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1. ABSTRACT 
 

Substantial pieces of direct and indirect evidence 
have mounted over the years linking the induction of 
oxidative stress to a plethora of disease conditions, not least 
those associated with the death of neurons. The causal 
relationship between oxidative damage and 
neurodegeneration is, however, not yet clear and still a 
subject of intense investigation. Nevertheless, the 
phenomenon of oxidative neuronal death has received 
considerable attention in a frantic search for efficacious 
therapies for the management of neurological and 
neurodegenerative conditions. The redox-active nature of 
reactive oxygen species (ROS), which in their excessive 
levels induce oxidative stress, the prevalence of ROS 
production in biological systems, the complexity of 
interrelationships among these species, and the context-
dependent adequacy and resilience of the antioxidant 
defense systems are some of the challenges that basic 
research has to grapple with to advance successfully to the 
translational stage. Much still has to be understood for 
research efforts in this field to yield enduring therapies. In 
this review, we examine the nature (chemistry) of ROS, the 
relationships between them, their physiological functions, 
the roles of oxidative stress in neurodegeneration, the 
mechanisms of cell death induced by oxidant species, and 
the available means of protecting neurons against oxidative 
damage. 

 
2. REACTIVE OXYGEN SPECIES IN BIOLOGICAL 
SYSTEMS 
 
2.1. Nature and reactivity 

Although oxygen (O2) is essential to life, it is an 
interesting fact that toxicity can result from its excessive 
levels (1), and it can also play a role in molecular damage 
through its radical and non-radical derivatives named 
reactive oxygen species (ROS), which are molecules 
chemically reactive to different degrees (2-5). ROS are 
usually low-molecular-weight intracellular oxygen free 
radicals with an unpaired electron and the terms ROS and 
oxygen free radicals are sometimes considered equivalent 
and used interchangeably (6), though erroneously, as some 
ROS, such as hydrogen peroxide (H2O2), are not free 
radicals. A free radical is defined as any species capable of 
independent existence that contains one or more unpaired 
electrons (7). Because free radicals are partially reduced 
and contain an orbital with an unpaired electron, they are 
chemically reactive, and in order to gain stability, they 
“steal” electrons (hence the term “electron lovers”) or 
hydrogen atoms from their neighbors, turning these 
molecules also to radicals (8,9), and thereby instigating a 
continuous chain of reactions. Reactive oxygen species 
include superoxide anion radical (O2

.-), H2O2 and the 
hydroxyl radical (.OH). The one-, two- and three-electron 
reductions of molecular O2 generate, respectively, 
superoxide, H2O2 and hydroxyl radical (10), but the 
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reductions of H2O2 are generally slower than those of 
superoxide (11). The superoxide anion, obtained by the 
univalent reduction (addition of an electron) of triplet-state 
molecular oxygen (3O2) (12), is not highly reactive, even 
though it is a free radical. This is because it lacks the ability 
to penetrate lipid membranes and is therefore enclosed in 
the compartment where it is produced (6). However, it can 
generate more reactive radical species (11). For example, it 
could react rapidly with nitric oxide (NO) to produce the 
highly toxic radical, peroxynitrite (ONOO-) (12), and can 
also be converted to H2O2 by the process of dismutation 
(two molecules of superoxide dismutate to H2O2 and 
molecular oxygen), catalyzed by the enzyme superoxide 
dismutase (SOD) (11), of which there are three isoforms 
(SOD1, SOD2, SOD3) (13), or by metal complexes, 
especially of copper (11). The peroxynitrite generated by 
the reaction between superoxide and NO has the activity of 
the hydroxyl radical and nitrogen dioxide radical, although 
it does not readily decompose into these entities (14), and 
can also nitrate and hydroxylate directly aromatic rings on 
amino acid residues as well as react readily as a potent 
oxidant with sulfhydryls and zinc-thiolate (14,15). 
Peroxynitrite can protonate rapidly at physiological pH to 
the hydroxyl radical-generating peroxynitrous acid 
(ONOOH) (16,17) and is also capable of reacting with 
carbon dioxide to form nitrogen dioxide and carbonate 
radical (15,16,18).  

  
Transition metals such as iron and copper can 

catalyze the formation of oxyradicals, as autoxidation of 
metal complexes can generate superoxide radical (11). 
Hydrogen peroxide is not a free radical, and is often 
considered-like superoxide- only mildly reactive, but 
because it is stable (with a long half-life), produced by 
almost all tissue types where its concentrations can rise, 
and has the ability to penetrate biological membranes by 
diffusing within and across cells, it is highly important 
(10). In fact, a decrease in intracellular superoxide or an 
increase in H2O2 could lead to cytosolic acidification by 
shifting the cytosolic pH to a significantly acidic level (19). 
The toxicity of H2O2 is usually as a result of its profound 
ability to traverse cellular membranes -unlike superoxide- 
and the production of the extremely toxic hydroxyl radical 
through its reaction with transition metals, since in the 
presence of such transition metal ions as iron or copper, 
which are often bound in complex with proteins or other 
molecules, H2O2 can undergo a one-electron reduction in 
the Fenton reaction (Reaction 1), leading to the production 
of the hydroxyl radical (6,20) (which is the most reactive 
and most toxic of the ROS), although it can also react with 
organic peroxides to form alkoxyl or hydroxyl radicals 
(21).  
 
H2O2 + Cu+/Fe2+ →   .OH + OH- + Cu2+/Fe3+   (Reaction 1) 

 
The metal ions can be recycled by superoxide as shown in 
Reaction 2 
 
Cu2+/Fe3+ + O2

.-  → Cu+/Fe2+  +  O2       (Reaction 2) 
 
A combination of Reactions 1 and 2 produces the 

Haber-Weiss reaction. Hydrogen peroxide could also serve 

as an intermediate in the production of the more reactive 
hypochlorous acid (HOCl) through the action of 
myeloperoxidase present in the phagosomes of neutrophils 
(22). 
 
2.2. Sources in biological systems 

ROS can be generated in biological systems 
through cellular respiration, several enzyme systems, 
endogenous metabolism and receptor-mediated events. 
In the process of generating energy during aerobic 
metabolism, cells reduce oxygen to water and there is 
transfer of electrons, the result of which is the leakage 
of high-energy electrons resulting in the formation of 
ROS. It is estimated that 2-4% of the oxygen consumed 
during oxidative phosphorylation in the mitochondria is 
converted to ROS. Superoxide is the major oxygen free 
radical produced, generated by up to 1% of the 
mitochondrial electron flow (13), and its formation 
could occur spontaneously in the electron-rich aerobic 
environment in the neighbourhood of the inner 
mitochondrial membrane (6). The part of the electron 
transport chain that actually uses oxygen is the terminal 
oxidase enzyme, cytochrome oxidase (23). In addition to 
the mitochondrial generation, superoxide radical could 
also be produced through the activity of the electron 
transport chain in the endoplasmic reticulum (24), but 
apart from these sources, NADPH oxidase also 
generates a significant amount of ROS in the cell (25). It 
is a multi-component, membrane-associated enzyme that 
catalyzes the one-electron reduction of oxygen to 
superoxide using reduced nicotinamide adenine 
dinucleotide (NADH) or reduced nicotinamide adenine 
dinucleotide phosphate (NADPH) as the electron donor. 
Both superoxide anion and H2O2 are established 
products of the “respiratory burst” when the plasma 
membrane NADPH oxidase of neutrophils and 
macrophages is activated (26). Either of them is also 
produced endogenously by flavoenzymes such as 
xanthine oxidase (27-29). When accumulated 
hypoxanthine and xanthine are converted by xanthine 
oxidase to uric acid, superoxide anion is produced. This 
xanthine oxidase can derive from xanthine 
dehydrogenase through a calcium-dependent conversion 
(involving calcium-activated peptidases, such as calpain 
I) under conditions of energy failure and elevated 
intracellular calcium levels (30). Other enzymes capable 
of producing superoxide are lipoxygenases and 
cyclooxygenases (31,32). 

