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1. ABSTRACT 
 

Advancements in high-throughput technology 
and computational power have brought about significant 
progress in our understanding of cellular processes, 
including an increased appreciation of the intricacies of 
disease. The computational biology community has made 
strides in characterizing human disease and implementing 
algorithms that will be used in translational medicine. 
Despite this progress, most of the identified biomarkers and 
proposed methodologies have still not achieved the 
sensitivity and specificity to be effectively used, for 
example, in population screening against various diseases. 
Here we review the current progress in computational 
methodology developed to exploit major high-throughput 
experimental platforms towards improved understanding of 
disease, and argue that an integrated model for biomarker 
discovery, predictive medicine and treatment is likely to be 
data-driven and personalized. In such an approach, major 
data collection is yet to be done and comprehensive 
computational models are yet to be developed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

In the past three decades, a bioinformatics 
community has arisen as a result of inexpensive, powerful 
computers, the Internet and advancements in high-
throughput, genome-wide technologies. Like most nascent 
areas, the boundaries of bioinformatics are not clearly 
defined and there are perspectives to reconcile. However, 
there does exist a recognizable direction of research, 
including a set of grand challenges for the community (1, 
2). In addition, there are many instances where 
bioinformatics has significantly contributed to filling in the 
missing pieces of the puzzle of life or has provoked 
researchers to rethink existing biological knowledge (3). 

 
A considerable amount of the work in 

bioinformatics is directed towards understanding how to 
both deal with and interpret massive amounts of biological 
data. Much of this work is also devoted to the development 
of systematic and theoretically well-founded approaches to 
problems that allow sharing of results. For example, the 
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need to use structured vocabularies in order to maximize 
the advantages of powerful computational approaches has 
stimulated the widely adopted genomics standards of the 
Gene Ontology (GO) (4). In addition, the statistical 
sciences have been reinvigorated by the research in life 
sciences, while biology has benefitted from the rigorous 
analysis of the data sets far larger than biologists had 
previously acquired. Sharing and development of 
techniques across experimentally distinct data leads to a 
community of researchers, albeit composed of different 
kinds of scientists, who leverage results from areas other 
than their own to solve biological problems. 

 
Although the studies of disease sit squarely 

within biology, and the challenge of translational medicine 
has been articulated (2), an analogous community to 
bioinformatics seems not to have been formed yet. Also, 
though there are certainly successes in computational 
approaches to studies of disease, or what we will refer to as 
disease informatics, there is a lack of cross-fertilization 
among groups approaching similar problems from different 
perspectives. As a result, approaches to anticipating 
disease, prognostics, treatments and drug design have yet to 
meet expectations. In fact, the methodologies developed to 
address disease-mostly based on statistical and physical 
principles-are typically exploiting individual technological 
advancements such as gene expression arrays, protein 
arrays, tandem mass spectrometry, etc. As these methods 
have matured from development to application, disciplines 
like systems biology are being developed to approach the 
problem from a different perspective and integrate diverse 
data types (5). It remains an open problem, however, how 
to appropriately address disease and integrate individual 
successes of disease informatics in a way that is most 
useful for translational approaches and, ultimately, to form 
a community much like bioinformatics.  

 
In this paper we first provide an extensive survey 

of computational approaches in the studies of disease, and 
then conclude with the proposal of a high-level quantitative 
model of disease informatics. 

 
3. DISEASE INFORMATICS 

 
In this Section, we summarize the most recent 

efforts in computational approaches to study disease. 
Several studies have recently addressed various aspects of 
disease informatics, providing a case-based structural 
perspective (6), analysis of algorithms for gene 
prioritization (7), analysis of protein interactions and 
disease (8), high-throughput phenomics (9) and complex 
networks (10). We, however, aim to take a broader 
approach that takes the most recent results from several 
communities and subsequently propose a model in which 
such individual approaches can be integrated. We start by 
addressing the importance in organization of disease 
classification and proceed to critically discuss a variety of 
areas currently developing in the bioinformatics 
community: the importance of model organisms for disease 
informatics, the underlying characteristics of disease-
associated genes, structural and protein folding approaches 
to studying disease, transcriptomics, proteomics and 

metabolomics. All of the individual areas provide 
quantifiable data on the state of a cell or group of cells and 
it is our conjecture that these individual components can 
systematically be brought together to better inform the 
study of disease. Therefore, the topical discussions in the 
following subsections lay the groundwork for a proposed 
model for disease informatics, which will be introduced in 
Section 4. 

