy, it is possible that the observed benefits form 
inhibiting iNOS on the development of retinopathy occur in 
part via normalization of eNOS level. Investigation of the 
role of eNOS in development of the retinopathy remains 
difficult because of confounding by other important actions 
regulated by this isoforms of NOS (e.g., blood pressure 
regulation). 
 

Conclusions regarding nNOS levels in retinas of 
diabetic animals are contradictory. nNOS mRNA level and 
protein level have been reported to be elevated 2 weeks 
after induction of diabetes in rats (73), and Park et al. 
reported that nNOS protein level was increased in the 
retinas of rats after 12 weeks and 24 weeks of diabetes, 
specifically in bipolar cells (74). On the other hand, Goto et 
al. observed that diabetes disturbed the function of the 
nNOS-positive amacrine cells and reduced NO production 
via nNOS (75). Decreased retinal nNOS-containing 
neurons (by NADPH-diaphorase immunostaining) were 
found as early as one week after onset of diabetes, and 
remained decreased up to 32 weeks of diabetes. Inhibitors 
of advanced glycation, but not of NOSs or of institution of 
good glycemic control by insulin, inhibited the decrease in 
the numbers of nNOS-containing neurons (76).   
 
3.3.3. Interaction between NO and COX-2 

NO and cyclooxgenase-2 (COX-2; an inducible 
enzyme that catalyze arachidonic acids to prostaglandin) 
pathways have been identified to interact.  Inhibition of 
NOS or iNOS (by L-NAME and L-NIL, respectively) in 
retinal Muller cells incubated in high glucose inhibited the 
increased production of NO and expression of iNOS as 
expected, but also inhibited the increased production of 
prostaglandin E2 (PGE2) and expression of COX-2. In 
contrast, inhibition of COX-2 by NS-398 was found to only 
block PGE2 production but without any effect on the levels 
of NO or iNOS (50). Consistent with the in vitro result, less 
PGF2 generation was found in retinas from diabetic iNOS 
deficient mice when compared to that in retinas from 
diabetic wildtype mice (30). Tropical application of a COX 
inhibitor, Nepafenac, via eyedrops inhibited diabetes-
induced increases vascular lesions and PGE2, superoxide 

and COX-2 production, but not NO production (28). All 
these studies suggest that nitric oxide regulates COX-2 
activity in the retina, and that inhibition of either the NO or 
COX pathways are targets to inhibit development of 
diabetic retinopathy. 
 
4. OXIDATIVE STRESS, SUPEROXIDE AND 
DIABETIC RETINOPATHY 
 
4.1. Oxidative stress 

Retina is extremely rich in polyunsaturated lipid 
membranes, making it especially sensitive to oxygen and/or 
nitrogen activated species and lipid peroxidation (77, 78). 
Although low concentration of reactive oxygen species 
(ROS) might serve as intracellular signaling molecules to 
induce repair mechanisms against tissue injury, large 
amounts of ROS are considered toxic products that can 
cause cell death (79-81). A complex antioxidant defense 
system, including superoxide dismutase (SOD), catalase, 
glutathione peroxidase, glutathione reductase, and glucose-
6-phosphate dehydrogenase, helps maintain the 
intracellular concentration of glutathione and NADPH 
necessary for optimal function of the cellular antioxidant 
defense mechanism (80, 82, 83). Downregulation of the 
defense system may also break the balance in the redox 
status and cause oxidative stress.  
 
4.2. Oxidative stress markers in diabetic patients with 
retinopathy 

Several oxidative stress markers have been 
investigated in the blood cells, serum, plasma and vitreous 
of diabetic patients.  Abu el-Asrar et al observed that 
superoxide anion production by polymorphonuclear 
leukocytes (PMNs) from diabetic patients was significantly 
higher than that of nondiabetic controls, but released 
significantly lower levels of superoxide compared to 
controls in response to phorbol myristate acetate 
stimulation (84). The same authors also found that 
incubation of normal PMNs with serum from diabetic 
patients resulted in significantly higher levels of superoxide 
than that incubated with serum from nondiabetic controls, 
and significantly more superoxide was produced by PMNs 
incubated with serum from patients with retinopathy than 
retinopathy-free patients, suggesting some factors in 
diabetic serum stimulated a significant generation of 
superoxide anion in normal PMNs and related to the 
severity of retinopathy (85). Decreased activity of SOD 
was also found in the anterior chamber and vitreous in 
diabetic patients compared to that of nondiabetic controls, 
implicating that the activity of SOD may be involved in 
cataract development and diabetic retinopathy development 
(86).  
 