 
Calcium-dependent activation of nitric oxide 

synthase (NOS) can produce the gaseous free radical, nitric 
oxide. Several enzymes in the brain, including monoamine 
oxidase (MAO), tyrosine hydroxylase and L-amino oxidase 
generate H2O2 as a normal by-product of their activity, 
while auto-oxidation of endogenous substances such as 
ascorbic acid and catecholamines also yields H2O2. 
Phospholipase A2 (PLA2), when activated in a Ca2+-
dependent process, can generate arachidonic acid from 
membrane phospholipids and arachidonic acid could in turn 
yield superoxide anion when subsequently metabolized 
through the cyclooxygenase or lipoxygenase pathway that 
leads to the production of eicosanoids.  
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There is also evidence for receptor-mediated 
generation of ROS. Glutamate receptor activation is now 
known to be a major source of ROS inducing oxidative 
stress in the brain, where excessive stimulation of 
glutamate receptors results in excitotoxicity (30). 
Overstimulation of the population of glutamate receptors 
sensitive to N-methyl-D-aspartate (NMDA) leads to 
significant elevation of intracellular calcium concentration, 
which in turn generates ROS (superoxide and H2O2) 
through the activation of several calcium-dependent 
enzymes and processes (33). By damaging neurons, 
oxidative stress generated by ROS could itself promote the 
release of excitatory amino acids (34); the ROS could also 
reduce glutamate uptake by glial cells, prevent glutamate 
conversion to glutamine by inactivating glutamine 
synthetase (35), or damage glutamate transporters (36). 
Some neurons and glia contain transient receptor potential 
melastatin-related (TRPM)2 cation channels that rapidly 
permit entry of calcium ions in the presence of ROS such 
as H2O2 (37). A major endogenous route for the generation 
of NMDA receptor ligands and some cytotoxic compounds 
is the kynurenine pathway of metabolism of the amino acid 
tryptophan. The kynurenine pathway metabolizes over 90% 
of dietary tryptophan that is not used in protein synthesis to 
generate the essential co-factors nicotinamide adenine 
dinucleotide (NAD) and nicotinamide adenine dinucleotide 
phosphate (NADP). Products of this pathway include 
quinolinic acid, an endogenous agonist ligand able to 
activate selectively the NMDA receptors (38,39), and 
kynurenic acid, a broad-spectrum glutamate receptor 
antagonist that acts at the strychnine-resistant, glycine-
sensitive site on the NMDA receptor (39,40). The 
kynurenine pathway products known to generate substantial 
levels of ROS include quinolinic acid, 3-hydroxyanthranilic 
acid and 3-hydroxykynurenine. 3-hydroxykynurenine has 
been reported to be the most toxic of all kynurenines or 
tryptophan metabolites, as it generates substantial levels of 
H2O2 (41,42) and is relevant to the pathophysiology of a 
number of neurodegenerative conditions such as 
Huntington’s disease (43).      
 
2.3. Physiological roles in cell signaling 

Although not the focus of this review, it is 
essential to first of all highlight the physiological relevance 
of ROS (superoxide and H2O2 in this context) before 
focusing on their pathological roles, as this enhances a 
better appreciation of their concentration- and context-
dependent differential effects. ROS are produced and 
degraded by all aerobic organisms, and this leads to either 
physiological concentrations required for normal cell 
function, or excessive quantities, a state referred to as 
oxidative stress, as discussed later in this review (6). It is 
generally believed that low levels of ROS, especially H2O2 
and superoxide, are involved in cellular signaling and may 
thus be beneficial and necessary for the maintenance of 
organism’s adequate physiological functioning, while high 
concentrations are damaging, leading to cell death (26,44). 
ROS can induce increases in cytosolic calcium (33) and 
their signal cascades are involved in cell growth, cell death, 
mitogenesis, angiogenesis and carcinogenesis (25). Growth 
responses have been shown to be elicited by H2O2 in mouse 
osteoblastic cells (MC3T3) (44,45). Besides, exogenously 

added superoxide and H2O2 as active oxygen species can 
stimulate growth and growth responses in several 
mammalian cell types when added to the growth medium, 
with the effects of exogenous superoxide on cells being 
extremely rapid (44). Interestingly, it has also been reported 
that a number of polyunsaturated fatty acids (PUFAs) can 
promote the growth of many cell lines when added to 
cultures at low concentrations, whereas high concentrations 
are inhibitory to growth (44). In addition, superoxide and 
H2O2 could stimulate the expression of early growth-
regulated genes such as c-myc, c-fos, c-jun, erg-1, KC and 
JE. Hydrogen peroxide can cause protein phosphorylation 
(46), activation of protein kinases (e.g., protein kinase C), 
and activation of serum-response elements in the promoters 
of early growth-response genes (45). ROS can also cause 
oxidative inactivation of phosphatases and activation of 
transcription factors (47). For example, they stimulate 
tyrosine kinase activity (48), regulate mitogen activated 
protein kinases (MAPKs) (JNK, p38MAPK and ERK) and 
activate transcription factors Nuclear Factor-kappa B (NF-
kappaB) and Activator Protein-1 (AP-1) (12). In neuronal 
cells, a role has been demonstrated for ROS in nerve 
growth factor (NGF) signaling (12). Such findings have led 
to suggestions that these ROS might function as mitogenic 
stimuli through biochemical processes common to natural 
growth factors (44). Again, the observation that superoxide 
or its dismutation product, H2O2, is released by cells, either 
constitutively in the case of tumor cells, or following 
cytokine stimulation, has provoked the speculation that 
they might serve as a sort of “autocrine” growth stimulation 
system or a means of “intercellular communication” (26). It 
appears that the growth responses induced in normal cells 
by exogenous ROS require the additional presence of some 
serum components, in which case the ROS are thought to 
be augmenting the effects of natural growth factors (44). 

     
Both superoxide and H2O2 have also been found 

to be involved in cellular defense system, as they could be 
produced in vivo through inflammatory cells in the vicinity 
of a tumor, or at an inflammation site, and are products of 
the “respiratory burst” when the NADPH oxidase of 
neutrophils and macrophages is activated (26,49). They are 
therefore relevant to the ability of the cells to fight infection 
or invading organisms. Superoxide can be released by both 
phagocytic (50) and non-phagocytic cells (51), by primary 
fibroblasts (52), and by endothelial (53) and epithelial cells 
(54). In a number of these cases, the release becomes 
significantly enhanced by cytokines such as interferon and 
interleukin-1, and there is involvement of protein kinase C 
(55). The production of ROS in non-phagocytic cells 
involves the activation of several signaling pathways such 
as cytokine receptors, G-protein-coupled receptors and 
receptor tyrosine and serine/threonine kinases (47).  

  
In relation to growth factors, an example of a 

defined role for ROS in the context of angiogenesis is the 
involvement of NADPH oxidase-derived ROS in vascular 
endothelial growth factor receptor 2 (VEGFR2)-mediated 
signaling linked to endothelial cell migration and 
proliferation, VEGF being a potent angiogenesis factor 
(56). In another capacity, ROS have been shown to be 
important in controlling the transcriptional activity of the 
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hypoxia-inducible factor-1 (HIF-1), which is believed to be 
the master regulator of the hypoxia response and is known 
to regulate dozens of genes involved in the control of 
metabolism, angiogenesis and metastasis (57-59). The 
angiogenic potency of bone marrow cells, the implantation 
of which induces therapeutic angiogenesis, was shown to 
be enhanced by their short-term pre-treatment with low-
dose H2O2 (60). In relation to oncogenesis, it was recently 
reported that the effect of intracellular ROS is dependent on 
the ratio of intracellular superoxide to H2O2: while a 
predominant increase in superoxide supports cell survival 
and promotes oncogenesis, a preponderance of H2O2 
prevents carcinogenesis by activating cell death signaling 
(19). ROS are now known to act at different stages of 
carcinogenesis, thus playing multiple roles in oncogenesis, 
including mutagenicity and effects on tumor initiation, 
promotion and progression (61).    
 
2.4. Induction of oxidative stress  

While low levels of ROS have a number of useful 
physiological roles and are involved in cell signaling, their 
excessive levels result in a state commonly referred to as 
oxidative stress, defined as an imbalance between free 
radical-generating and free-radical scavenging systems, in 
favor of the former, a situation that arises when the amount 
of free radicals is increased or when the levels of 
antioxidant enzymes are decreased (62-65), leading to 
oxidative damage. Because of their high reactivity, ROS 
are prone to causing damage and are thereby potentially 
toxic, mutagenic, or carcinogenic (6), their intracellular 
production threatening the integrity of various 
biomolecules including proteins (66), lipids, and nucleic 
acids such as DNA (67,68), as they oxidize such molecules 
(68), although it has to be appreciated that there is always a 
basal level of oxidative damage to these biomolecules (7, 
69). Cellular damage resulting from oxidative stress has 
been linked to the aging process (70) and a wide variety of 
pathological conditions including atherosclerosis (71), 
carcinogenesis (72), osteoporosis (73) and 
neurodegenerative disorders (30). Damage can be caused 
through a single reaction, a chain reaction, or a branching 
mechanism (11). A single reaction may not cause 
pronounced damage. A chain reaction results when a 
radical such as the hydroxyl radical reacts with a 
biomolecule, creating another radical, and only when a 
radical reacts with another radical or with a transition-metal 
ion would this vicious trend stop. The process of branching 
results in extensive damage (11). Chain reactions when 
initiated generate numerous toxic reactants that rigidify 
membranes by cross-linking (30). The oxygen radicals can 
occur as alkyl or peroxyl radicals in lipids (74) and notably, 
a major consequence of oxidative stress is lipid 
peroxidation, which results from an interaction of ROS 
with polyunsaturated lipids in cell membranes (75). 
Subsequently, changes occur in structure, function and 
permeability of the membrane, leading ultimately to cell 
death. Lipid peroxidation can decrease membrane fluidity, 
increase membrane leakiness, damage membrane proteins 
and inactivate receptors, enzymes and ion channels (7). 
Oxidative stress can increase Ca2+, thus activating PLA2, 
which can liberate arachidonic acid from membrane 
phospholipids (17). This arachidonic acid can undergo lipid 

peroxidation (76) and also act as a substrate for eicosanoid 
synthesis. Low levels of H2O2 can accelerate 
cyclooxygenase action on PUFAs, leading to prostaglandin 
synthesis (77). End-products of lipid peroxidation can also 
have direct damaging effects: for example, the increased 
formation of isoprostanes (78), biochemical markers of 
oxidative stress (73), has been observed in many human 
diseases (79).  

