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1. ABSTRACT 
 

The subset of CD4+ T lymphocytes that 
coexpress high levels of the interleukin (IL)-2 α receptor 
and the transcription factor Foxp3 (CD4+CD25highFoxp3+ 
cells), commonly called regulatory T cells (Tregs), have a 
key role in the mechanisms of peripheral immune 
tolerance. Tregs modulate innate and adaptive immune 
responses in vitro and in vivo by suppressing the 
proliferation and cytokine production in different subsets of 
immune cells. Their key role in autoimmunity is suggested 
by the finding that reconstitution of normal numbers and/or 
function of Tregs in autoimmune animals associates with a 
delay of disease development and progression, whereas the 
elimination of Tregs can anticipate or precipitate disease. 
Since naturally occurring (“natural”) Tregs represent only a 
small fraction of peripheral blood cells, the investigations 
for possible therapeutic use of Tregs in autoimmunity has 
largely focused on the use of “adaptive” Tregs, which can 
be induced through several different modalities. This 
review discusses the role of natural Tregs in the 
suppression of autoimmune responses and the relevance of 
these cells for possible therapeutic applications in 
autoimmunity. 

 
 
2. INTRODUCTION 

 
Two arms of the immune system act in concert to 

fight the challenges that come from the environment (i.e. 
pathogens) and/or from the host itself (i.e. transformed 
cells). One arm is the innate immunity - a first-line, 
primordial defense against bacterial or viral pathogens. The 
other arm is the adaptive immunity, which provides a 
somehow delayed, yet more efficient and specific response. 
While the innate immune system lacks a fine specificity in 
lieu of a broader recognition of common features shared by 
many pathogens, the adaptive immune system typically 
employs cells that have a defined antigenic specificity. 
Because of the vast number of epitopes that can be 
encountered – and their possible structural similarity with 
self antigens - the adaptive immune system carries an 
intrinsic risk for generating autoreactive cells potentially 
capable to trigger autoimmune responses (1-2). To limit 
this risk, one mechanism to keep self-reactive lymphocytes 
under control is immune tolerance, which helps to avert 
autoimmunity by preventing and/or shifting potentially 
deleterious autoreactive immune response towards non-
injurious immune responses. Immune tolerance operates at 
a central level (i.e. thymus, bone marrow) and in the
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Figure 1. Schematic representation of the differentiation of 
naïve CD4 T cells towards the Th1, Th2, Th17 and Tregs 
phenotypes. 

 
periphery, through mechanisms that include the 

deletion of potentially pathogenic clones, the 
hyporesponsiveness to antigenic stimulation (anergy), an 
ignorance for the antigen, and the suppression of immune 
responses by regulatory cells.  

 
Regulatory/suppressor cells are phenotypically 

heterogeneous and include subsets of CD4+ T cells (see 
below) but also natural killer (NK) and NK T (NKT) 
cells, CD4-CD8- T cells, CD8 cells (CD8+CD28-, 
CD8+CD122+, CD8+CD25+ and Qa-1-restricted CD8+ T 
cells), dendritic cells (DC), B cells, and γδ T cells (3-
10). The mechanism of action of each of these 
immunoregulatory cell populations may be specific for a 
subset or common to other subsets, i.e. the secretion of 
transforming growth factor (TGF)-β and interleukin 
(IL)-10 can have a central role in the suppressive 
activity of Tr1 cells (see below) and NKT cells (5), 
while natural Tregs need a cell-to-cell contact to exert 
their suppression on target cells (see below). Aspects 
such as the interplay between Tregs and DC have been 
reviewed elsewhere (11). 

 
In general, Tregs can be important in suppressing 

autoimmune reactivity but can be deleterious in tumor 
immune surveillance because of their capacity to suppress 
the activation, proliferation, and effector function of tumor-

infiltrating T-cells (12-13). Analogous considerations on 
possible undesired effects of the Tregs can be made in 
regard to the capacity of these cells to suppress the effector 
function of immune cells reactive to pathogens in infection 
(as considered at the end of the chapter). 