 
3.1. Controlled vocabulary for disease naming and 
hierarchical organization of disease terms 

Although the importance of disease classification 
was understood as early as in the Hellenistic world, where 
symptoms were grouped together to be treated similarly, 
the first attempt at a standardized nomenclature originated 
in the mid-18th century from the need to classify and 
statistically process the causes of death (11). A century 
later, many conditions were observed to be non-terminal, 
giving rise to the first international attempts at statistically 
characterizing disease that resulted in the first International 
Classification of Disease (ICD). This list, currently 
available as revision 10 (ICD-10), is maintained by the 
World Health Organization (12). In the last quarter of the 20th 
century, however, a requirement of not only controlled 
vocabulary, but also relations between terms gained 
importance in order to facilitate computing. Systematized 
Nomenclature for Medicine, Clinical Terms (SNOMED CT) 
(13) is an ontology that has been developed to remove the 
semantic differences between terms in a medical setting. With 
over 310,000 terms organized into 19 hierarchies, such as 
clinical findings, procedure and body structure, SNOMED CT 
offers an expansive and flexible means to describe and 
organize clinical observations. The biggest use of SNOMED 
CT is in patient Electronic Medical Records that are being 
implemented in health care systems around the world. Another 
example of structured terminology is the Unified Medical 
Language System (UMLS) developed by the National Library 
of Medicine, which addressed the need to unify divergent 
naming and provides a means for computer processing of 
disease (14). The UMLS is a comprehensive system consisting 
of a more than 2.5 million terms for about 900,000 biomedical 
concepts (15) organized through the Metathesuarus (which 
contains the entire SNOMED CT), Semantic Network and a 
SPECIALIST Lexicon, but it is significantly broader than the 
classification of disease. Researchers at Northwestern 
University have created the Disease Ontology (DO), a 
controlled vocabulary based on the subset of UMLS terms and 
the ICD. Similar to the use of the GO in the classification of 
biological process, molecular function and cellular component 
of gene products, the DO1 hierarchically organizes disease at 
different levels of specificity into a directed acyclic graph. 
Currently, DO ver. 2.1 contains 14,647 terms classified into 
no more than 15 hierarchical levels, starting with the root 
node Disease, and providing the appropriate structure for 
automated analysis of phenotypic function. Finally, 
automated approaches to phenotypic classification have 
also been developed. PhenoGO (16) combines the natural 
language processing system, BioMedLEE (17), MeSH 
terms and the PhenOS system (18) to automatically assign 
a phenotypic context to genes and GO term annotations, 
where the context of a phenotype can be cell type, disease, 
or tissue to name a few. 
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Table 1. Summary of differences between disease-
associated genes and non-disease associated genes 

Differences between disease-associated and non-disease associated 
genes 
• disease-associated genes are on average longer than non-disease 

associated genes 
• disease-associated genes are more likely to have homologs in distant 

species, but less likely to have close paralogs than non-disease 
associated genes 

• disease-associated genes have more interacting partners on average 
than non-disease associated genes, but fewer than essential genes 
(approximated by using housekeeping genes) 

• certain biological functions are overrepresented or underrepresented 
in disease-associated genes 

• disease-associated genes have more exons and greater total exon 
length than non-disease genes, but they have similar  total intron 
length and 3’ and 5’ UTR region length 

• disease-associated genes do not have distinct Ka/Ks values as 
compared to the remaining genes (except slightly for essential genes) 

• disease-associated genes are less conserved than the essential genes, 
but similarly conserved as the remaining non-disease genes 

• genes associated with the same diseases tend to interact more 
frequently, are co-expressed in the same tissue and tend to share GO 
terms 

• disease-associated genes that correspond to certain GO terms have 
similar modes of inheritance (dominant vs. recessive) 

• disease-associated genes generally have higher expression levels 
than non-disease genes but are expressed in a narrower range of 
tissues 

 
3.2. Human disease addressed though animal models 
and cell lines 

Model organisms have long been used to study 
the underlying mechanisms of biology, including disease 
(19-22). The sequencing, assembly and annotation of the 
yeast, worm, fly and mouse genomes, to name only a few, 
have now allowed researches to quantify the number of 
genes and molecular pathways related to human disease 
that can be studied in these organisms. For example, by 
utilizing the Inparanoid algorithm for homolog 
identification, it has been reported that approximately 57% 
of human disease genes have homologs in mouse, 51% in 
fly, 37% in worm and 14% in yeast (23). These data, along 
with homologous genes from several other organisms are 
stored in the online database, Orthodisease (24). In 
addition, it has been shown that disease-associated genes 
share more homologs with model organisms than genes 
currently not associated with disease (25, 26). 

 
Many high throughput data sets from model 

organisms can be used to inform human molecular 
relationships (27-31).  The concept of an “interolog” and 
“regulog” have arisen from the need to infer functional 
relationships across organisms (32-34). An interolog refers 
to an interacting protein pair in one organism that has 
homologus proteins in another organism that also interact, 
while a regulog refers to a homologous protein pair in two 
different organisms that share a homologous regulatory 
mechanism. Both of these concepts have been used to infer 
functional relationships in human, which is evident in the 
Interologous Interaction Database (I2D) (formerly the 
Online Predicted Human Interactions Database or OPHID) 
(35, 36). This database contains experimentally tested 
human protein interactions, interologous protein 
interactions and predicted protein interactions. 

 

Although model organisms can be extremely 
helpful in understanding biological mechanisms, they have 
the fundamental flaw of not being human, and therefore 
cannot fully represent human cellular behavior. For 
example, certain disease-associated mutations in humans 
correspond to the wild type genotype in various model 
organisms (37, 38). Given that genetic manipulation cannot 
be performed on humans, the closest cellular representation 
of manipulatable human cells is derived cell lines. There 
are thousands of human cell lines that cover a multitude of 
tissue types and tissue conditions. Human cell lines can be 
exposed to the same, if not more, experimental conditions 
as model organisms. For example, microarray studies have 
been carried out with the NCI-60 lines to systematically 
identify differential gene expression between all of the 60 
lines (39). 