 
Although superoxide and H2O2 at high 

concentrations could induce oxidative stress resulting in 
oxidative damage, the hydroxyl radical is possibly capable 
of doing more damage to biological systems than any other 
ROS, owing to its strong reactivity with biomolecules (6). 
It has been theorized that in excess of 50% of the free 
radical-mediated molecular destruction of cells is a direct 
consequence of the hydroxyl radical. Nevertheless, its 
absolute significance to cellular malfunction, diseases and 
aging has been difficult to define unequivocally (10). The 
hydroxyl radical is not generated directly by any known 
enzymatic reaction, but is produced by H2O2 through slow 
decomposition in the presence of Fe2+ by the Fenton 
reaction (30).  
 
2.5. Relationship with nitrosative stress 

Reactive nitrogen species (RNS), some of which 
are also free radicals, are equally a significant source of 
cellular damage when present in excessive amounts, as they 
induce nitrosative stress. Because they share a number of 
commonalities with ROS, we would consider them in some 
detail. Nitric oxide (NO), formerly identified as 
Endothelial-Derived Relaxing Factor (EDRF), is rather an 
odd member of the free radical family with a multiplicity of 
roles in the CNS and the periphery, including 
neurotransmitter functions and mediation of both 
proliferation and death, depending on tissue types and 
hence has been referred to as a Janus molecule. Studies of 
NO now mainly span the cardiovascular, nervous and 
immune systems (80). It is produced through the metabolic 
action of nitric oxide synthase (NOS) on L-arginine 
(oxidation of its guanidine group) with a stoichiometric 
formation of citrulline, though direct reduction of nitrite to 
NO has also been reported in the ischemic heart (81,82). 
Nitric oxide is known to be the mediator of tumoricidal and 
bactericidal actions of macrophages and is a likely 
transmitter of nonadrenergic, noncholinergic neurons (82). 
There are three isoforms of NOS: the calcium/calmodulin-
dependent neuronal NOS (nNOS or NOS1), the endothelial 
NOS (eNOS or NOS3), and the calcium-independent, 
inducible NOS (iNOS or NOS2). Neuronal NOS (nNOS) 
and eNOS are the constitutive nitric oxide synthases. The 
inducible form (iNOS) is now known to bind, S-nitrosylate 
and activate cyclooxygenase-2 (83). Physiologically, NO 
activates soluble guanylate cyclase (sGC), leading to 
increase in cyclic guanosine monophosphate (cGMP), 
although it is now also known to inhibit mitochondrial 
cytochrome c oxidase. Nitric oxide is similar to superoxide 
in many aspects in that it does not readily react with most 
biomolecules, despite its having an unpaired electron, but 
easily reacts with other free radicals (e.g., peroxyl and alkyl 
radicals), generating mainly less reactive molecules and 
thus functioning somewhat as a free radical scavenger (6). 
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In fact, it has been shown that nitric oxide inhibits 
peroxide-mediated endothelial toxicity (84). On the other 
hand, as mentioned earlier, it readily reacts with the 
superoxide radical, forming the extremely toxic 
peroxynitrite. The rate of this reaction is about three times 
faster than the rate at which superoxide dismutase (SOD) 
catalyzes the dismutation of superoxide radical to H2O2. 
Nitric oxide can also be converted to other RNS such as 
nitrosonium cation (NO+) or nitroxyl anion (NO-), 
depending on the microenvironment (85). The production 
of peroxynitrite provides a case for the existence of a co-
operative relationship between ROS and RNS. It is 
interesting to note that overstimulation of glutamate 
receptors causes the production of NO, superoxide and 
H2O2, and these species are now believed to be major 
mediators of the demise of neurons following excitotoxicity 
(86).  
 
2.6. Antioxidant defense systems 

Defense mechanisms to prevent or limit the 
damage caused by ROS are present in the body under 
normal circumstances (87). However, these defenses are 
complex, and tissues are equipped with different patterns of 
antioxidant defense, based on cell type and function, as 
well as on physiological states (88). Halliwell and 
Gutteridge (23) defined an antioxidant as “any substance 
that, when present at low concentrations compared with 
those of an oxidizable substrate, significantly delays or 
prevents oxidation of that substrate,” where the term 
“oxidizable substrate” includes every type of molecule 
found in vivo. The cellular antioxidant defense systems are 
classified into two groups, enzymatic and non-enzymatic, 
of which there are indirect- and direct-acting agents (68). 
The antioxidant enzyme systems include superoxide 
dismutases (SOD), superoxide reductases (SOR), catalases, 
peroxiredoxins (Prx), glutathione peroxidases (GPx) and 
other glutathione-related enzymes. The low-molecular-
weight antioxidant compounds include vitamin C (a 
hydrophilic antioxidant), vitamin E or alpha-tocopherol (a 
chain-breaking hydrophobic antioxidant), different 
selenium compounds, lipoic acid (thioctic acid) and 
ubiquinones, all of which interact with the mammalian 
thioredoxin system, a ubiquitous oxidoreductase system 
with antioxidant and redox regulatory roles (6,30). There 
are also low-efficiency ROS scavengers like free amino 
acids, peptides and proteins (89). In addition, there are free 
radical-induced cytoprotective genes, such as the 
antioxidant-like stress protein heme oxygenase-1 (HO-1), 
which catabolizes the pro-oxidant heme to generate 
biliverdin, iron, and the vasodilator carbon monoxide (CO). 
Elevated HO-1 activity has been shown to be protective 
against several pathological conditions (90). Biliverdin is 
subsequently converted by biliverdin reductase to bilirubin, 
an antioxidant that can scavenge lipid peroxyl radicals (91), 
while CO has both anti-apoptotic and anti-inflammatory 
properties (92).  

 
Superoxide dismutase (SOD) catalyzes the 

formation of H2O2 from superoxide radical. There are three 
forms of SOD expressed in the eukaryotic cells, encoded by 
three separate genes: the copper-zinc SOD (CuZnSOD) or 
SOD 1 found in the cytosol, the manganese-containing 

SOD (MnSOD) or SOD 2, localized to the mitochondrial 
matrix, and the extracellular form of CuZnSOD, which is 
expressed at low levels in plasma and extracellular fluids, 
where it partially protects NO by reducing the 
concentration of superoxide radical (93,94). When the 
activity of SOD is chronically elevated above normal, as 
occurs in Down syndrome subjects, it can be pro-oxidative, 
which is why the disease is believed to be, at least in part, a 
consequence of excessive free radical generation (10,95). 
Catalase (a hemoprotein with four heme groups) and 
glutathione peroxidase (GPx) (containing selenium as a 
prosthetic group) catalyze the breakdown of H2O2 to water 
and oxygen, with glutathione peroxidase being more 
important in neural tissue (87), perhaps partly because, 
relative to GPx which is found in high concentrations in the 
brain, there is little catalase in both grey and white matter 
(30). In addition, aside from its ability to eliminate H2O2, 
GPx is also involved in the detoxification of lipid peroxyl 
radicals (30) or lipid hydroperoxides (96). These lipid 
hydroperoxides can decompose to alkoxy radicals and 
aldehydes in the presence of Fe2+ (30). Glutathione 
peroxidase makes use of reduced glutathione (GSH), a 
tripeptide synthesized intracellularly (30), as a substrate 
that donates hydrogen and thus becomes converted to 
oxidized glutathione or glutathione disulphide (GSSG). 
Glutathione disulphide can be converted back to 
glutathione by glutathione reductase in an NADPH-
consuming process (12). Another cytosolic enzyme, 
quinone reductase, first noted for its protection against 
carcinogens, also catalyzes a two-electron reduction of 
quinones to hydroquinones, which are more stable and less 
reactive (97).   

 
Unlike superoxide anion and H2O2 whose cellular 

levels are regulated by antioxidant enzymes as mentioned, 
there are no analogous enzymes for regulating the hydroxyl 
radical, which may further explain the extreme reactivity 
and toxicity of the oxyradical. Its management therefore 
depends on the endogenous antioxidants ascorbate and 
reduced glutathione (GSH) (98,99). Interestingly, cells 
have also developed complex metal-transport systems that 
deliver copper and iron to metallo-enzyme and proteins, 
thus preventing the presence of unbound copper in the 
intracellular environment (33), a mechanism that may limit 
the Fenton reaction that generates the hydroxyl radical.   
 