 
3. REGULATORY T CELLS (TREGS) 

 
As schematically shown in Figure 1, naïve 

CD4+ T cells can differentiate towards T helper (Th)1, 
Th2, Th17, and regulatory T cells (Tregs), both in vitro 
and in vivo, depending on the type of stimulation, 
antigen concentration, co-stimulation, and cytokine 
milieu where the immune response takes place (14-15). 
In general, the presence of interleukin (IL)-12 skews the 
CD4+ T cells towards a Th1 phenotype, IL-4 towards 
Th2, TGF-β (+/- IL-2) towards Tregs, and IL-6 and 
TGF-β towards Th17 - with possible mutually exclusive 
skewing between Tregs and Th17 phenotypes (16). The 
committed cells typically express specific transcription 
factors: T-bet for Th1, GATA-3 for Th2, Foxp3 for 
Tregs, and RORγt for Th17 cells (17-22). 

 
The best characterized subsets of CD4+ T cells 

with immune suppressive capacity described so far are the 
T-regulatory 1 (Tr1) cells (23), the Th3 cells (24), and the 
CD4+CD25+ T cells (25-26).  

 
Tr1 cells are IL-10 producing CD4+ regulatory T 

cells induced from CD4+ T cells by repetitive antigenic 
stimulation in the presence of IL-10 (23) or immature DC 
(27). Tr1 cells produce high levels of IL-10 and can be 
generated by chronic activation in the presence of IL-10, 
both in humans and in mice (23, 28).  

 
Th3 regulatory T cells are TGF-β-producing 

CD4+ T cells that suppress CD4+ T cells in an antigen-
nonspecific manner (24). These cells secrete TGF-β, IL-4 
and IL-10 (29), and can be induced in vitro after exposure 
of CD4+CD25- T cells to TGF-β or in vivo following oral 
or intravenous administration of antigen (30). The 
suppressive effect of ex vivo-induced Th3 cells appears 
mediated by suppressive cytokines and is thus, at least in 
part, cell-contact independent (30-31).  

 
Finally, the most widely studied and best 

characterized regulatory CD4+ T cells are the CD4+CD25+ 
T cells. In organ-specific autoimmunity, a deficiency of 
Tregs typically associates with development of organ 
damage (32-34), and a restoration of the number and/or 
function of Tregs confers protection from autoimmunity 
(33-37). In systemic autoimmunity, Treg-depleted 
animals typically develop multi-organ autoimmune 
disease (38), while supplementation of syngeneic Tregs 
or adoptive transfer of in vitro expanded Tregs 
abrogates the development of autoimmune disease 
manifestations (39).  

 
3.1. Types of Tregs 

CD4+ regulatory T cells can be schematically 
divided into two groups: naturally occurring (“natural”) 
Tregs, and induced (“adaptive”) Tregs. 
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3.1.1. Natural Tregs 
Natural Tregs arise from the thymus during 

ontogeny and, in the mouse, they seed the periphery 
around day 3 of neonatal life (40-41, 17). The number of 
natural Tregs circulating in the peripheral blood of adult 
mice remains virtually constant throughout life, 
comprising 5–10% of the CD4+ cells. The fraction of 
Tregs is smaller in humans, where they represent the 1% 
to 2% of total CD4+ T cells, e.g. the ones with highest 
CD25 expression (CD25high) (42).  

 
Natural Tregs constitutively express CD4, 

CD25 and Foxp3, and suppress the proliferation and 
cytokine production of target cells in vitro and in vivo. 
These cells contribute to avert autoimmune disease by 
suppressing activated immune cells through cell contact-
dependent and cytokine-independent mechanisms (43-
45). The cell-to-cell contact suppressive mechanisms used by 
Tregs include cytotoxic functions involving the synthesis of 
perforin, CD18, and granzyme A in a Fas-independent manner 
(46). The targets of the cytotoxic activity of the Tregs include 
CD4+CD25- T cells, CD8+ T cells, monocytes, antigen-
presenting B cells, and DC (46-47, 25-26). A role for 
lymphocyte activation gene 3 (LAG-3) in the cell-to-cell 
mediated suppression of natural Tregs has been suggested by 
the blockade of the suppressive function of these cells using 
anti-LAG-3 antibody in vitro and in vivo, and by the finding 
that transduction of LAG-3 into CD4+CD25− T cells conveys a 
suppressive function to these cells (48). Also, natural Tregs 
may require the ligation of B7 molecules on target T cells to 
mediate suppression of conventional T cells, since target cells 
deficient in B7 molecules (CD80 and, to a lesser degree, 
CD86) are resistant to Treg suppression (49). 