  
3.3. Disease genes are distinct, but why? 

The first studies investigating the statistical, 
functional and evolutionary properties of disease-associated 
genes appeared in the 1990s, during the time of the Human 
Genome Project. In 1997, Mushegian et al. (25) carried out 
a systematic analysis of disease-associated genes by 
looking for their homologs in several model organisms and 
by analyzing their function and length distribution, but the 
main progress in understanding properties of disease-
associated genes came after the completion of the human 
genome (40, 41). Although Mushegian et al. noticed that 
half of the known disease genes in the mid 1990s were 
involved in cell signaling, Jimenez-Sanchez et al. (42) 
found a number of other functional properties that differed 
between classes of disease genes (e.g. mode of inheritance, 
age at onset, frequency of disease), while Karlin et al. (43) 
proposed that disease-associated genes have distinct 
sequence properties when compared to non-disease genes, 
especially with respect to sequence runs. This analysis was 
broadened by Lopez-Bigas and Ouzounis (26) who also 
found that disease-associated genes are on average longer 
and expected to contain more homologs with distant 
species in the evolutionary tree, but that non-disease genes 
are expected to have more paralogs in the human genome. 
The evolutionary properties of disease genes were 
additionally analyzed by other groups (44-47) with an 
important result coming from Tu et al., who found that 
disease and non-disease genes have a similar ratio of non-
synonymous (Ka) and synonymous (Ks) substitutions, but 
that human essential genes (approximated by the 
housekeeping genes) have a slightly lower Ka/Ks (47). 
Similarly, exploiting the availability of protein-protein 
interaction networks, Tu et al. found that disease genes 
generally have higher connectivity than non-disease genes 
and that both groups have lower connectivity than the 
housekeeping genes. Goh et al. (48) further analyzed 
connectivity and other properties of disease, non-disease 
and housekeeping proteins and constructed a human 
disease network. Note that in addition to the comprehensive 
analysis of all disease genes, studies have investigated 
properties of proteins involved in specific diseases, for 
example, cardiovascular disease (49), or cancer (50-53). A 
summary of differences between disease and non-disease 
genes is summarized in Table 1. 
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Based on various properties discussed above, 
Lopez-Bigas and Ouzounis (26) developed a decision tree 
for identifying disease genes with surprisingly high 
recall/precision balance of 70%/67%. Adie et al. (54) 
improved on this method by employing a machine learning 
classifier based on a variety of genomic and evolutionary 
features, namely coding sequence length, presence of signal 
peptides, the number of exons, evolutionary conservation, 
presence and closeness of paralogs in the human genome. 
Xu and Li (55) developed a k-nearest neighbor algorithm to 
discriminate between disease and non-disease associated 
genes based on five properties calculated from the protein-
protein interaction network: connectivity of the node, the 
fraction of links to the disease genes, the fraction of the 
disease associated neighbors to the node, average distance 
to the disease genes and positive topology coefficient. The 
accuracy achieved by their algorithm reached 74% recall 
and 75% precision on a literature curated set of gene-
disease associations. The major limitation of these 
algorithms, however, is that they are exploiting only 
general properties of disease-associated genes and are not 
suited to prioritizing genes for any disease in particular. 

 
While these studies are informative, larger 

questions remain: why are disease-associated genes 
different than the remaining human genes? Are there 
biological reasons or is this a statistical artifact of the 
diseases studied thus far? Why are all genes not disease-
associated? Perhaps some of the answers can be inferred 
from taking an evolutionary, functional and statistical 
perspective. For example, strong purifying selection would 
be expected to act on genes that are critically involved in 
fetal survival or reproductive capacity before the 
reproductive age, whereas such pressure would be 
significantly lower on the genes involved in late-onset 
diseases. A functional perspective suggests that some 
functions of non-disease genes could be sufficiently well 
performed by their close paralogs for an extended period of 
time. Finally, a simple probabilistic calculation, assuming a 
uniform mutation rate, suggests that current disease genes, 
being generally longer than the non-disease genes, have 
simply had higher chance of acquiring disease-causing 
mutations over time. On the other hand, every gene has a 
molecular function and it should not be excluded that a 
disruption of every function would have phenotypic 
consequences. Since it seems unlikely that this difference is 
attributable to the sampling bias of disease selection, 
questions about disease-associated genes will remain open 
and further research is necessary to provide more definitive 
answers. 

 
3.4. Algorithms to predicting gene-disease associations 

With the accumulation of large amounts and 
multiple types of experimental data, prediction of gene-
phenotype associations has emerged as a very productive 
subfield with great importance for the understanding of 
human disease. Given a particular set of human phenotypes 
(typically diseases) D, a set of human genes G and 
evidence E, these methods attempt to find whether gene g 
∈ G is associated with phenotype d ∈ D. Note that 
evidence E can be gene-disease associations obtained 
through genetic studies, experimentally determined protein-

protein interactions (PPI), microarray data, but also gene 
function, protein sequence, biomedical literature, predicted 
PPI, etc.  