3. OXIDATIVE DAMAGE IN 
NEURODEGENERATION 
 

Oxidative stress represents an important pathway 
leading to neuronal degeneration and is implicated in many 
neurodegenerative diseases (which could be familial or 
sporadic) including Alzheimer’s disease (AD), Parkinson’s 
disease (PD), Huntington’s disease (HD), amyotrophic 
lateral sclerosis (ALS) (Lou Gehrig’s disease) and 
Friedreich’s ataxia (FA) (33,100). Similarly, there is 
evidence of oxidative stress in conditions involving acute 
damage to the brain, such as trauma, stroke, hypoxic-
reperfusion and epilepsy (13,30,101). However, it is still far 
from clear whether oxidative damage is a cause or 
consequence of neurodegeneration. Although the aetiology, 
symptomatology and disease locus are not the same for all 
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neurodegenerative diseases, oxidative damage represents 
one of the identified rallying point for most of them (17). It 
is known that increasing age represents a major risk factor 
in neurodegenerative conditions, and normal aging is 
associated with a rise in the levels of copper and iron in the 
brain tissue (33). Consequently, the appealing nature of the 
oxidative stress hypothesis is related to its ability to explain 
the cumulative damage associated with the delayed onset 
and progressive nature of neurodegenerative conditions, 
and if the relationship between oxidative stress and 
glutamate neurotransmission is well dissected, it may lead 
to effective therapies for the management of the conditions 
without jeopardizing normal excitatory neurotransmission 
(30). The mitochondria play a pivotal role in the intricate 
relationship between oxidative stress and 
neurodegeneration, and a dysfunction of the cytochrome 
oxidase and the mitochondria is a common theme in the 
pathophysiology of neurodegenerative diseases (102,103).  

 
At this point, a brief overview of the major 

neurodegenerative conditions and their link to oxidative 
stress is useful. In AD, the major histopathological features 
are the deposition of senile plaques, accumulation of 
intracellular neurofibrillary tangles of hyperphosphorylated 
tau filaments, and oxidative damage (37,104-106). The 
senile plaques contain mainly amyloid beta (Abeta)-peptide 
derived from the proteolytic processing of the amyloid 
precursor protein (APP). The Abeta peptide is responsible 
for the development of AD, inducing neuronal injury 
through oxidative stress (107,108), although both APP and 
Abeta have been suggested to have a role in metal 
homeostasis and the latter could have an important 
physiological role as an antioxidant that is impaired by the 
aging process (33). Mutations have been identified in the 
APP gene, the gene encoding tau protein, the presenilin 
genes (PSEN1 and PSEN2) and the apolipoprotein E gene 
(APOE) (APOE4 protein significantly associated with 
sporadic AD) in AD (104-106). The presenilins seem to be 
responsible for the catalytic activity of the gamma-
secretase complex, the enzyme which processes APP to 
form Abeta (104). The site for Abeta deposition seems to 
be the striatum (109,110), a part of the brain where 
oxidative stress plays a predominant role in cell death (111) 
and which is highly susceptible to injury from ischemia and 
reperfusion (112). There is evidence for a role of Zn2+ in 
amyloid plaque formation, but the major sources of 
oxidative stress and free-radical production in AD are 
copper and iron when bound to Abeta, and the various 
forms of Abeta in the AD brain are commonly found to be 
oxidatively modified (33). The toxicity of synthetic Abeta 
in the presence of Cu2+ is inhibited by catalase, thus 
implicating H2O2 in the pathway (113).  

 
Idiopathic PD is a chronic, progressive disorder 

characterized by rigidity, tremor at rest, and bradykinesia, 
resulting from selective degeneration of neuromelanin-
containing neurons, most notably the nigral dopaminergic 
neurons projecting to the caudate-putamen (30). There is 
also the deposition of intracellular inclusion bodies which 
contain mainly the protein alpha-synuclein that is 
ubiquitously expressed in the brain (33), mutations of 
which result in the familial form of PD (114). The 

accumulation of neuromelanin is age-dependent and this 
pigment contains essentially products of dopamine redox 
chemistry. The catechol dopamine can generate H2O2 and 
the oxidative stress in PD could come from a failure to 
regulate dopamine-iron biochemistry (33). Interestingly, 
alpha-synuclein is known to modulate dopamine activity 
(33). Other mutations that have been identified in PD are in 
the genes encoding the proteins parkin, DJ-1, PINK-1 and 
LRRK2 (115).   

  
Huntington’s disease is a hereditary, autosomal 

dominant disorder with features such as disturbances in 
movement, psychiatric symptoms, and progressive 
dementia (30). The underlying mutation is an expanded 
CAG repeat in exon 1 of the coding region of the HD gene 
(unstable trinucleotide repeat on chromosome 4). The CAG 
triplet encodes the amino acid glutamine in the gene 
product huntingtin (116). The elongated polyglutamine 
(polyQ) stretch of mutant huntingtin therefore affects its 
interaction with huntingtin-binding proteins and increases 
their susceptibility to aggregation (117). In this condition, 
the medium spiny neurons in the striatum are lost (118). 
The pathology of HD has been linked to mitochondrial 
function and oxidative stress (30,116).  

 
Amyotrophic lateral sclerosis occurs in mid-life, 

due to a selective and progressive degeneration of the lower 
motor neurons in the spinal cord and the upper motor 
neurons in the cerebral cortex (30,33). It is characterized by 
the deposition in neural tissue of a misfolded protein, 
CuZnSOD (SOD1). The mutations lead to a toxic gain of 
function by the cupro-enzyme SOD, the nature of which is 
either due to misfolded aggregated forms of SOD or a pro-
oxidant activity of SOD generating ROS (33,119,120).  

 
Friedreich’s ataxia is due to an abnormal GAA 

trinucleotide expansion within the first intron of the gene 
encoding the mitochondrial protein frataxin, causing 
frataxin deficiency. Iron therefore accumulates in the 
mitochondria, precipitating oxidative stress that leads to 
cardiomyopathy and neurodegeneration (33).   

   
In all of these and other CNS disorders, the brain 

is at risk from oxidative damage due to high oxygen 
consumption (20% of the total basal O2 consumption of the 
body), critically high levels of both iron and ascorbate, 
relatively low levels of antioxidants (e.g., catalase levels 
are generally low in most brain regions), a tendency to 
accumulate metals and low regenerative capacity 
(17,33,121). In addition, microglia, the resident immune 
cells of the brain, produce superoxide and H2O2 upon 
activation; they also produce cytokines which can enhance 
more production of ROS and NO (17). Astrocytes equally 
produce cytokines through which they can be activated to 
generate NO from iNOS (17). The microglia and astrocytes 
are therefore major mediators of inflammatory processes in 
the brain (122). Some cytochromes P450 (CYPs) are also a 
source of ROS in certain brain regions (123).  

 
It is known that neurodegeneration increases with 

aging, particularly of the CNS, and this is related to damage 
inflicted by free radicals, as there are regions of increased 
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iron (which catalyzes free radical formation) within the 
brain and neural tissue which are rich in PUFAs and 
therefore susceptible to attack by free radicals (87). Also, a 
decrease in defense mechanisms with age causes increased 
oxidative damage and free radical generation, and in certain 
disease states such as ischemia, radicals can be produced at 
elevated rates (124). Similarly, damage to mitochondria can 
lead to the production of more ROS, causing further 
damage, and in AD, interference with mitochondrial ATP 
supply through mitochondrial damage could cause cells to 
increase Abeta production (125). It has been proposed that 
oxidative stress is involved in the aging process both by 
inducing damage to mitochondrial DNA and by other 
mechanisms (126,127), and the superoxide anion can 
inactivate enzymes involved in energy production and 
amino acid metabolism (128,129). In general, the hallmarks 
of oxidative damage resulting from toxic oxidative stress 
include alterations in mitochondrial lipids (e.g., cardiolipin) 
and mitochondrial proteins (e.g., aconitase and uncoupling 
protein 2), and increases in DNA base oxidation products, 
oxidative protein damage, and lipid peroxidation end-
products (130-133). Lipid peroxidation is one important 
cause of neuronal damage in neurodegenerative diseases 
and the accumulation of lipid peroxidation products like 
malondialdehyde (MDA) and 4-hydroxy-2,3-nonenal 
(HNE) has been demonstrated in affected regions in brains 
of AD patients (134). Other breakdown products linked to 
AD, PD and ALS include acrolein, F2-isoprostanes, and 
thiobarbituric acid-reactive substances (TBARS), elevated 
levels of which have been found in brain tissue, 
cerebrospinal fluid (CSF), or plasma. These may serve as 
markers of oxidative stress, as could changes in the 
endogenous defense systems (33). Oxidized and nitrated 
proteins can also accumulate, producing oxidative stress, 
especially when there is impairment of the ubiquitin-
proteasome system that is responsible for removing them 
(17). Increased levels of oxidative damage to DNA, lipids 
and proteins have been detected in post-mortem tissues 
from patients with PD, AD and ALS, and some of the 
observed changes may occur early in disease progression 
(130). Hydrogen peroxide is a mediator of damage in 
neuropathological conditions and has been shown to induce 
lipid peroxidation in rat brain homogenates (135). Its 
increased production in the CNS has been implicated in the 
pathogenesis of PD, AD, ischemic reperfusion and stroke 
(136). In PD, H2O2 generated from presynaptic Lewy body 
alpha-synuclein may be associated with neurodegeneration 
of nigral cell bodies in the substantia nigra and destruction 
to the nigrostriatal tract (137), while in AD, Abeta plaque 
builds up in the brain and causes intracellular accumulation 
of H2O2 (138). The use of H2O2 as an inducer of damage is, 
therefore, a potentially clinically important model of 
oxidative stress, although a number of reports have 
indicated that the modulatory and pathological 
consequences of H2O2 are often mediated by the hydroxyl 
radical and not by H2O2 per se (139,140). It should be 
pointed out here that H2O2 on its own is capable of causing 
damage in a number of ways, especially when it builds up 
in high concentrations. For example, as reported in drug-
induced apoptosis, it could inhibit the ATP-dependent 
Na+/H+ antiporter which regulates cytosolic pH, thus 

leading to profound acidification of the intracellular milieu 
(19). 

