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1. ABSTRACT 
 

Pathogenic splicing alterations caused by point 
mutations in both splice sites and auxiliary cis-regulatory 
elements are increasingly recognized as an important 
mechanism through which gene mutations cause human 
disease. Unfortunately, in routine genetic diagnostic 
settings, splicing mutations may escape identification, due 
to the lack of RNA samples. Since most patients are 
genotyped only, any computational prediction of mutation 
effects on splicing can be beneficial for the human 
geneticist. Here, we review common techniques to identify 
human point mutations and delineate the molecular basis 
for splice site recognition. Moreover, this article provides 
basic insights into web-tools predicting splice sites and cis-
regulatory elements and discusses their benefits for 
judgment of clinically identified sequence variants of 
disease-specific genes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 

 
Genetic factors play a prominent role in common 

diseases and cancer syndromes including breast, colorectal, 
skin, prostate and ovarian cancer. Increased cancer risk due 
to mutations, e.g. in known tumor suppressor genes, 
explains a significant portion of hereditary cancers in 
families with these syndromes. Genetic testing advanced 
into clinical practice through identification of disease-
specific genes and supports a variety of clinical decisions: 
risk assessment for future disease (predictive genetic 
testing), confirmation of diagnosis, and more recently, 
therapeutic selection and prognosis.  

 
Clinically identified sequence variants of disease-

specific genes are characterized as either known deleterious 
(often protein-truncating) mutations, recognized 
polymorphisms (assumed to be) neutral with respect to 
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disease risk, or variants of unknown significance (VUS). It 
is obvious that in particular VUS pose problems for genetic 
counseling, since tested individuals and their families are 
given a seemingly ambiguous result. This purely 
phenomenological characterization has different 
counterparts on molecular level. 

 
From a protein coding viewpoint, sequence 

variations in the coding region are classified as either 
frame-shift, nonsense, missense or synonymous. Frame-shift 
or nonsense mutations produce truncated protein isoforms, 
whereas missense mutations affect amino acids that may be 
important for structure and function of a protein. 
Translationally synonymous mutations – allelic 
polymorphisms or so-called nucleotide variations – are 
considered to be neutral. However, from a transcript 
viewpoint, translationally neutral DNA alterations might very 
well affect RNA processing by altering an RNA stability 
element, or by aberrant splicing due to (in-) activation of a cis-
regulatory splicing element. Both mutations in the proper 
splice site consensus sequences and in auxiliary cis-regulatory 
splicing elements are known to disrupt splicing, mostly by 
exon-skipping or activation of cryptic splice sites, and can 
thereby change the overall splicing pattern of the mutant 
transcript and thus its open reading frame (ORF). Ignoring this 
pre-mRNA splicing pathway presents a major shortcoming of 
protein-addressing classification of mutations. 

 
Pathogenic splicing alterations are increasingly 

recognized as a widespread mechanism through which gene 
mutations cause disease. In the Human Gene Mutation 
Database (www.hgmd.org, as of 2007-10-01), single base-
pair substitutions within exon/intron boundaries of a total 
of 2,768 human genes constitute ~10% of a total of 73,411 
mutations causing human inherited diseases. For some 
genes the number of known splicing mutations even 
exceeds or is as high as the number of all other identified 
mutations.  

 
Pathogenic splicing mutations may escape 

identification or correct interpretation by genomic DNA 
based assays, such as high-throughput sequencing or 
screening approaches, because they may not be 
distinguishable from neutral splice-site polymorphisms (1, 
2). Frequently, RNA based assays to identify splicing 
defects cannot be used due to practical difficulties in RNA 
extraction from cell lines or tissues, and since the 
availability of biopsies is often limited and insufficient for 
the laboratory (3). Moreover, they often fail to give 
unambiguous results due to sources of variability in 
individual patients.  