 
A crucial piece of evidence used for the 

prediction of gene-disease associations is provided by the 
statistical genetics community, through linkage analysis 
and association studies (56, 57). However, due to the 
limitations of these approaches caused by genetic 
heterogeneity, small and biased population samples, as well 
as low penetrance rates (58), other sequence and physical 
data are useful in inferring gene-disease associations. A 
wide range of methods developed to infer these 
associations typically use statistical, machine learning or 
heuristic approaches for gene prioritization. While there are 
studies based solely on PPI data of humans and other 
species (59-62), novel disease candidates can be best 
inferred by combining multiple lines of evidence. Perez-
Iratxeta et al. (63, 64) and Seki and Mostafa (65) achieved 
this by calculating gene-disease associations by linking 
phenotype to GO terms via text mining Medline articles, 
whereas Hristovski et al. (66) used association rules. 
Another tool, POCUS, calculates the probability that 
different loci share observed InterPro domains and GO 
terms by chance (67). Similarly, the same types of evidence 
were combined with sequence and evolutionary data 
through a decision tree by Adie et al. (54, 68). Gentrepid 
(69) presents heuristic prioritization based on PPI data 
and domain sharing. The method by Freudenberg and 
Propping (70) uses phenotypic data from OMIM to 
cluster diseases and then scores each gene-disease 
relationship (g, d) proportional to the shared GO 
annotation between a query gene and disease clusters 
associated with d. TOM combines functional and 
microarray data to statistically score genes most similar 
to a set of seed genes (71), while Prioritizer further 
incorporates PPI data via a Bayesian approach (72). An 
evaluation on the contribution of multiple data types was 
carried out by Aerts et al. (73) and De Bie et al. (74) 
who used statistical and machine learning principles, 
respectively. Evidence from D. melanogaster has also 
been used to infer human-disease relationships by 
Costello et al. (75), through machine learning and 
utilizing sequence similarity, GO annotation, protein 
interactions and shared transcription factor binding as 
inputs. Finally, larger efforts have been made to 
associate genes with phenotypic concepts via data 
mining (76) and with a totality of environmental and 
phenotypic concepts via statistical analysis (77). For 
example, Butte and Kohane create a phenome-genome 
network by associating genes to UMLS concepts (77). 

 
In addition to the approaches associating entire 

genes to phenotypic terms, Braun et al. (78) proposed a 
method that identifies regions of candidate genes that are 
most likely to contain disease-causing mutations. The 
method is based on the fact that disease causing mutations 
are more likely to occur in the most conserved sequence 
regions. Thus, instead of screening full genes in their 
entirety, the authors suggest screening a larger number of 
genes in regions that are more likely to contain disease 
mutations. 
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Clearly, gene-phenotype association studies have 
explored a large number of approaches and several 
software packages or web sites are publicly available (64, 
68, 69, 71, 73). However, it should be noted that many 
obstacles need to be overcome before these algorithms can 
fully impact translational research. First, it is somewhat 
vague what a gene-disease association means. Some 
authors only investigate causative associations where 
mutations are known to be hereditary. For others, 
associations can involve downstream effects on protein 
molecular function, such as genes affected by somatic 
mutations or epigenetic causes, because such genes can be 
good drug targets. Most problems seem to come from the 
fact that data are noisy and sparse, that disease names are 
stored in a variety of formats and that the community has 
not yet widely accepted any ontology of diseases. For 
example, PPI data is non-randomly incomplete (it is 
currently difficult to obtain interactions for membrane 
proteins) and might contain large number of false positives 
(79), while questions still remain about the biological 
reproducibility of microarray data (80). Similarly, in gene 
association studies, it is not uncommon that gene-disease 
associations are incorrect due to ascertainment bias and 
small sample size (e.g. in the case of obesity-related genes 
(81)). 

 
3.5. Protein sequence, structure, function and folding in 
understanding disease 

Currently, there are close to six million validated 
single nucleotide polymorphisms (SNPs), of which more 
than 50,000 are associated with various human diseases 
(82). Their functional effects include altered gene 
transcription/regulation, RNA decay, protein translation, 
signal transduction or changed structural integrity of cells 
(82). However, only for a small fraction of SNPs have a 
known molecular basis of disease (83, 84). Most research 
attention in the bioinformatics community has been 
devoted to investigating structural features of non-
synonymous coding SNPs (nsSNPs) (85-89) and their 
connections with disease (90-94). For example, it is 
estimated that about 20-30% of nsSNPs stored in dbSNP 
(95) could affect protein function (96, 97) and that more 
than 80% are located in structural pockets or voids (91). 
Recent analysis of human disease proteins shows that a 
large number of nsSNPs appear in patches on the protein 
surface suggesting that the mutations might be directly 
affecting protein interaction sites (93) in addition to the 
known effects on structural stability (92, 98). Surface 
accessibility and evolutionary conservation have been 
recognized as the most useful features in the predictors of 
deleterious mutations (87, 88). 

 
Though there is little doubt that protein structure 

is one of the keys to understanding the molecular basis of 
disease, there exist only a handful of success stories. 
Classic examples include the E6V mutation in the β-
subunit of hemoglobin (HBB), which causes aggregation 
via interacting with F85 and L88 of another identical 
molecule. This event is known to cause excessive 
formation of amyloid fibrils ultimately leading to 
abnormally shaped erythrocytes and development of sickle 
cell anemia predominantly in homozygous individuals. 

Another prominent example involves interaction between 
Mdm2 and p53, where overexpression of Mdm2, a negative 
regulator and E3 ubiquitination ligase for p53, causes 
inhibition of p53 and leads to several forms of cancer (99). 
The structural basis of this interaction has recently been 
solved, involving molecular recognition fragments 
(MoRFs) as an important structural motif in signaling. In 
addition, understanding of these interactions resulted in 
novel concepts of drug design. MoRFs are short, loosely 
structured sequence fragments located within intrinsically 
disordered regions which often serve as protein-protein 
interaction sites (100-102). Computational methods have 
been developed for prediction of MoRFs (103-105). In 
accordance with this, most methods developed for 
prediction of protein global and residue-based function can 
be used towards better understanding and, in the end, 
treatment of disease. Some examples include prediction of 
protein molecular function, prediction of protein interaction 
sites and partners, protein interface residues and hot spots. 