 
Relating to the roles of metal in 

neurodegeneration, it is agreed that iron is known to be 
critically vital to biological reactions in living cells and in 
the brain is required for sustenance of brain’s high 
respiratory activity, myelinogenesis, and for the production 
of many neurotransmitters including dopamine, 
noradrenaline, and serotonin and the generation of 
GABAergic activity (141), but the divalent state of iron 
makes it very reactive and therefore extremely toxic if its 
intracellular concentrations are not tightly regulated (142). 
The iron content of the brain is known to increase in early 
life to reach a maximum at about 30 years of age (17). Iron 
overload in the early stages of life has been reported to 
induce cognitive impairment, possibly by inducing 
oxidative damage in the brain (143). Iron, copper and other 
metals promote aggregation of proteins such as alpha-
synuclein and Abeta (17,33). This is why proteins such as 
ferritin and transferrin, which sequester transition metal 
ions, have neuroprotective properties. It is known that 
superoxide can release iron from ferritins (144), while 
peroxynitrite can displace iron from iron-sulfur proteins 
and copper from copper-containing proteins such as 
ceruloplasmin (145). Iron has been clearly identified with 
the pathology of PD, and iron, copper and zinc have all 
been associated with the progression of AD (121), although 
it is thought that iron deposition may be a late stage in 
tissue injury in PD or ALS (17). The proteins implicated in 
age-dependent neurodegenerative diseases (such as Abeta 
in AD, alpha-synuclein in PD, SOD1 in ALS and frataxin 
in FA) may bring about inappropriate reactions of Cu2+ or 
Fe3+ with oxygen (33). 
 
4. MECHANISMS OF OXIDATIVE NEURONAL 
DAMAGE AND DEATH 
 

Agents such as ROS which induce cell death in 
biological tissues bring about demise by either apoptosis or 
necrosis, which are the two classical extreme pathways of 
cellular death, each with its distinct features. This cell death 
pathway classification has been primarily based on 
morphological criteria (146). However, there is growing 
evidence that a number of death processes may 
simultaneously activate the two pathways, thus resulting in 
a form of “hybrid” death that is neither entirely apoptotic 
nor entirely necrotic (147-150). It is important to note that 
neuronal cell death induced by oxidative damage shares 
similarities with cell death in other tissues. Therefore, most 
of the pathways discussed here are also applicable to other 
tissues and even to neuronal injury resulting from non-
oxidative toxic stimuli.  

 
4.1. Apoptotic neuronal death  

Apoptosis is the basis of programmed cell death 
(PCD), a delayed form of cell death from less severe insults 
that is energy-dependent and associated with activation of a 
genetic program (151). It is an important mechanism for the 
selective elimination of mammalian cells distinct from the 
process of cell death by necrosis (152). Recent widespread 
interest in cell death processes has generated controversy 
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over definitions that distinguish apoptosis from other forms 
of cell death (153). For example, apoptosis was earlier 
defined as the process of cell death associated with caspase 
activation or caspase-mediated cell death, a view that 
presumes that caspases represent its final common 
mechanistic pathway (154), but this definition now needs to 
be expanded, as a number of caspase-independent apoptotic 
mechanisms have been recently reported, mainly involving 
the apoptosis-inducing factor (AIF). It seems there is no 
consensus yet on the classification of the different forms of 
PCD. In their own review, Krantic and colleagues 
highlighted a more-encompassing classification that is 
based on nuclear morphology, dividing PCD into classical 
apoptosis, apoptosis-like PCD, and necrosis-like PCD, 
respectively characterized by nuclear condensation that is 
‘crescent-like,’ partial or peripheral, or absent (101). 
Classical apoptosis is the best-known phenotypic 
expression of PCD, resulting in caspase activation. 
Apoptosis-like PCD is broader and includes caspase-
independent mitochondrial pathways. With regard to 
necrosis-like PCD, the cell death program is triggered by 
organelles other than mitochondria, such as lysosomes, 
endoplasmic reticulum (ER) and the nucleus, and by 
proteases other than caspases, such as cathepsins and 
calpains originating from lysosomes and the ER, 
respectively (101). Generally speaking, hallmarks of 
apoptosis include shrinkage of the cytoplasm, 
phosphatidylserine translocation and condensation of 
nuclear material into “clumps” (155,156). Subsequently, 
the nucleus undergoes fragmentation and the ER fuses with 
the plasma membrane, forming vesicles and convoluting its 
surface. The final stages of apoptosis witness cellular 
fragmentation forming membrane-bound apoptotic bodies 
that contain intact cytoplasmic organelles and nuclear 
fragments (157). 

 
There are two primary modes of apoptotic 

induction. One is through the death receptors in the plasma 
membrane, called the extrinsic pathway, and the other, the 
intrinsic pathway, is via mitochondrial dysfunction (158). 
The extrinsic pathway involves cell surface death receptors 
which are members of the nerve growth factor/TNF 
superfamily of receptors and include Fas (CD95/APO-1), 
tumor necrosis factor (TNF) receptor 1 (TNFR1), as well as 
death receptor (DR)-3, DR-4, and DR-5 (159-162). They 
can be activated by both cell surface-bound and soluble 
ligands such as FasL (CD95L), tumor necrosis factor-alpha 
(TNF-alpha), lymphotoxin-alpha (LT-alpha) and TNF-
related apoptosis-inducing ligand (TRAIL) (159,160). 
These receptors are widely distributed in the body and are 
often found in cells from the immune system and in many 
somatic tissues (161). Tumor necrosis factor type 1 
receptor (TNFR1) was shown to be required for Abeta 
protein-induced neuronal death (163). It is also becoming 
increasingly recognized from a molecular perspective that 
neuronal PCD consistently shows a unique property of 
pathological re-initiation of the cell cycle, as examined 
later in this review (101).  
  
4.1.1. Caspase-dependent mechanisms  

It is well recognized that in apoptosis, the 
effector molecules are the cysteine-dependent, aspartate-

directed proteases called caspases (cysteine-aspartate 
proteases), even though BAD (Bcl-XL/Bcl-2-associated 
death promoter) can initiate apoptosis and a reciprocal 
regulation of Bcl-2 and Bax expression seems to occur in 
glutamate-induced excitotoxicity (164). Activation of 
caspase-zymogens is an early event in the process of 
apoptosis. Once cytochrome c (a water-soluble, basic, 
heme-containing protein that binds to the anionic 
phospholipid cardiolipin, located exclusively on the inner 
mitochondrial membrane of eukaryotic cells) (165) is 
released from the mitochondria, it combines with apoptotic 
protease-activating factor-1 (Apaf-1) and the duo recruits 
and activates pro-caspase 9 to form the apoptosome by 
means of which cleavage and activation of pro-caspase-3 
into caspase-3 occur. There are upstream initiator caspases 
that begin the proteolytic cascade in apoptosis (caspases 8 
and 9), and downstream effector caspases that cleave 
cellular proteins (caspases 3, 6, and 7) (166). For the 
extrinsic pathway, the binding of members of the DR 
family (e.g. Fas–TNFR-1–TRAIL-R1) and their cognate 
ligands (167) results in an oligomerization of receptors 
and a subsequent activation of procaspase-8 and, 
depending on the cell type, active caspase-8 either 
cleaves and activates procaspase-3 directly or it cleaves 
the proapoptotic Bcl-2 protein Bid to tBid, which then 
recruits the mitochondrial apoptotic pathway, resulting 
in the activation of procaspase-3 and other effector 
caspases (168). It therefore means that the two pathways 
of apoptosis converge on caspase-3 induction. Both 
pathways are associated with activation of caspase-
activated DNase (CAD) and also with typical 
internucleosomal DNA fragmentation (169). There is, 
however, growing evidence that caspases and other 
apoptosis regulators participate, not only in cell death, 
but also in the control of cell cycle (166,170). 
 
4.1.2. Caspase-independent mechanisms         

It is now clear that a number of apoptotic events 
occur independently of caspase activation, and energy 
depletion and the generation of free radicals have been 
shown to contribute to caspase-independent neuronal death 
(171). The best example of an effector of caspase-
independent cell death is the AIF, which is normally 
localized to the inter-membrane mitochondrial space 
(172,173). AIF is a 67-kDa flavoprotein that is similar to 
bacterial oxidoreductases (172) and is evolutionarily 
conserved. It displays NADPH oxidase and 
monodehydroascorbate reductase activities (174). Upon 
mitochondrial outer membrane permeabilization (following 
cytotoxic insults such as oxidative stress from ROS), it 
translocates to the nucleus where it induces peripheral 
chromatin condensation and large (high-molecular-weight) 
DNA fragmentation. This translocation of AIF to the 
nucleus appears to be a general feature of apoptosis in 
mammalian cells (14,175). However, because AIF lacks 
any intrinsic endonuclease activity, once in the nucleus, it 
recruits a number of downstream nucleases including 
cyclophilin A and endonuclease G (176,177). Although its 
physiological role is not clear, it has been suggested to 
participate in scavenging ROS (178). DNA binding by AIF 
may be required for its apoptogenic function in the nuclear 
compartment (14). 