 
Although anergic in vitro, natural Tregs can be 

expanded ex vivo and retain their functional suppressive 
activity when stimulated with anti-CD3 and IL-2 or 
when cultured with high ratios of antigen-loaded DC 
(50-51). Another mean to expand natural Tregs and 
increase their survival is through the combination of 
anti-CD3 and anti-CD28 antibodies (52).  

 
Interestingly, CD4+CD25+ Tregs can promote 

infectious tolerance - a phenomenon by which they can 
induce conventional CD4+ T cells to also become 
suppressor cells (53). The capacity of natural Tregs to 
amplify immune regulatory responses is shared with 
adaptive Tregs induced ex vivo using TGF-β and IL-2, 
as these cells can also “infectiously” tolerize 
CD4+CD25− cells to become suppressor cells (54). 

 
3.1.2. Adaptive Tregs 

Adaptive Tregs can be generated in cultures or in 
the periphery. For example, CD4+CD25+Foxp3+ Tregs can 
be induced in vitro from CD4+CD25- T cells using TGF-β 
(54-55), and adoptively transferred polyclonal CD4+CD25-

Foxp3- T cells can differentiate into CD4+CD25+Foxp3+ T 
cells in recipient mice following homeostatic proliferation 
(56).  

 
Additionally, CD4+ cells can become IL-10-

producing Tr1 cells when repeatedly stimulated with IL-10 

or with immature DC (23), vitamin D3 and dexamethasone 
(57). Adaptive Tregs may have similar phenotype and 
function as natural Tregs since both types of lymphocytes 
can suppress immunological responses, yet they may differ 
in the mechanisms of action because natural Tregs can 
require direct cell–cell interaction for suppression (as 
shown in transwell experiments where supernatants from 
activated Tregs do not display suppressive properties) (49), 
whereas soluble factors (e.g. TGF-β) may be necessary for 
optimal action and maintenance of adaptive Tregs (54). 

 
4. PHENOTYPE OF TREGS  
 

Since CD25 – the α receptor for IL-2 - may not be 
unique to Tregs but is also expressed by conventional activated 
CD4+ T cells, additional surface marker have been searched for 
reliable identification of suppressor Tregs. Recently, the α 
chain of the IL-7 receptor (CD127) has been proposed for a 
rapid phenotypic identification of the Tregs. This marker is 
present at low levels on the surface of Tregs (CD127low) and at 
high levels on activated effector T cells (CD127high) (58-59).  

 
Other molecules that contribute to the phenotype of 

the CD4+CD25+ Tregs and that cannot yet be considered 
unique markers because of some overlap of expression with 
effector CD4 T cells include the glucocorticoid-induced tumor 
necrosis factor receptor (GITR), the cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4 or CD152 – high intracellularly, 
low on cell surface), CD62Lhigh, CD45RBlow, CD103 (integrin 
αEβ7), neuropilin-1, membrane-bound TGF-β (in form of 
latency-associated protein, LAP), CD5, CD27, CD38, CD39, 
CD69, CD73, CD122, OX-40 (CD134), CCR4, CCR7, CCR8, 
TNF-R2, LAG-3 and, last but not least, the intracellular 
forkhead/winged helix transcription factor Foxp3 (60-63), 
which is currently considered the most reliable marker to 
monitor functional Tregs (64).  

 
The important role of Foxp3 in the activity of 

Tregs and in autoimmunity is best exemplified by the 
observation that genetic deficiency of Foxp3+ cells in 
scurfy mice (17) or in humans affected by the IPEX 
syndrome (an X-linked syndrome characterized by immune 
dysregulation, polyendocrinopathy, enteropathy) (65) 
causes lymphoproliferative, rapidly lethal autoimmune 
disease.  