 
It is well-understood that after synthesis in a 

ribosome, the fate of a protein can be determined by a 
variety of effects in a cell, causing it to misfold, to be 
prematurely degraded, to aggregate or to form amyloid 
fibrils. It has been shown that proteins that show strong 
propensity to fibrillate can be either structured or 
unstructured, with the structured class covering all major 
groups (α, β, α/β) (106, 107). Uversky and Fink analyzed 
several classes of amyloid-prone proteins from structural 
perspective showing that structured proteins require partial 
local unfolding in order to fibrillate, while intrinsically 
disordered proteins require partial folding (106). Many 
proteins which are known to have strong propensity to form 
amyloid fibrils are still not linked to any disease, for 
example, myosin and prothymosin. Fernandez et al. 
proposed a concept of dehydrons, i.e. underwrapped 
(unprotected) backbone hydrogen bonds, in monomers and 
suggested that such structurally-encoded sites are important 
for acquiring new protein interactions (108-110). 
Interestingly, the analysis of multiple protein structures has 
provided links between dehydrons and protein 
amyloidogenic propensity (111). 

 
Another direction in exploring associations 

between biological macromolecules and disease is through 
the analysis of folding pathways. It has been estimated that 
about 50% of human diseases are caused by protein 
misfolding events (112), which often lead to loss/gain of 
function in numerous protein folding diseases such as 
cancer, osteogenesis imperfecta, sickle cell anaemia, 
Alzheimer’s, Parkinson’s, and Hungtington’s disease, to 
name a few. (113). The last 30 years have brought dramatic 
progress in the simulations of protein folding where µs 
simulations at fs resolution of smaller macromolecules are 
feasible (114, 115). However, there is yet to be enough 
progress in studies of larger molecules, especially 
supramolecular complexes or modeling solvents and 
crowded conditions of the cell (115, 116). Despite this, 
there is sizeable amount of work in studies of the 
mechanisms of disease, including simulations of influenza 
virus activity (117-119), prion misfolding (120) and 
aggregation of β-amyloid peptides in Alzheimer’s disease 
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(121). There is agreement that both increase in 
computational power and better modeling of multi-body 
force fields are important for the further progress in 
molecular dynamics simulations. 

 
3.6. Gene expression, genomic variation and disease 

Gene expression measurements on a genome-
scale, representing the transcriptome, have been 
accomplished through the technological advancement of 
microarrays. Introduced in 1995 by Schena et al. (122), 
microarray experiments have rapidly grown in number and 
have been used to address a multitude of questions across 
hundreds of organisms and cell lines. Related to human 
disease, microarrays have been used to define cancer-
specific expression profiles (123, 124), association of SNPs 
within complex disease (125, 126) and shown copy number 
polymorphism in the study of cancer (127, 128). However, 
as noted by Miklos and Maleszka (129), there are 
limitations to what microarray data can tell us in the 
context of complex disease. Using schizophrenia as an 
example, the authors point out that differentially expressed 
genes may not correlate well across microarray platforms, 
and genes known to be involved in schizophrenia may not 
correlate well with genes identified as “interesting” in 
microarrary data. These discrepancies show the 
complications in separating the causal relationships from 
noise within microarray data. The authors also point out the 
differing results can be derived from different 
bioinformatics methods and call for integrating the results 
from these methods to assign a “clinical relevance” score to 
genes with consistent identification. Notwithstanding this 
cautionary note, the massive amounts of data that 
microarrays generate have led researches to explore 
different data mining techniques and meta-analysis 
methods to extract hidden relationships, which have shed 
light on gene expression associations in disease. 

 
Golub et al. (123) were among the first to use 

microarray data to computationally define tumor subtypes 
and classify tumor sample expression patterns. The authors 
used clustering and a weighted scoring scheme to classify 
acute lymphoblastic leukemia and acute myeloid leukemia 
simply based on the expression profiles of the 50 genes 
most differentially expressed between the two conditions. 
A similar approach taken by Alizadeh et al. (130), applied 
hierarchical clustering to gene expression profiles of 
diffuse large B-cell lymphoma to identify expression 
patterns reflecting the stages of tumor differentiation. van’t 
Veer et al. (131) also used hierarchical clustering with 
supervised methods to classify expression profiles of breast 
cancer patients based on time to metastases. This approach 
is significant since the standard medical treatment through 
chemotherapy or hormonal treatment is unnecessary in 70-
80% of the patients receiving treatment, thus, this method 
can provide valuable information to clinicians when 
determining treatment type. Furey et al. (132) apply the 
classification propensities of support vector machines to 
distinguish between ovarian cancer tissue, healthy ovarian 
tissue and other healthy tissues, which results in perfect 
classification of the tissue types, and is even sensitive 
enough to identify a mislabeled tissue. Many methods 
exploring expression profiles examine individual gene 

profiles, but there still remains the question of how 
expression in particular classes of genes are affected. 
Several statistical methods, known as gene set enrichment 
(133-135), have been proposed to look at the overall 
expression of predefined sets of genes, such as genes 
annotated with the same GO term. Mootha, et al. (133) 
used the gene set enrichment approach to show that the 
genes involved in oxidative phosphorylation were showing 
group-wise expression bias in diabetes microarrays. This is 
significant, because none of the individual genes annotated 
with the GO term (oxidative phosphorylation) showed 
differential expression suggesting a molecular mechanism 
that was not represented by a single gene. 