Oxidative neurodegeneration and neuroprotection 

3296 

4.1.3. Membrane Permeability Transition (MPT) 
This is the phenomenon whereby there is an 

opening of an unspecific pore, permeability transition pore 
(PTP), on the mitochondrial inner membrane, allowing the 
flow of solutes < 1.5 kDa out of the mitochondrial matrix 
(179). This leads to the collapse of the mitochondrial 
membrane potential, ψm. Cytochrome c leaks through the 
multiprotein complex (containing hexokinase, porin, and 
adenine nucleotide translocator (ANT)) (180) into the 
cytosol, where it combines with Apaf-1 to activate 
procaspase-9 to caspase-9, hence forming the apoptosome, 
which in turn activates caspase-3, the terminal caspase that 
executes the apoptotic command. Agents that block the 
PTP are therefore able to protect against apoptotic death. 
Such agents include cyclosporin A, which also blocks 
calcineurin (protein phosphatase 2B). The opening of the 
pore may be involved in cellular apoptosis, as AIF is 
released from the mitochondrial intermembrane space as a 
result of the destruction of the mitochondrial outer 
membrane after excessive mitochondrial matrix swelling 
(181). Permeability transition pore formation is enhanced 
by increased production of ROS (179).  
 
4.2. Necrotic neuronal death 

ROS at very high concentrations are able to 
induce neuronal death through necrosis, which, generally 
speaking, results from severe insults and is associated with 
changes in calcium and sodium ion homeostasis. It is 
generally believed that low concentrations of toxic stimuli 
induce apoptosis while high concentrations precipitate 
necrosis (182). For example, stimulation of cortical neurons 
with high NMDA concentrations causes necrosis, while 
low concentrations result in apoptosis (183). The duration 
and extent of calcium influx could determine the fate of 
neurons: survival, death by apoptosis, or necrotic lyses 
(183,184). Major morphological hallmarks of necrotic cell 
death include the swelling of cells and of organelles 
(mainly the mitochondria), followed by disruption of the 
organelles. There is early compromise of the integrity of 
the cell membrane, and the plasma membrane ruptures, 
permitting the leakage of cellular contents into the 
extracellular compartment. Random DNA degradation also 
occurs following histone proteolysis. Necrotic cell death is 
distinct from apoptotic cell death in a number of ways 
(151). Necrosis is largely energy (ATP)-independent, 
unlike apoptosis which requires energy to proceed. In fact, 
the ability or otherwise of the mitochondria to produce 
enough ATP may switch neurons towards one or the other 
of the two cell death types (182,185), thus establishing 
further the critical role of the mitochondria in the execution 
of cell death. Furthermore, in necrosis, large groups of 
adjacent cells are usually affected -as opposed to individual 
cells in apoptosis- and there is a promotion of an 
inflammatory reaction, unlike in apoptosis where no 
inflammation is evident. Overall, necrosis is usually a 
pathological event while apoptosis could either be 
physiological or pathological (151,186). 
 
4.2.1. Role of poly (ADP-ribose) polymerase (PARP)  

In the process of inducing neuronal cell death, 
ROS are able to activate poly (ADP-ribose) polymerase-1 
(PARP-1), which is the best known and most important of a 

family of abundant chromatin-bound nuclear proteins 
responsible for the repair of DNA strand nicks and breaks 
and important for the maintenance of genomic stability and 
nuclear homeostasis (14,187,188). PARP-1 generates 
nicotinamide and long-chained, branched polymers of 
ADP-ribose (PAR) from oxidized nicotinamide adenine 
dinucleotide (NAD+), attaching these polymers (50-200 
residues) to nuclear proteins including histones, 
topoisomerases I and II, DNA polymerases, DNA ligase-2, 
high-mobility group proteins, transcription factors, and 
itself (14,189,190). Poly (ADP-ribosyl)ation is a unique 
biochemical pathway, with PAR synthesis and degradation 
known to be present in all mitotic and post-mitotic cells 
with few exceptions in mammalian organisms (191). In 
response to DNA damage induced by substantial levels of 
ROS, PARP-1 activity becomes rapidly upregulated 500-
fold upon binding to DNA strands and breaks (14). This 
overactivation of PARP-1 leads to cell death by a 
mechanism that involves metabolic derangement resulting 
from the depletion of NAD+ and ATP, as the synthesis of 
every molecule of NAD+ requires four molecules of ATP. 
The continuous depletion of NAD+ and ATP over time 
brings about irreversible cellular energy failure and the 
demise of the cell in a characteristically necrotic manner 
(192,193), although PARP is also relevant to apoptotic cell 
death (194). Loss of energy-dependent cellular function 
also occurs through impairment of the oxidoreduction 
capacity of NAD+, which is required in the mitochondrial 
electron transport chain to maintain its proton gradient and 
thereby generate ATP (195). These observations underlie 
the suicide hypothesis. It is now recognized that caspase-3 
could inactivate PARP in order to turn off an energetically 
expensive DNA repair pathway and therefore maintain 
ATP levels required for the execution of apoptosis (196). 
The extent of oxidant-induced ATP depletion and cell fate 
could be modified by PARP inhibition (197).  

 
Recently, a number of other mechanisms have 

been mooted to explain the basis for cellular death from 
PARP-1 overactivation. The most popular at the moment is 
the now established link between overactivation of PARP-1 
and apoptosis, specifically in relation to the induction of 
AIF, as it is known that free radical/oxidant attacks (e.g., 
induced by H2O2) and a variety of environmental and 
chemical stimuli (e.g., the DNA-alkylating agent N-methyl-
N'-nitro-N-nitrosoguanidine or NMDA) can trigger the 
overactivation of PARP-1 in response to DNA damage 
(14,188). This process in turn stimulates the translocation 
of AIF from the mitochondrial intermembrane space to the 
nucleus, triggering chromatin condensation, massive DNA 
fragmentation and nuclear shrinkage (14,188,198). 
Following this, phosphatidylserine becomes exposed, 
cytochrome c is released at a later time point and caspase-3 
is activated. However, AIF could mediate both caspase-
dependent and caspase-independent cell death, although the 
cross-talk between AIF and the caspase pathway is 
complex (195). Pharmacological inhibition of PARP-1 or 
genetic knockout of PARP-1 has been shown to be 
therapeutically efficacious in experimental models of 
disorders characterized by DNA damage, such as ROS-
induced injury, ischemia, ischemia-reperfusion injury, 
diabetes, shock, inflammation, cancer, excitotoxic neuronal 
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cell death (14,199,200), 1-methyl-4-phenyl-1, 2, 3, 6-
tetrahydropyridine (MPTP)-induced Parkinsonism and 
traumatic spinal cord injury (200), most of which are 
associated with oxidative damage. The termination of the 
toxic action of PARP-generated poly (ADP-ribose) 
polymer (PAR) occurs through the rapid action of another 
enzyme, poly (ADP-ribose) glycohydrolase (PARG), which 
catalyzes the hydrolysis of PAR into free ADP-ribose 
(201,202). In the CNS, PARP and PARG are present 
throughout the brain and spinal cord (195). 
 
4.3. “Hybrid” or “intermediate” cell death 

It is now recognized that in most cases, neuronal 
death occurring following damage by ROS and other 
neuronal insults (e.g., excessive levels of glutamate leading 
to excitotoxicity) shows features of both apoptosis and 
necrosis, an observation that challenges seriously the binary 
classification of cell death. This emerging pattern now 
constitutes what is now referred to as “hybrid cell death” or 
“intermediate” type of cell death, which has recently 
become a subject of intense investigation 
(147,148,186,203). There is currently a plethora of terms 
used to describe distinct forms of cell death (e.g., anoikis 
and necroptosis). In many neuropathological conditions, 
apoptosis and necrosis occur simultaneously (204,205). In 
experimental models of stroke, neuronal death in the 
ischemic core is necrotic, but in the less severely affected 
penumbra or border regions, it is delayed and apoptotic 
(206-209). The resonating message from these findings is 
that it may take some time before we attain a reasonably 
clear understanding of cell death processes.  
 