 
Thus, in assessing a splice site mutation’s 

pathogenicity, reliable in silico prediction of its in vivo 
splicing outcome can increase the efficiency of genomic 
DNA based mutation detection assays and possibly resolve 
diagnostic dilemmas in patients.  Today, several web-based 
software tools are available to assess the impact on aberrant 
splicing of splice donor or acceptor sequence alterations. It 
is the challenge of this review to provide basic knowledge 
to use these prediction tools, and judge power and 
limitations of the underlying bioinformatics algorithms. 

3. IDENTIFICATION OF PATHOGENIC SPLICING 
MUTATIONS AND THE DILEMMA OF DIAGNOSIS 

 
In general, routine genetic diagnostics is based on 

mutation detection techniques using genomic DNA 
extracted from blood leucocytes as the source of choice. 
Sometimes, RNA samples are additionally collected from 
the same patient to confirm the effect of putative splicing 
mutations. In routine clinical settings RNA/cDNA is not 
used as a template for mutation screening, because RNA is 
much less stable than DNA, and technical problems during 
specimen transportation, RNA isolation or reverse 
transcription may artificially alter the quantity and 
distribution of cDNA fragments. In contrast, applying 
mutation detection techniques to DNA templates yields 
equal quantities of both alleles providing hetero- or 
homozygote sequence information. Analysis of 
RNA/cDNA may be hampered by the occurrence of 
alternative splicing products or a different distribution of 
allele transcripts e.g. due to nonsense mediated decay of 
mRNA eliminating or reducing transcripts containing 
premature translation termination codons (PTCs) (4).  
 
3.1. Mutation detection techniques 

Numerous techniques are available for mutation 
detection like direct sequencing (DS), protein truncation 
test (PTT) (5), single-strand conformation polymorphism 
(SSCP) (6), dideoxy fingerprinting assay (DDF) (7), 
denaturing gradient gel electrophoresis (DGGE) (8), two-
dimensional gene scanning (TDGS) (9), conformation-
sensitive gel electrophoresis (CSGE) (10), enzymatic 
mutation detection (EMD) (11) allele-specific 
oligonucleotide hybridization (ASO) (12), and immobilized 
DNA hybridization assays.  

 
The widely used SSCP analysis is economical 

and simple, but has low sensitivity, ranging from 60 to 
90%. However, the major disadvantage of SSCP is that 
non-appearance of a band-shift does not prove the absence 
of a mutation. (“Absence of evidence is not evidence of 
absence.”) DDF is a combination of a Sanger sequencing 
reaction with multiple-fragment SSCP and is more 
sensitive than SSCP alone, but still labor intensive. With 
PTT only sequence alterations leading to a truncated 
protein can be detected. Other alterations (missense, in-
frame deletions, and insertions) escape the detection of the 
PTT assay. Other methods, including DGGE and CSGE, 
have been used with some success, but despite their 
improved sensitivity over SSCP, these methods are 
technically rather challenging and formatted for manual use 
only. TDGS is a method for analyzing multiple DNA 
fragments in parallel for all possible sequence variations, 
using extensive multiplex PCR and two-dimensional 
electrophoretic separation on the basis of size and melting 
temperature. One source of error is the interpretation of the 
complex spot patterns produced by this method. Also, the 
sensitivity of TDGS is impaired by frequent preferential 
amplification of the non-mutant allele, resulting in very 
“light” heteroduplices that obscure accurate reading of the 
gels (13). EMD methods for mutation scanning still lack 
the sensitivity and specificity of the chemical cleavage of 
the mismatch method. Other approaches such as 
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immobilized DNA hybridization arrays still have 
significant false positive signals, as well as high costs per 
assay. 

 
Denaturing high performance liquid 

chromatography (DHPLC) has generated increased interest 
in clinical genetics in recent years, because of its potential 
for automation and its ease of application. The technique, 
which is based on heteroduplex detection, allows for 
automated identification of single-nucleotide substitutions 
and small deletions or insertions. Heteroduplex profiles are 
easily distinguished from homoduplex peaks (14). 
Furthermore, DHPLC has been shown to clearly resolve 
mutations in various genes with detection rates ranging 
from 92.5 to 100% (15, 16). Direct DNA sequencing of 
PCR fragments using dye terminators has often been 
reported as the gold standard with a sensitivity of almost 
100%, with automation of all steps and high throughput 
capacity, which can still be increased using capillary 
sequencers. 