Clinical experiments employing microarrays as 
an assay for cancer gene expression have grown in number, 
and continue to do so. There have been several studies 
performed by independent institutions that explore the 
same cancer type, for example prostate cancer (136-139). 
These cross-laboratory and often cross-platform results 
provide a perfect scenario to employ meta-analytic 
techniques to discover the strength of relationships that 
exist within compendia of data sets. Meta-analysis, which 
combines data using statistical methods, has been applied 
by Rhodes et al. (124) to the aforementioned prostate 
cancer datasets to cross-validate individual results and find 
the expression profiles that were consistent among all 
prostate cancer studies. The identified sets of genes across 
each of the data sets were subsequently found to have 
common metabolic function. Spurred on by this 
methodology is the online resource, Oncomine (140), 
which is a repository that contains standardized, normalized 
and analyzed data from over 20,000 cancer microarray 
hybridizations. Not limited to cancer, gene expression 
assays and similar computation analysis have been 
performed in many other human diseases, including obesity 
and fatty liver disease (141), diabetes (142) and Lyme 
disease (143) to name only a few. 

 
Besides the detection of variation in mRNA 

levels in diseased samples as compared to healthy samples, 
microarrays have also been adapted to test for copy number 
variation through comparative genomic hybridizations 
(CGH). This application of microarray technology has been 
used to show copy number aberrations in tumors (127) and 
also in genetic diseases (144). As an example, Vissers et al. 
(145) performed CGH analysis of patients suffering from 
CHARGE syndrome and identified a deletion on 8q12.  Up 
to 15% (146) of monogenic diseases are related to deletions 
or insertions, thus the authors propose using the CGH 
platform as a tool to identify candidate genes involved in 
monogenic diseases. Since microarray-based assays have 
been shown to provide information on copy number 
variation and gene expression, Pollack et al. (128) 
combined data from both gene expression and CGH breast 
cancer studies to statistically show copy number variation 
has a large affect on global gene expression. As an attempt 
to identify literature using CGH for profiling malignancies, 
Progenetix2 has compiled a compressive list of close to 
1,000 publications, which demonstrates the impact of CGH.  

 
Large-scale genotyping through the use of SNP-

based microarrays is another strength of the microarray 
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platform. As an example, Matsuzaki et al. (125) 
simultaneously genotyped samples for over 100,000 SNPs 
with very high accuracy and reproducibility. The data from 
SNP genotyping technologies provide information that can 
be used in association studies, where variation in genetic 
markers (SNPs in this case) is associated with a particular 
phenotype (disease in this case). For example, Teh et al. 
(147) used SNP arrays to identify loss of heterozygosity on 
several chromosomes that are highly correlated to basal cell 
carcinoma. Another use of SNP array technology is 
exemplified by LaFramboise et al. (148), who use SNP 
array data to computationally quantify allele specific copy 
number and parent chromosome specific copy number 
through an expectation-maximization based method. Their 
results from the analysis of 100 lung cancer patients reveal 
that duplications are most often linked to only one of the 
parental chromosomes, which can be used as genetic 
markers. 

 
The complications pointed out by Miklos and 

Maleszka (129) are at the heart of integrative studies, which 
leverage different data types to mine a rich set of 
information often hidden within microarray data. By 
integrating across data types, such as protein interaction 
and microarray gene expression, the strengths of each 
experimental technique can be leveraged. Bandyopadhyay 
et al. (149) incorporated network algorithms to identify 
transcriptionally active protein-protein relationships related 
to the reactivation of suppressed HIV in a host genome. 
The authors identify a number of genes and biological 
processes with their methodology. As another illustrative 
example, Valdivia-Granda et al. (150) integrate molecular 
annotation information, protein interaction data and 
microarray gene expression data to identify early infection 
biomarkers for smallpox. The authors find early infection 
biomarkers that are unique to smallpox and these markers 
represent a multitude of biological processes. 

 
3.7. Proteomics, metabolomics and disease 

Proteomics is a field whose goal is to identify and 
quantify proteins present in a sample mixture (151-153). It 
holds the promise of directly quantifying expressed 
proteins and/or determining the fraction of protein copies 
that are post-translationally modified and thus contribute in 
the early diagnosis of disease and biomarker discovery 
(154). However, vastly different abundances of different 
proteins and possibly small percentages of post-
translationally modified copies pose significant challenges 
for current technology. For example, the quantity of 
proteins in human plasma is known to differ by 10-12 
orders of magnitude and it is common that cancer 
biomarkers are present in ng/ml concentrations (155). Thus, 
despite being an older area of study than transcriptomics, 
proteomics is still in the early stages of development with 
an open challenge of what experimental platforms and 
computational techniques are best suited to it. Here we 
focus only on mass-spectrometry (MS) based proteomics 
techniques due to their high-throughput and increasing 
sensitivity. Other proteomics approaches are out of scope 
of this review and are reviewed elsewhere (154). 

 

Most computational approaches in disease 
proteomics have been connected to surface-enhanced laser 
desorption/ionization time-of-flight (SELDI-TOF) technology 
that is well suited for detecting intact proteins of moderately 
high molecular weight. The computational goal for SELDI-
TOF data is often to discern between two groups of MS 
spectra, one corresponding to a group of patients with disease 
and another corresponding to the control group and then label 
the peaks that are statistically different (i.e. provide peak-to-
protein assignments). SELDI-TOF has been used extensively 
in the biomarker discovery for several types cancers (e.g. 
prostate, breast, lung, ovarian (156, 157)), and a number of 
statistical models have been proposed and subsequently 
compared (158). However, SELDI technology, as well as 
mass spectrometry-based techniques in general, have 
been shown to be prone to error due to sample 
preparation and storage protocols which caused many 
biomarker discovery studies to be irreproducible (155, 
157). In addition, peak labeling in SELDI-TOF platforms 
is an open challenge due to the presence of alternatively 
spliced isoforms and protein-modifications that cause a 
peak shift in the spectra. Tandem mass spectrometry 
(MS/MS) holds promise for a more accurate biomarker 
discovery. Novel experimental methods have been 
designed for sample fractionation and separation while 
computational approaches have been proposed for 
peptide identification (159-162), protein identification 
(163-166), protein quantification (167-169) and 
discovery and characterization of post-translational 
modifications (170-172). Further development of these 
methods will directly affect our ability to address 
biomarker discovery from MS/MS data. 