4.4. Activation of signaling cascades 

Reactive oxygen species have ability to regulate 
several signaling cascades involving tyrosine phosphatases, 
tyrosine kinases, protein kinases (e.g., PKC), MAPKs 
(ERK1/2, JNK, p38), and transcription factors such as NF-
kappaB, hypoxia-inducible factor-1alpha (HIF-1alpha), 
AP-1 and NF-E2-related factor-2 (Nrf-2) (6,210,211). ROS 
such as H2O2 are able to inhibit protein tyrosine 
phosphatases, although the high concentrations required for 
such oxidative inhibition call to question the physiological 
relevance of the inactivation. In these conditions, the 
activities of many protein tyrosine kinases (e.g., Lck, Fyn, 
Syk, ZAP70) were also found to be increased. The MAPK 
species JNK and p38 have been shown in several studies to 
be strongly activated by ROS, and H2O2 in particular is a 
strong messenger for NF-kappaB activation (211,212). 
Again, there is a link between oxidative stress, the 
phosphoinositide-3 kinase (PI3K)/AKT pathway and the 
MAPK pathway (213). The transcription factor Nrf-2 
influences cytoplasmic responses to oxidative stress by 
transcriptional activation of genes involved in GSH 
synthesis, including xCT, gamma-GCLC, gamma-GCLM, 
and GPx (214-216). Nrf-2 is a basic leucine zipper 
transcription factor that binds to antioxidant response 
element (ARE) sequences in the promoter regions of 
specific genes. Its inactive form is bound to the Kelch-like 
ECH-associating protein 1 (Keap1) in the cytoplasm, under 
physiological conditions. However, following oxidative 
stress, Nrf-2 is released from Keap1, and is translocated to 
the nucleus (216,217), where it interacts with the small Maf 

proteins FosB, C-Jun, JunD, ATF2, or ATF4. The 
complexes (heterodimers) then interact with ARE promoter 
elements to induce gene expression (216,218). With regard 
to protein kinases, the serine/threonine kinase protein 
kinase C (PKC)-alpha and some other PKC isoforms can be 
activated by H2O2 in a phospholipid-independent process 
involving tyrosine phosphorylation in the catalytic domain, 
while ROS can also activate cRaf. The oxidative activation 
of PKC-alpha can be enhanced in the presence of vitamin A 
(211). It should be noted that there are a number of other 
signaling pathways associated with ROS that are not 
discussed here.      
 
4.5. Aberrant cell cycle re-entry 

It has now been recognized that one of the 
possible mechanisms by which oxidative stress induced by 
ROS leads to neuronal death is forced re-entry of such 
neurons into the cell cycle, and the concept has developed 
into an active line of research. There is growing evidence 
that the death of terminally differentiated neurons is 
intimately linked to aberrant re-entry into the cell cycle, a 
phenomenon that had been reported in AD patients, Down 
syndrome patients and in many neurodegenerative 
models (13). Evidence for this association is based on 
observations that tumors arising from terminally 
differentiated neurons are very rare, and forced 
expression of oncogenes in cells that are terminally 
differentiated causes cell death instead of cell 
proliferation (219). Many animal models have also lent 
support to this hypothesis. Neurotoxic insults such as 
kainic acid and Abeta peptides have been shown to 
induce unscheduled cell cycle re-entry, as indicated by 
increased neuronal expression of cell cycle proteins 
such as cyclin-dependent kinase 2 (CDK2), cyclin E, 
cyclin A and E2F-1, increased phosphorylation of the 
retinoblastoma (Rb) protein, and the replication of DNA 
prior to apoptosis (220-222). However, despite the link 
between oxidative stress and aberrant cell cycle 
abnormalities, the mechanisms involved are still far 
from clear, although the possible involvement of the 
AIF has been shown (178). Besides, there is another 
interesting but alternative concept that espouses cell 
cycle re-entry in neurons as a prerequisite for DNA 
repair (223). A better understanding of these intriguing 
phenomena is therefore highly important and desirable, 
as both oxidative stress and cell cycle re-entry have 
been implicated in the onset of later-onset 
neurodegenerative diseases (13,101).  
 
5. PROTECTION AGAINST OXIDATIVE DAMAGE 
AND DEATH: EXISTING AND EMERGING 
MECHANISMS AND CURRENT AND FUTURE 
CHALLENGES 
 

In order to protect against oxidative damage and 
death of neurons, a number of strategies could be adopted 
which either limit the levels of ROS in the brain or reduce 
the damage caused by oxidative stress. The protective 
mechanisms include the regulation of oxygen, boosting 
antioxidant levels, (receptor-mediated) lowering of ROS 
production, repairing oxidative damage, and eliminating 
unwanted (damaged) proteins and lipids.  
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5.1. Regulating oxygen, boosting antioxidant levels and 
lowering ROS production 

The brain requires an abundant supply of oxygen. 
However, if the brain oxygen levels are not allowed to go 
beyond what is required for normal physiological 
functioning, it is possible to reduce neuronal damage due to 
oxidative stress, since excessive ROS production would be 
avoided (17,224,225).  

 
Measures to boost antioxidant levels or lower 

ROS production could also prove significantly 
neuroprotective. It was reported that overexpression of 
antioxidant enzymes protected cultured hippocampal and 
cortical neurons from necrotic insults (226). Both 
superoxide and H2O2 are involved in reactions that produce 
more toxic ROS. Therefore, a promising neuroprotective 
strategy would be to reduce or remove the superoxide and 
H2O2 produced in the cell. As mentioned earlier, SOD 
converts superoxide to H2O2, thus removing superoxide; 
but what happens to the H2O2 produced? Catalase could 
destroy the generated H2O2, but it is not abundant in the 
brain or present in the mitochondria where much of the 
superoxide is produced (17,227). Fortunately, however, 
there are other enzyme systems which remove H2O2- 
glutathione peroxidases (GPx) and peroxiredoxins. 
Glutathione peroxidases are selenium-containing enzymes 
that reduce H2O2 through the oxidation of reduced 
glutathione (GSH). Glutathione reductases would then 
convert the oxidized glutathione (GSSG) back to GSH. 
They have an additional ability to act on other peroxides 
(228). Astrocytes may assist neurons to boost GSH levels 
by releasing a GSH precursor, cysteinyl-glycine (17,229). It 
appears that the peroxiredoxins are the most important 
removal systems for H2O2 in animals and they can also 
reduce organic peroxides (230). Although they may remove 
H2O2 more slowly than GPx, the peroxiredoxins are present 
in large amounts in subcellular organelles and cytosol (230) 
and are effective at relatively low concentrations (low Km). 
However, when levels of H2O2 are too high, peroxiredoxins 
can be inactivated, thus causing neuronal damage (130).   

 
Apart from the antioxidant enzymes, 

administration of antioxidant vitamins, molecules, or 
supplements, such as ascorbate (vitamin C), alpha-
tocopherol (Vitamin E), melatonin, uric acid, lipoic acid, 
creatine, coenzyme Q/Q10 (ubiquinone), curcumin, 
carotenoids and flavonoids, is a promising strategy in 
protecting against oxidative neuronal damage. Growth 
factors such as neurotrophins and steroid hormones also 
have the capacity to prevent or mitigate damage due to 
oxidative stress. It should be emphasized that the 
mechanisms by which these different substances exert 
protection against oxidative damage are diverse. 
Cerebrospinal fluid (CSF) levels of ascorbate are high and 
neurons concentrate and take it up readily. On the other 
hand, while astrocytes also concentrate ascorbate, they take 
up dehydroascorbate for conversion to ascorbate 
intracellularly (99). Ascorbate is important for CNS 
function (231) and is generally anti-oxidant in its action 
(232,233) as well as having other cellular functions (234) 
leading to neuroprotection and improvement of cognitive 
function (235). However, the outcome following its 

administration could also be pro-oxidant, especially when 
iron or copper are present, which can be reduced to form 
hydroxyl radicals from H2O2 and can also decompose lipid 
peroxides (236). With regard to the transition metals iron 
and copper, a number of proteins could prevent their 
oxidation and thus avoid the Fenton chemistry that leads to 
toxic ROS formation. Examples of such proteins are 
ceruloplasmin (237), haptoglobin, (238), metallothioneins 
(239), histidine-containing dipeptides (e.g., carnosine) 
(240) and heme oxygenase (HO), which degrades heme, 
producing carbon monoxide (CO) and biliverdin. Biliverdin 
or bilirubin (produced from biliverdin) also has some 
antioxidant properties (241), although excessive bilirubin 
causes neurotoxicity (242). Both the inducible HO-1 and 
constitutive HO-2 forms are present in the brain, where the 
levels of the former are up-regulated following bleeding 
and ischemia-reperfusion and in some neurodegenerative 
diseases including AD (243,244). Metal chelators such as 
desferrioxamine could also offer protection against 
oxidative damage by binding iron, thus preventing its 
availability for neurotoxic transformation (245). 

  
Neurotrophins promote the growth and survival 

of neurons and also have protective effects against 
oxidative stress. They include brain-derived neurotrophic 
factor (BDNF), glial cell line-derived neurotrophic factor 
(GDNF), vascular endothelial growth factor (VEGF) and 
nerve growth factor (NGF) (33,246,247). Gonadal steroid 
hormones such as estradiol and progesterone possess 
antioxidant properties too. Estrogens are known to have 
antioxidant and neuroprotective effects, as they function as 
radical scavengers and can inhibit lipid peroxidation both in 
vitro and in vivo (248-250). 17-Beta estradiol has been 
shown to reduce lipid peroxidation induced by quinolinic 
acid in brain homogenates (251), while estrogen, 
progesterone, testosterone and luteinizing hormone all have 
neuroprotective properties and can influence oxidative 
stress and Abeta metabolism in AD (252). 