4.3. Oxidative stress in retinas of experimental diabetic 
animals and retinal cells incubated in diabetic-like 
concentrations of glucose 

NADH oxidase is believed to be a major source 
of superoxide in the vascular endothelium (87). The 
immunostaining of NADH oxidase on the blood vessels 
was significantly higher than normal in new onset (2-6 days) 
and chronic (4-18 months) diabetic rats, and in galactose 
fed mice (26, 60). In contrast, elevated production of 
superoxide in retinas of diabetic rats or retinal endothelial
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Figure 2. Inhibition of diabetes-induced acellular and 
degenerate capillaries by iNOS deficiency (A; reproduced 
with permission from Diabetologia), overexpression of 
MnSOD (B; reproduced with permission from IOVS), and 
inhibition of PARP inhibitor (C; reproduced with 
permission from Diabetes).  (WT, wildtype; N, nondiabetic 
mice/rats; SD, diabetic mice/rats; iNOS-/-, iNOS deficient 
mice; SOD Tg, MnSOD transgenic mice; SD+PJ-34, PJ-34 
treated diabetic rats; * p < 0.05 compared to (wildtype) 
nondiabetic mice/rats; ** p < 0.05 compared to (wildtype) 
diabetic mice/rats) 

 
and Muller cells cultured in diabetic-like concentrations of 
glucose was attributed largely to mitochondria (88). 

Moreover, addition of SOD to the media of these cells 
inhibited the apoptotic death caused by elevated glucose 
(88). Treatment of diabetic rats with aminoguanidine, 
aspirin, or vitamin E, (three drugs known to inhibit the 
development of diabetic retinopathy in experimental 
diabetic animals (59, 64-66, 89, 90)) inhibited the 
hyperglycemia-induced increase in superoxide (88), raising 
the possibility that these therapies inhibit retinopathy by 
inhibiting a hyperglycemia-induced increase in superoxide 
production. 8-oxo, 2’- deoxyguanosine, a marker of 
oxidative DNA damage (91), was increased more than 
twofold in retinas (92) and other tissues (93) of diabetic rats. 
NF-kappa B, a transcription factor known to be sensitive to 
oxidative stress, became activated in endothelial cells and 
pericytes cultured in high glucose, and activated in the 
retinas of diabetic animals (48, 59, 94-96). The beneficial 
effects of antioxidants such as vitamin E, nicanartine, lipoic 
acid on vascular lesions of diabetic retinopathy in diabetic 
animals (45, 97, 98) confirm that oxidative stress is an 
important contributor to the development of diabetic 
retinopathy. 
 

Increased superoxide in the retinas of diabetic 
rats may come also from impairment of antioxidant defense 
system. Decreased the activities of SOD, glutathione 
reductase, glutathione peroxidase and catalase were found 
in the retinas of 2 months duration of diabetes or 
experimental galactosemia rats (99, 100). To address 
whether SOD plays a critical role in the development of 
diabetic retinopathy, mice overexpressing MnSOD were 
made diabetic. Overexpression of MnSOD in these mice 
inhibited the diabetes-induced increase in generation of 
superoxide from retinal mitochondria, normalized diabetes-
induced increase in mitochondria membrane permeability, 
and restored the activity of electron transport complex III in 
retina (101).  Overexpression of MnSOD also prevented 
diabetes-induced decreases in retinal GSH and increases in 
8-OHdG (102), diabetes-induced increase in degeneration 
of retinal capillaries (101) (Figure 2B). Brownlee and 
collaborators have suggested that hyperglycemia-induced 
overproduction of superoxide is the single unifying link to 
diabetic complications (103, 104). 

 
Multiple other biochemical pathways associated 

with hyperglycemia also can increase the production of 
ROS. These include glucose auto-oxidation, increased 
polyol pathway, activation of PKC, increased hexosamine 
pathway flux, increased AGEs formation, stimulation of 
eicosanoid metabolism, and altered mitochondrial function 
(95, 105, 106). Elevated superoxide level in diabetes was 
found to activate H-Ras, a small molecular weight G-
protein and its downstream signaling including Raf-1 and 
p-38 MAP kinase in retina (107, 108).  ROS also can 
induce monocyte chemoattractant protein-1 expression in 
endothelial cells by activating p-38 MAP kinase (109). 
 
5. PEROXYNITRITE AND DIABETIC 
RETINOPATHY 
 

Peroxynitrite is a highly reactive oxidant formed 
by the combination of nitric oxide and superoxide. 
Peroxynitrite can initiate a variety of pathological processes, 
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including inhibition of key metabolic enzymes by nitration 
of protein tyrosine residues (110, 111), peroxidation of 
lipids (112, 113), reduction of cellular antioxidant defenses 
by oxidation of thiol pools (114, 115), and induction of 
DNA damage (116, 117) and apoptosis (118, 119). 