 
Metabolomics attempts to study the large number 

of molecules that do not fall under the umbrella of 
proteomics and transcriptomics, typically referred to as the 
metabolome. The constituent parts of the metabolome are 
sometimes referred to as the set of molecules produced in 
metabolism (173), but a significant portion of metabolomics 
research studies lipid molecules (174-177) and other small 
molecules present in the body. The field, in its methodology of 
collecting and analyzing data, is closely related to proteomics. 
NMR spectroscopy and MS are the two most common 
experimental platforms used in metabolomics, while data 
analysis can also be divided into two areas, one being 
multivariate statistical methods for analyzing interactions 
between metabolites, and the other dedicated to 
identifying particular molecules (178, 179). 
Metabolomics also faces many of the same challenges as 
proteomics, especially regarding standardization of 
experimental procedures (179). Metabolite levels are also 
known to vary drastically both amongst and within 
individuals in some bodily fluids, especially urine. 
Although metabolomics has been an area of study for 
some time (180, 181), especially by the pharmaceutical 
industry (182), much research in metabolomics is 
hindered by the fact that much of the metabolome is 
uncharacterized (183). The creation of the Human 
Metabolomic Database (173) is a step towards developing a 
database that characterizes many these molecules 
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Figure 1. A stylized depiction of the model for the computational approaches to disease. 
 
4. TOWARDS AN INTEGRATED COMPUTATIO-
NAL MODEL FOR DISEASE  

 
Despite the plethora of high-throughput 

technological advances and the success of many 
computational methods developed to understand disease, 
there is a growing need to work toward a model that allows 
for comprehensive and systematic successes in diagnostics, 
prognostics and treatment of the causes of disease. The 
benefits of such an integrated model would allow for (i) a 
data-driven, quantitative understanding of disease; (ii) 
disentangling symptoms from disease, (iii) taking 
advantage of the ability of technologies to query the states 
of single cells or small group of cells (e.g. flow cytometry 
or laser-capture microdissection) and (iv) more formalized 
and accurate notions of biomarkers. 

 
The starting point for any model is to define the 

basal components that are going to be modeled.  Therefore, 
we define the atomic level of disease to be the cell. The 
reason for this is threefold. First, a cell is a self contained 
unit. Second, each cell has its own genetic code and a 
discrete and bounded number of molecules within it, at any 
given time. Third, current high-throughput assays allow us 
to measure the biomolecular contents with respect to a cell 
or groups of cells. In practice, a cell can be sufficiently well 
represented by the state of its genome, transcriptome, 
proteome and metabolome, and its history with respect to 
the four components. Formally, each of the four “-omes” 
can be seen as an axis of the cell space, where the 
dimensions of cell space are enumerations of genome space 
or the levels of transcripts, proteins and metabolites along 
their respective axes (note that the axes are not necessarily 
independent). For example, measurements from microarray 
data can be discretized and then projected on the dimension 
of transcription, whereas the proteome can also incorporate 
the levels of post-translationally modified molecules. While 
such a mapping of the cell into a vector space is one-to-one, 
note that the particular way of mapping is less important 
than the fact that it is possible. Therefore, the state of the 
four -omes of cell i define a point in the cell space at time t 
as: 

 
Ti

t
i
t

i
t

i
t

i
t ][ mptgc = , 

 
where i

tg , i
tt , i

tp  and i
tm  represent the axes: 

genome, transcriptome, proteome and metabolome, 

respectively, and T is a transpose operator (Figure 1). We 
represent each of the dimensions as a vector, as opposed to 
a scalar, in order to allow for representations that are 
equally powerful but more easily interpretable than the 
mapping into a four dimensional space. Similarly, the 
current state of the organism can be summarized as a 
collection of the states of its cells: 

 
][ 21 tn

tttt cccc K= , 
 
where nt is the overall number of cells at time t. 

Clearly, querying the state of the organism by directly 
measuring the content of all cells would likely kill them 
and is currently not possible. However, this representation 
is still useful in systematizing the measurements taken by 
current technology. For example, querying the content of 
the human plasma corresponds to a measurement that is a 
function of the cells in an organism as represented by some 
mapping h(ct). In other words, this representation can be 
easily generalized into a more practical basic model, for 
example, based on tissue instead of the cell. 

 
We view a cell’s continuous functioning as a 

trajectory through the cell space, i
t ],0[c , driven not only 

from the cell’s existing traits, but also from the external 
cellular environment3 i

te and its trajectory i
t ],0[e . This 

relationship can be generally expressed as: 
 

),( ],0[],0[1 ttt f ecc =+ , 
 
where function f can be thought of as being 

dependent on the various structural and functional 
properties of molecules, protein-protein interactions, cell-
cell communication, etc. 