 
3.2. Interpretation of sequence variants 

For the interpretation of an observed sequence 
variant, the causal role of the alteration in the loss of 
protein function and/or in the pathogenesis of the disease 
has to be established. Particularly in genes with a large 
heterogeneity of different rare sequence alterations 
dispersed throughout the gene sequences, published data 
may not be available. In the absence of experimental 
evidence, the pathological significance of an observed 
sequence variant has to rely on plausibility considerations. 
Mutations formally interfering with proper protein 
synthesis like nonsense and frame-shift mutations, or 
missense mutations with experimental proof of their protein 
function impairment (mutations in functionally relevant 
protein motifs), have most likely pathological 
consequences for the protein function. Mutations which are 
considered to lead to aberrant splicing of the mRNA 
generally have to be checked by mRNA/cDNA 
biochemical assays providing more definitive results 
regarding a potential mutation’s impact on the length or the 
stability of the mRNA transcript. 

 
These experiments routinely involve RT-PCR 

based assays to compare transcripts in patients and 
controls. An informative result could be the detection of an 
aberrant cDNA fragment (e.g. indicating exon skipping) 
with increased prevalence in the patient (17). Due to the 
possible presence of nonsense mediated RNA decay 
(NMD) it is important to clearly assess both allelic 
contributions to cDNA fragments amplified from 
transcripts (18). Heterozygous polymorphisms in the 
coding region may be useful markers to show that the 
normally spliced RNA is produced solely by one allele 
(most likely the wild type allele), if heterozygosity of this 
polymorphism is lost in the appropriate RT-PCR fragment 
indicating an NMD based degradation of the mutant allele 
transcript. Another informative result may be obtained 
detecting an aberrant product transcribed from the mutant 
allele. There are some published reports where this 
approach successfully corrected the misinterpretation of 
BRCA splicing mutations (19, 20, 21).  

If RNA of a carrier of a putative splice site 
mutation is not available, other biological assays like the 
use of splicing models analyzing transcripts of artificial 
minigene reporter constructs might be performed. These 
extensive experimental approaches are challenging and 
require special experiences with the models applied in 
research settings. In particular, it has been shown that the 
splicing outcome of a minigene can be influenced by the 
flanking sequences including splice sites of the exon-
trapping vector selected for the splice site mutation analysis 
[(22), L.H., H.S. unpublished observation].  

 
As discussed above, most functional assays to 

assess the pathogenic nature of a putative splice site 
mutation can not be part of a routine diagnostic service. 
Therefore, clinical laboratories offering genetic testing 
have to rely on available published data, often deposited in 
locus-specific databases. For instance, BRCA1 and BRCA2 
are probably the most extensively analyzed cancer 
predisposition genes studied in clinical genetic diagnostics 
and research settings. More than 70,000 women worldwide 
have been tested for BRCA1 and BRCA2 mutations to 
assess their risk for hereditary breast and ovarian cancer. 
Over 50,000 of these patients, representing family members 
from unrelated families, have received comprehensive 
whole-gene mutation analysis, because mutations in these 
genes are distributed throughout the BRCA gene sequences 
(23). In order to support the detection and interpretation of 
BRCA mutations and to make the results available to the 
diagnostic community, a central repository of mutations, 
polymorphisms and VUS, the Breast Cancer Information 
Core (BIC), was created and is being maintained by an 
international collaborative effort hosted by NHGRI 
(http://research.nhgri.nih.gov/bic). About 4% of all BRCA1 
and BRCA2 alterations submitted to the BIC database are 
reported as splice site alterations. For most of them, 
however, there is no further knowledge about their effect at 
the cDNA level. Although considered to be a useful 
resource the data submitted to the BIC is not validated and 
care should be taken when referring to it. 
 