 
Some of the antioxidant molecules such as alpha-

tocopherol (vitamin E) are tightly regulated (17,253). This 
compound acted synergistically with coenzyme Q to 
improve learning ability in old mice (254), the latter having 
been shown to offer protection against striatal lesions and 
MPTP toxicity and in Huntington’s disease (255) through 
its electron transport action in mitochondria and/or the 
antioxidant property of ubiquinol (17). Vitamin E, through 
a phenolic hydroxy (OH) group, scavenges peroxyl radicals 
thereby inhibiting lipid peroxidation (256). It has been 
reported to reduce lipid peroxidation induced by nitric 
oxide in rat brain homogenates (257).  

 
Another endowment from nature is a wide range 

of polyphenolic compounds, mostly flavonoids, found in a 
variety of natural diets including fruits, vegetables, grains, 
nuts, tea and wine (258), which have been shown to have a 
diverse range of biochemical and pharmacological 
activities (259), including antioxidant, anti-inflammatory, 
anti-carcinogenic, anti-lipidemic, anti-infective and anti-
apoptotic properties (260,261). The mechanisms by which 
they protect cells against oxidative damage are not well 
known, although they may interact with mitochondria and 
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signaling cascades (e.g., MAPKs) (262). The Ginkgo 
biloba extract (rich in flavonoids) orally administered has 
been suggested to protect against the development of 
dementia (17). The flavonoids belong to several chemical 
classes. Examples of flavonoids are epigallocatechin 
gallate, quercetin, luteolin, hesperitin, naringin, naringenin, 
kaempferol, rutin, neohesperidin and resveratrol. A current 
challenge in antioxidant therapy is to develop molecules 
capable of rapidly penetrating the blood-brain barrier 
(BBB). Although natural antioxidants such as carotenoids 
and flavonoids do not enter the brain readily in the adult 
(130), some are able to cross the BBB (263-265). It has 
been suggested that many of the other actions of flavonoids 
unrelated to antioxidant effects may be responsible for 
some or all of their neuroprotective actions (265). The 
complexity of natural dietary products containing several 
flavonoids makes interpretation of their apparent 
antioxidant effects difficult. Again, there is a possibility 
that some of the biological actions of these compounds are 
mediated in vivo by their active metabolites. The biological 
actions of flavonoids involve complex mechanisms and are 
the subject of intense research. In fact, some have been 
shown to produce ROS (e.g., quercetin, resveratrol), thus 
contributing to cell death. In a study of its protective effect 
against H2O2, the same concentration of kaempferol that 
protected cells against loss of viability caused significant 
DNA damage and apoptosis when applied on its own (266). 
Flavonoids are also capable of inducing oxidative stress by 
impairing antioxidant defense systems (266). Currently, 
they are marketed as components of functional food and as 
supplements, not as drugs (266). Overall, traditional 
remedies may constitute lead compounds in the search for 
potential therapeutics for arresting neurodegeneration or 
improving brain function.  

 
Another promising antioxidant strategy exploits 

pharmacological blockade of glutamate receptors, 
especially the NMDA receptor which mediates 
excitotoxicity. Since overactivation of the receptor causes 
intracellular calcium overload and the production of ROS 
and RNS (86), ligands that are effective in blocking it 
should be able to lower pathological elevations of ROS and 
RNS. The challenge, however, is the need for such 
antagonists at the NMDA receptor to spare glutamatergic 
neurotransmission that is essential for normal physiological 
functioning.   
 
5.2. Repairing oxidative damage and eliminating 
unwanted proteins and lipids 

In addition to the neuroprotective strategies 
already mentioned, measures could be developed to boost 
the reparative capacity of the brain. There are defenses in 
the brain for repairing oxidative damage, as neuronal nuclei 
and mitochondria are endowed with enzymes that repair 
oxidatively damaged DNA (267), lipids (268) and proteins 
(17). Phospholipase A2 cleaves and destroys damaged 
lipids (268), while methionine sulfoxide reductase enzymes 
convert methionine sulfoxide in oxidized proteins back to 
methionine. There are mechanisms for marking damaged 
proteins for proteolytic removal in order to prevent cell 
death from their accumulation (269-271), although 
aggregation and precipitation occasionally lowers toxicity 

owing to sequestration (269,272). Lysosomes contain 
hydrolytic enzymes that degrade unwanted proteins and 
organelles (271), while Lon-proteinase degrades aconitase 
and other mitochondrial proteins that have been oxidized 
(273). Apart from these, the ubiquitin-proteasome system 
in eukaryotic cells is a major remover of unwanted proteins 
(274). Proteins are first marked for degradation by the 
process of ubiquitination, which is ATP-dependent and 
occurs in steps through the attachment of the heat shock 
protein ubiquitin, thus allowing the 26S proteasome to 
recognize its targets for degradation. However, proteasome 
activity seems to decrease with age (275) and some 
oxidatively damaged proteins may paradoxically inhibit 
proteasome function (276).    
 
5.3. Antioxidant therapeutics: From bench to bedside 
and back 

There is active research interest in the 
development of antioxidant therapeutics for the 
management of neurodegenerative diseases. However, to 
date, there is still a huge challenge in the clinical 
exploitation of the beneficial effects of antioxidants 
observed in experimental models. One major requirement 
for drugs that would be effective in treating 
neurodegeneration is the ability to penetrate the BBB (33). 
Some of the compounds that showed great promise in 
animal models of disease (e.g., alpha-tocopherol in 
neurodegeneration and atherosclerosis and several 
antioxidants in ALS) have had comparatively less 
beneficial effects in patients (7,130,277). However, as 
reviewed by Halliwell (17,130), a number of antioxidants 
have been shown to reduce neuronal damage in human 
disorders or animal models, e.g., idebenone (278) and a 
mixture of coenzyme Q and alpha-tocopherol in 
Friedreich’s ataxia (279); Ebselen in subarachnoid 
hemorrhage and stroke (280); the modified spin trap NXY-
059 in stroke (281-283); catechol-O-methyltransferase 
inhibitors tolcapone and nitecapone in PD (17); selegiline 
(deprenyl) and its metabolites, pergolide and ropinirole 
(7,284), in PD; and apomorphine (130) in PD. Some of 
these exert their actions in ways additional to or different 
from their antioxidant effects (285). Idebenone is a free 
radical scavenger analogue of coenzyme Q10 which has 
been shown to lower oxidative damage (it lowered elevated 
urinary excretion of 8-hydroxy-2’-deoxyguanosine) and 
rescue respiratory chain function (286,287). The iron 
chelator desferrioxamine was found to be protective in a 
cell-culture model of Friedreich’s ataxia (288), while 
copper chelators do inhibit the course of ALS in cell culture 
and mouse models (33). Apart from chelation therapy, 
molecules are now being designed to inhibit aberrant metal 
interactions by competing with the target protein for metal 
ions; they are referred to as metal-protein attenuating 
compounds (MPAC) (33). An example is clioquinol (CQ, 
5-chloro-7-iodo-8-hydroxy-quinoline), which crosses the 
BBB and has proven successful in animal models of AD 
and PD and in clinical trials for AD (33). Deprenyl is an 
irreversible monoamine-oxidase B inhibitor which exerts 
anti-oxidant, anti-apoptotic and neuroprotective effects 
(250). Apomorphine (Apo) is a dopamine D1/D2 receptor 
agonist used in the clinical treatment of PD, as it has a 
potent radical-scavenging property and has recently been 
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shown to stimulate the translocation of the transcription 
factor Nrf-2 (involved in the expression of numerous 
detoxifying and antioxidant genes) into the nucleus and the 
transactivation of the antioxidant response element (ARE) 
(289). There are now also lazaroid antioxidants, which are 
potent membrane-based lipid peroxidation inhibitors (e.g., U-
74500A, U-74389G, U-83836E) (290). In addition to all of 
these, drugs that inhibit glutamate release or block the NMDA 
receptor are also in use for the management of 
neurodegenerative conditions, since pathological stimulation of 
the receptor enhances the production of ROS. Examples 
include riluzole (which inhibits glutamate release), memantine 
(an NMDA receptor antagonist) and amantadine (a partial 
NMDA receptor antagonist). Riluzole is used in the treatment 
of ALS, memantine in AD and amantadine in PD (33). The 
challenge in this arena is the development of agents that can 
prevent pathological stimulation of the NMDA receptor 
without affecting normal glutamatergic neurotransmission. 

 
Having listed current pharmacological recipes for 

combating neurodegeneration, it should be added that 
effective lifestyle management is now seen as very 
important and desirable in order to lower the risk of 
developing neurodegenerative conditions such as AD (17). 
It is becoming increasingly recognized that the risk of 
developing AD can be significantly reduced by taking diets 
rich in fruits and vegetables and low in fat, and by regular 
physical exercise and mental activity (291-293). 
Interestingly, neurotrophic factors such as the BDNF 
protein are increased following exercise in an NMDA 
receptor-dependent manner (294,295).  
 

In summary, there are now promising advances in 
the antioxidative approach to the management of 
neurodegenerative conditions, both at the basic research 
level and in clinical settings, although much still has to be 
understood before we are able to develop “ideal” therapies.   
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