 
5. MECHANISMS OF ACTION OF TREGS 

 
Tregs may not require antigen specificity in 

their mechanisms of suppression, although the activation 
of these cells seems to occur preferentially via the 
engagement of the T-cell receptors (TCR) on these cells 
(69). Like conventional T cells, Tregs are selected with 
different affinity/avidity for the TCR and are enriched in 
self-reactive cells, as suggested by adoptive transfer 
studies (66-70). Overall, Tregs can be activated by self-
antigens and non-self-antigens and may use or not 
antigen specificity for suppression in vitro and in vivo 
(71-75, 26). 

 
Regarding IL-2, many studies have shown that 

this cytokine is important for the development, peripheral 
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survival, and suppressive function of Tregs through events 
that may not be linked to a modulated expression of Foxp3 
(76). IL-2 produced at sites of inflammation could 
contribute to drive Treg suppression (77), and peripheral 
survival and expansion of Tregs could depend on the 
presence of IL-2 (78).  

 
Notably, mice deficient in IL-2, IL-2R, or IL-

2Rβ have reduced numbers of natural Tregs and die from a 
lymphoproliferative autoimmune syndrome (79) despite the 
fact that IL-2–/– and IL-2R–/– Tregs are functional and can 
suppress T-cell proliferation in vitro (80). These 
observations suggest that IL-2 can be required to sustain 
in vivo the homeostasis of natural Tregs (78) - possibly 
together with other signals for peripheral T cell survival 
including the encounter with MHC/self peptides (81), 
cytokines, and co-stimulatory molecules (82-84). 
Moreover, it has been shown that thymic generation of 
Tregs requires an intact IL-2/IL-2R pathway (85-86), 
yet the presence of a thymus is not an absolute 
requirement for the generation of Tregs and these cells 
can be generated in the periphery and/or from 
CD4+CD25- T cells (87-88). 

 
5.1. In vitro suppression 

Activated Tregs suppress target cells in a cell-
contact-dependent, cytokine-independent mechanism (89). 
CD80 and CD86 ligands on T cells might bind to CTLA-4 
on the Tregs during suppression, and this might be a reason 
why cell contact is necessary. Other molecules influencing 
the susceptibility of target cells to suppression by Tregs 
include GITR and GITR-ligand (GITR-L) (90) and, 
possibly, cell surface-bound TGF-β (91). 

Regarding the target cell, after the encounter 
with the Tregs the effector T cells can display an arrest in 
cell cycle progression caused by uncoupled IL-2 signaling 
(92). Moreover, the activation of Tregs by anti-CD3 and 
anti-CD46 results in the expression of granzyme A, which 
facilitates the killing of the targets by a perforin-dependent 
Fas-Fas ligand-independent mechanism (46, 43). A 
granzyme B-dependent perforin-independent mechanism 
has also been identified for the suppressive activity of the 
Tregs (93). 

 
The specific mechanisms of action of Foxp3, 

GITR, and CTLA-4 in Treg suppression are currently under 
intense investigation. It is clear that abrogation of the 
activity of any of these molecules reduces significantly the 
suppressive capacity of the Tregs. For example, antibody-
mediated inhibition of CTLA-4 can abrogate the protective 
effects of Tregs in murine inflammatory bowel disease 
(94), possibly because CTLA-4 on Tregs could transduce a 
costimulatory activating signal along with TCR signaling 
(95). 

 
It has also to be considered that there are 

molecules that can counteract the suppressive activity of 
the Tregs. For example, ligation of Toll-like receptor-2, -4, 
-8 and -9 results in the abrogation of Treg-mediated 
suppression (see below). Toll-like receptors (TLR) are 
molecules that recognize pathogen-associated molecular 
patterns (PAMP) common to different pathogens. Upon 

activation, TLR can stimulate adaptive immune responses 
through the activation of DC and the upregulation of 
costimulatory molecules and inflammatory cytokines 
including IL-6, TNF-α and IL-12 (96). The engagement of 
TLR-4 or TLR-9 on murine splenic DC can abrogate the 
suppressive activity of Tregs in vitro - possibly via the 
induction of a resistance of target cells to Treg-mediated 
suppression (a phenomenon that is dependent in part on 
DC-derived IL-6) (97). Also, TLR-9 deficiency in MRL 
mice leads to exacerbated lupus apparently as a result of 
increased T-cell activation associated with impaired Treg 
suppressive capacity in vitro (98-99). 