 
We further establish a mapping from the cell 

space, a space constructed from a fixed number of 
experimentally available cellular traits, to a symptom space 
by considering an aggregate of such cells: 

 
),( ttt g ecs = , 

 
where Tl

tttt sss ][ 21 K=s  is a vector of 
measurable symptoms, such as bodily temperature, pain, or 
presence of a tumor. 
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Under this version of the model, the cell is a 
dynamic system with its space consisting of four 
dimensions: genomic, transcriptomic, proteomic and 
metabolomic. We arrived at these dimensions since they 
match well with the currently available technologies (e.g. 
gene expression microarrays, tandem mass spectrometry). 
However, the model is not limited to the current 
technologies and is flexible enough to handle dimensions 
that may arise in the future. This system is illustrated in 
Figure 1.  

 
To try to formalize the notion of a biomarker, let 

us consider three different regions of the cell space: health-
space, malfunction-space and dead-space. Health-space is a 
set of regions in which the cell functions normally. 
Malfunction-space, in contrast, contains the regions in 
which there is some “deviation” from a cell’s programmed 
routine. For example, different diseases can correspond to 
different regions in the cell space, whereas overlapping 
regions correspond to situations where more than one 
disease is present. Dead-space, on the other hand, represents 
regions in which cells simply cannot exist—either through 
demise or not being genetically feasible. A group of cells 
present in their malfunction space can now be used to define 
disease on a cellular level; this disease is then mapped to a set 
of common symptoms. Under such a formulation, the notion of 
a biomarker, which is currently mostly found by statistical 
comparisons between two groups of samples (healthy and 
disease), would simply become a region in the cell space. 
Clearly, many genetic studies can associate probabilities of 
contracting a disease based on the genotype and haplotype 
information, which corresponds to taking only one axis of the 
cell space into account. Therefore, including other cellular 
information should, in principle, contribute to a more accurate 
disease biomarker and facilitate early diagnosis. 

 
In addition to biomarker discovery and diagnosis, 

this approach would also be advantageous for improving 
prognosis and understanding of disease progression. Given 
large amounts of data, function f that maps a cell state into 
the next cell state, could be learned using computational 
approaches and would enable us to anticipate whether a cell 
(tissue) is heading towards or away from the malfunction 
(disease) space. Similarly, learning of function g would 
enable us to follow this progression at a symptom level. 
Note that f and g could be learned in a way to incorporate 
prior knowledge about a biological system. 

 
Therefore, the major objective of disease 

informatics can be formulated as labeling the cell space and 
learning the mappings f and g. As mentioned, such tasks 
would incorporate anticipation of moving into the 
malfunction-space and undertaking preventive treatment or 
finding ways of moving out of a malfunction-space. 
Typically, physicians begin with a symptom vector st and 
invert the mapping to essentially conditionally guess (in the 
statistical sense) the cell vectors ct and their relationships to 
disease-space. Directly learning functions f and g, however, 
would enable a data-driven approach in which scientists 
would better understand how to perturb the system in order 
to treat causes of disease and to enable personalized 
medicine. 

One of the strengths of the above-mentioned 
model is that it takes a cell-based approach, much as the 
cytomics approaches do (184-187). It is inherently 
personalized and it moves the problem toward the 
experimentally measurable cellular traits away from the 
symptom space. We note that this model does not 
undermine the reductionist studies of the molecular basis of 
disease. In fact, such approaches will remain to be critical 
for diseases that are governed by one dominant factor or a 
small number of factors, (e.g. a structural defect in protein 
structure) and are incorporated into our model through 
functions f and g, or direct labeling of the malfunction 
space on a cellular level. In addition, this model 
emphasizes frequent measurements of cell states and 
understanding of the cellular environment and exploits the 
power of statistical and physical models to ultimately bring 
about computational models that could effectively 
contribute to a personalized approach to predictive 
medicine. While a comprehensive analysis and 
understanding of disease is possible, this model also 
suggests that there may be a long way to go until true 
predictive medicine is achieved. 

 
5. SUMMARY 
 

In this paper we reviewed a number of 
computational approaches used in the study of human 
disease. Although our coverage is broad, it is not complete. 
Several other disciplines that study disease fall outside the 
discussion of this paper, but should be mentioned to draw 
attention to their importance. These include, for example, 
genome-wide association studies, pharmacogenomics and 
cytomics. For a discussion on genome-wide association 
studies, we refer the reader to (58), for pharmacogenomics 
to (188) and for cytomics to (184-187). 

 
Most of the current computational approaches 

that are dedicated to understanding disease provide 
valuable insights, but as such they may still be inadequate 
for a thorough and general understanding of many complex 
diseases. As a result, their impact on clinical studies have 
been limited. We suggest that while the community should 
continue to develop niche techniques in various 
subdisciplines, a more comprehensive data integration 
approach should be considered to more accurately learn the 
disease space of cells. One such approach, outlined in 
Section 4, will provide a more robust model of physical 
symptoms as they relate to a disease and provide clinicians 
a means to help with diagnosis and prognosis, while also 
providing a framework to better understand drug 
interactions in the cell. Although experimental data are 
currently limited, the amount of data in the near future will 
only increase, thus adding to the gap between the amount 
of data and our understanding of complex disease. This 
model has been proposed to take advantage of the 
computational power, experimental data and statistical and 
physical techniques developed over the past several 
decades, with an eye to the future. We hope that the 
proposed model provides a reasonable framework and 
provokes discussion of how to better design studies that 
take advantage of our current and future experimental data 
and computational methods. 
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