 
Increased formation of nitrotyrosine (a measure 

of peroxynitrite production) in the retina was observed in 
several studies in diabetic mice and rats, and in retinal 
endothelial and Muller cells cultured in diabetic-like 
conditions of glucose (26, 30, 46, 120-123). Increased 
immunostaining of nitrotyrosine was observed on retinal 
blood vessels from diabetic animals (26, 46,122). Increased 
nitrotryrosine levels were also observed in plasma, platelets, 
skin of diabetic patients (124-129). Interestingly, some of 
the therapies having beneficial effects on the development 
of diabetic retinopathy in animal models, such as 
aminoguanidine and aldose reductase inhibitors, also 
inhibited the diabetes-induced increase in generation of 
nitrotyrosine in retina (46, 130, 131), demonstrating that 
formation of nitrotyrosine is associated with the 
development of diabetic retinopathy. Consistent with this, 
diabetic iNOS deficient mice developed less vascular 
lesions in diabetic retinopathy also had less nitrotryrosine 
formation in retina than in wildtype diabetic controls (30). 
In addition, iNOS deficient diabetic mice had less 
leukostasis than wildtype controls (30), consistent with 
evidence that FP15, a peroxynitrite decomposition catalyst, 
inhibited leukocyte entrapment in the retinal 
microcirculation of diabetic rats (132).  Normalization of 
glycemia after several months of hyperglycemia in diabetic 
rats failed to show any beneficial effects on nitrotyrosine 
levels (122, 133), indicating that this nitration is a long-
lived modification.  

 
Increased generation of peroxynitrite in diabetes 

may also alter the expression of VEGF in the retina. VEGF 
is a pro-angiogenic factor that is a critical player in several 
stages of the retinopathy. Peroxynitrite caused activation 
and nuclear translocation of STAT3 (a transcription factor 
that regulates VEGF expression) in endothelial cells (134).  
Peroxynitrite mediated VEGF's angiogenic signal and 
function via a nitration-independent, but oxidation-
mediated tyrosine phosphorylation mechanism in 
endothelial cells (135). Several proteins are reported to be 
nitrated in retinas of diabetic animals (111, 136), including 
phosphatidylinositol (PI)-3-kinase. Tyrosine nitration on 
the p85 subunit of PI 3-kinase blocked the activity of the 
kinase and Akt kinase, abnormalities which might 
contribute to endothelial cell death in diabetic retinopathy 
(136).  
 
6. PARP AND DIABETIC RETINOPATHY 
 

PARP is a nuclear enzyme that is involved in the 
cellular response to DNA injury, such as that from 
oxidative stress or nitrative stress (137, 138). Activation of 
PARP has been demonstrated in the skin microvessels of 
type 2 diabetic patients (126), as well as several other 
organs in diabetic animals (96, 131, 139-145). As discussed 
above, the oxidative and nitrosative stress are greater in 
retinas of diabetic animals than those in retinas from 

normal animals (46, 146, 147). Thus, these abnormalities 
might cause DNA breaks and lead to PARP activation in 
retinas of diabetic animals. Activation of PARP (based on 
increased poly(ADP-ribosylation of retinal proteins) in 
retinas of diabetic rats has been demonstrated by western 
blots as well as immunohistochemistry (96, 131, 141). 
Poly(ADP-ribose)ylated proteins were found in the 
ganglion cell layer, inner nuclear layer, outer nuclear layer 
of the retina as well as endothelial cells and pericytes of 
retinas from diabetic rats (96).  In wildtype C57Bl/6J mice, 
Zheng et al likewise demonstrated a significant increase in 
PARP activity in the retina of diabetic aniamls compared to 
nondiabetic controls (30), whereas Obrosova et al. were 
unable to find elevated PARP activity in the same stain of 
mice (148).  

 
PARP inhibitors have been used on diabetic rats 

to investigate the role of PARP activity in the development 
of diabetic retinopathy (96, 141). Inhibition of PARP 
activity by a specific PARP inhibitor, PJ34, inhibited the 
diabetes-induced increase in the number of TUNEL-
positive capillary cells (both endothelial cells and 
pericytes), and inhibited the accumulation of early vascular 
lesions of diabetic retinopathy such as pericyte ghosts and 
degenerate (acellular) capillaries (96) (Figure 2C). Two 
other structural unrelated PARP inhibitors, 3-aminobenzamide 
and 1,5 isoquinolinediol, inhibited the diabetes-induced 
increase in retinal VEGF protein (141). In the same study, 
VEGF immunoreactivity was co-localized with PARP 
activation in the ganglion cell layer and inner nuclear layer in 
retinas of diabetic rats.  