 
5.2. In vivo suppression 

The in vitro hyporesponsiveness to antigenic 
stimulation of the Tregs can be overcome by stimulation 
with anti-CD3 antibody and IL-2. Although Tregs are 
anergic in vitro, they do proliferate in vivo in response to 
antigen (100-101, 68). Available data suggest that the 
suppression in vitro of the Tregs may not reflect their in 
vivo activity, and additional factors such as Tregs migration 
and homing might influence significantly the activity of 
these cells, particularly at sites of inflammation (75). In 
particular, the differential expression of CD62L and CD27 
on human CD4+CD25high Tregs could distinguish Treg 
subsets with migratory properties, i.e. CD27-CD62L- Tregs 
could be destined to periphery, CD62L+CD27+ Tregs 
would home to lymph nodes (102-106), and Tregs 
expressing CCR6 and CD45RO would accumulate in tissue 
(105). Ultimately, the accumulation of Tregs in tissue could 
limit the activity of effector target cells and subsequent 
inflammation at sites of organ damage. These 
considerations could contribute to explain why soluble 
factors may not be involved in the in vitro suppression 
mediated by the Tregs whereas in vivo the Tregs may need 
IL-10 and TGF-β to suppress target cells (106-107), and/or 
why Tregs can inhibit target cell transcription of IL-2 in 
vitro (108) while in vivo they may suppress independently 
on IL-2 involvement (80). 
 
6. NATURAL TREGS AND AUTOIMMUNITY 

 
The dysregulation of immune tolerance has a 

central role in the development and progression of 
pathogenic autoimmunity, and mice with an autoimmune 
background typically have reduced numbers of 
CD4+CD25+ T cells when compared to non-autoimmune 
mice. We summarize below the role of Tregs in the 
pathogenesis of several organ specific and systemic 
autoimmune diseases. 

 
6.1. Natural Tregs and organ-specific autoimmunity 
6.1.1. Multiple sclerosis 

Experimental autoimmune encephalomyelitis 
(EAE) is a disease model for human multiple sclerosis 
(MS), and is mediated by encephalitogenic CD4+ T cells. 
Mice that harbor myelin basic protein (MBP)-specific 
CD4+ T cells have high incidence of disease due to the 
failure of Tregs to control pathogenic T cells (109). Tregs 
can inhibit in vitro the proliferation and cytokine 
production by myelin oligodendrocyte glycoprotein 
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(MOG)-specific Th1 cells and can confer in vivo protection 
against EAE (33). 

 
In humans, a functional dysfunction and a 

reduced number of Tregs has been described in patients 
with MS (110-111).  
 
6.1.2. Type-1 diabetes 

The progression of benign to aggressive insulitis in 
type-1 diabetes-prone female nonobese diabetic (NOD) mice is 
associated with a peripheral deficit of Tregs in pancreatic 
lymph nodes and pancreatic islets (112-115). In NOD mice, 
the functional potency and intra-pancreatic proliferative 
potential of natural Tregs declines with age, augmenting in 
turn the diabetogenic responses and the development of the 
disease (116). Notably, the adoptive transfer of Treg-depleted 
splenocytes in rodents exacerbates disease (113), whereas the 
transfer of either Tregs from diabetes-resistant animals (117) or 
Tregs expanded in vitro suppresses the disease (118). Since 
Tregs isolated from pancreatic lymph nodes - but not from 
peripheral lymph nodes - delay the progression of diabetes 
(119), it has been proposed to use antigen-specific Tregs for 
the prevention and/or reversal of experimental diabetes, with 
encouraging preliminary results (120). 

 
In humans, the role of Tregs in type-1 diabetes is 

suggested by the finding of a functional deficit and 
impaired suppressive capacity of these cells (121). 
Importantly, rapamycin can allow the growth of functional 
Tregs while contributing to the depletion of effector T cells, 
envisioning a rapamycin-based, Treg-targeted 
immunotherapy in the disease (122). 

 
6.1.3. Inflammatory bowel disease  

The development of experimental colitis induced 
by the transfer of naïve CD4+CD45RBhigh T cells into 
syngeneic immuno-deficient mice (123) is prevented by co-
transfer of  regulatory CD4+CD45RBlow T-cells (124). In a 
murine model for human inflammatory bowel disease 
(IBD), CD4+CD25+Foxp3+ Tregs suppress effector T cell 
responses through mechanisms of cytokine deprivation-
induced apoptosis (125), and their suppressive activity can 
be shown at the site of organ damage - the intestinal lamina 
propria (126). 

 
In humans, the number of peripheral Tregs in 

IBD patients correlates with changes in disease activity, as 
it increases during remission and decreases with active 
disease (127). 
 
6.1.4. Experimental autoimmune thyroiditis 

Several studies suggest that Tregs might 
effectively modulate experimental autoimmune thyroiditis, 
a mouse model for Hashimoto’s thyroiditis (128-130). This 
is relevant because patients with autoimmune thyroiditis 
may suffer from a reduced suppressive capacity of the 
Tregs. 

 
6.2. Natural Tregs and systemic autoimmunity 
6.2.1. Systemic lupus erythematosus 

Studies in murine models of SLE have suggested 
that a deficit of Tregs can contribute to loss of self-

tolerance and subsequent development of clinical 
manifestations of the disease (131). Additionally, adoptive 

transfer of ex vivo expanded Tregs can slow the progression 
of renal disease and decrease the mortality in transferred 
mice (39).  

 
In view of the finding that some lupus-prone 

mice also have a reduced sensitivity of CD4+CD25- effector 
T cells to the suppression by Tregs (132), it can be 
hypothesized that the dysfunction of immune homeostasis 
in murine lupus might be partly associated with an 
abnormal number/function of Tregs and/or a reduced 
resistance of the target cells to Treg suppression, depending 
on the animal model considered. 

 
In human SLE, the number of natural Tregs is 

decreased during active disease flares (133-134) and in 
active SLE pediatric patients (135). Interestingly, those 
defects can be reversed in vitro by Treg activation - a 
process which renders the defective SLE Tregs functional 
suppressor cells (136). 
 
6.2.2. Autoimmune rheumatic diseases  

Depletion of Tregs accelerates collagen-induced 
arthritis in mice (137), whereas adoptive transfer of Tregs 
protects mice from the systemic, chronic joint inflammation 
(138). 

 
In humans, early rheumatoid arthritis (RA) 

associates with a reduced number of peripheral Tregs 
(139), although functional Tregs can be found enriched in 
the synovial fluid of patients with RA (140). It is possible 
that these cells may not be fully functional also because 
they have a decreased in vitro capacity to suppress the 
production of IFN-γ and TNF-α in target CD4+CD25− T 
cells (141). 

 
Of note, patients with relatively benign 

oligoarticular juvenile idiopathic arthritis have higher 
frequency of Tregs than patients with oligoarticular 
juvenile arthritis, a disease with a less favorable prognosis 
(142). 

 
7. CONCLUSION 

 
Although Tregs have the potential to 

reestablish immune tolerance to self-antigens both in 
new-onset and established disease in several 
experimental settings, they carry at the meantime the 
potential for detrimental effects due to the suppression 
of effector immune responses to tumors and 
microorganisms.  Therapeutic considerations for 
targeting Tregs in autoimmunity remain nonetheless an 
appealing possibility, particularly because of the 
encouraging data obtained in animal models.  Future 
studies of Treg-based immunotherapy will need to focus 
on how to circumvent the current obstacles, i.e. to 
define more specific markers for these cells, to keep in 
mind the differences between human and rodent Tregs, 
and to consider their site of action and the interactions 
with other immune cells and cytokine milieu where they 
operate. 
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