 
The PARP inhibitor, PJ-34, was also found to 

inhibit diabetes-induced leukostasis in the retina (96, 132). 
This inhibition of leukocyte adherence to the vessel wall 
occurred in part through inhibiting the diabetes-induced 
induction of ICAM-1 on retinal capillaries (96). ICAM-1 is 
known to play a critical role in the development of diabetic 
retinopathy, since mice deficient in ICAM-1 or its receptor, 
CD18, were protected from the development of diabetic-like 
retinopathy and increased vascular permeability (149). Thus, 
inhibition of PARP activity might inhibit degeneration of 
retinal capillaries in diabetes by inhibiting leukocyte-mediated 
occlusion of retinal vessels or by preventing release of toxic 
factors from leukocytes.   

 
PARP activation commonly has been shown to 

result in subnormal levels of nucleotides, but the studies on 
levels of nucleotides in retinas of diabetic animal are less clear. 
Obrosova et al. demonstrated that 3-aminobenzamide and 1,5 
isoquinolinediol restored diabetes-induced reduction of retinal 
NAD+ concentration in diabetic rats(141), but they found no 
alterations of mitochondrial or cytoplamic NAD+/NADH in 
retinas of diabetic mice (148).  In contrast, Diederen et al did 
not detect any differences in total NAD+, NADH or in the ratio 
of NAD+ to NADH in retinas between nondiabetic and 
diabetic rats (150). In vitro, neither retinal endothelial cells nor 
Muller cells showed NAD+ depletion after 5 days incubated 
with 25 mM glucose (Zheng & Kern, unpublished data).  

 
The beneficial effect of PARP inhibitors on 

diabetic retinopathy also might occur via regulation of NF-
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Figure 3. Postulated role of the contributions of oxidative stress and nitrosative stress to the development of diabetic retinopathy. 
(O2

-, superoxide; ROS, reactive oxygen species; ONOO-, peroxynitrite).  Solid lines have been experimentally demonstrated, 
dotted lines refer to unproven possibilities. 

 
kappa B and transcription of inflammatory genes. PJ-34 
inhibited hyperglycemia-induced NF-kappa B activation in 
cultured retinal endothelial cells and inhibited the diabetes-
induced induction of inflammatory proteins such as ICAM-
1 and iNOS in retinas of diabetic rats ((96) and Zheng & 
Kern, unpublished data). Consistent with this, inhibition of 
transcription coactivator p300 inhibited PARP expression, 
NF-kappa B activation, and fibronectin expression in 
endothelial cells incubated in elevated levels of glucose 
(151). This is important because inhibition of fibronectin 
expression using antisense oligonucleotides inhibited 
vascular degeneration as well as basement membrane 
thickening in galactose-fed rats (152).  

 
What activates PARP in diabetic retinopathy is 

still an open question. So far, there is no strong data 
demonstrating overt DNA damage in retinas of diabetic 
animals.  However, the TUNEL technique (which is based 
on labeling of DNA breaks in nuclei) has identified a small 
number of vascular and neuronal cells in retinas of diabetic 
rats that likely do have at least some DNA breaks. In vitro, 
Du et al demonstrated that overexpression uncoupling 
protein 1 or MnSOD in bovine aortic endothelial cells 
incubated in elevated concentrations of glucose blocked 
DNA breaks and the activation of PARP (153), suggesting 
that oxidative stress and resulting DNA damage might 
cause PARP activation. It is known that there are 
differences between macrovascular cells and microvascular 

cells (154-157, 158), so whether or not these findings apply 
to causes of PARP activation in the retinas of diabetic 
animals is still unclear. In contrast to the aforementioned 
hypothesis that mitochondrial-generated superoxide causes 
PARP activation (153), PARP inhibitors (PJ-34 and INO-
1001) have been found to inhibit the diabetes-induced 
increase ROS production in kidney of db/db mice (142).  
Thus, it is not yet clear whether ROS is upstream or 
downstream of PARP activation in the retina of diabetes.  
In addition, diabetes-induced PARP activation was not 
completely inhibited in retinas of diabetic iNOS deficient 
mice (30), suggesting PARP activation occurs at least to 
some extent independent of nitrative stress in retinas of 
diabetic animals.  
 
 
7. PERSPECTIVE 
 

Taken together, the evidence suggests that 
oxidative stress and nitrosative stress play crucial roles in 
the diabetes-induced degeneration of retinal capillaries in 
diabetes, at least in part by activation of PARP (Figure 3).  
This capillary degeneration and other related lesions 
develop during the early or “background” stages of the 
retinopathy, but are believed to play an important role in 
the progression to the clinically significant, neovascular 
stage of the retinopathy.  Inhibition of reactive oxygen and 
nitrogen species or inhibition of PARP and other 
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downstream pathways are promising therapeutic targets to 
inhibit the development of diabetic retinopathy.  
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