4. SPLICE SITES AND CIS-ACTIVE REGULATORY 
ELEMENTS 

 
The high fidelity of splicing is critically 

dependent on the recognition of the signals that mark exon–
intron boundaries (Figure 1). The two strongest 
contributing signals are the donor or 5' splice site (5' ss) and 
the acceptor or 3' splice site (3' ss), which are frequent 
targets of mutations in genetic diseases and cancer. 

 
A statistical description of annotated human 5' ss 

or 3' ss can be obtained by aligning a large number of 
those, yielding a splice site motif specific for any given 
(exon) data set. In such a motif, sequence conservation in 
fixed positions is indicated by one or two predominant 
nucleotide(s), while outside the conserved region the 
nucleotides are statistically distributed (with “background 
probability” of approx. 25% for G, T, A and C). 
Correspondingly, the splice site’s consensus sequence is 
determined by picking the most frequent nucleotide in each 
conserved position. Consensus sequences can be identified
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Figure 1. Schematic close-up of exon–intron boundaries of a eukaryotic gene. A spliceable gene (top) consists of exons (orange) 
and at least one intron (green), which is removed from the pre-mRNA by the splicing machinery. The exon-intron boundary is 
called the splice donor site or 5' splice site (5' ss), while the intron-exon boundary is termed splice acceptor site or 3' splice site (3' 
ss). The 5' ss of the pre-mRNA is recognized by the free 5' end of the U1 snRNA via base-pairing. Binding of U1 snRNP (U1) to 
the 5' ss and can be influenced among others by the RS-domain of SR-proteins (SR) or members of the hnRNP family (hnRNP). 
The splicing regulatory factors can bind to an exonic or intronic position of the transcript (middle). Depending on both the 
position of their target sequence and their splicing regulatory function, the respective cis-acting sequences are called exonic (E) 
or intronic (I) splicing (S) enhancer (E) or silencer (S), e.g. ESE for exonic splicing enhancer. The large subunit of the U2 snRNP 
auxiliary factor (U2AF65) recognizes the polypyrimidine tract and recruits the U2 snRNP to the branch site. The smaller subunit 
U2AF35 (35) recognizes the most 3' intronic dinucleotide AG. Sequence motifs of typical cis-acting splicing regulatory 
sequences are depicted at the bottom as sequence logos. For an explanation of such logos see legend to figure 2. 
 
for both 5' ss and 3' ss. On a molecular level, however, the 
recognition of 5' ss and 3' ss strongly differs. 
 
4.1. 5' Splice site recognition 

The 5' ss in mRNA precursors is recognized early 
during splicing catalysis in the nucleus by the free 5' end of 
the U1 snRNA by complementary base paring (24). This 
RNA duplex formation is necessary for the splicing and 
binding of U1 snRNP, and at least in some instances, also 
protects pre-mRNA against nuclear degradation (25), as 
evident from human 5' ss mutations leading to RNA 
degradation rather than to aberrant splicing (26, 27). 

 
For human 5' ss, the consensus sequence 

MAG/GURAGU (where R = purine, M = C or A, and / 
denotes the exon-intron border) includes positions –3 to +6 
(i.e., the last 3 nucleotides [nt] of the upstream exon and the 
first 6 nt of the intron). However, nucleotides capable of 
participating in U1 snRNA:pre-mRNA interaction have 
been shown to include positions –3 to +8 of the 5' ss and all 
11 nt constituting the single-stranded 5' end of U1 snRNA 
(28). 

 
Indeed, an alignment of 46,308 annotated 

canonical human 5' ss does not display a significant bias 

towards position +7 and +8 (Figure 2). Nevertheless, a 
contiguous stretch of only six U1 snRNA complementary 
nucleotides can be functional for splicing, as demonstrated 
by CAGGTAnnnnn and nnnGTAAGTnn (n=non-
complementary; (25)). Thus, an 11 nucleotides wide motif 
from a 5' ss alignment superimposes splice sites with very 
different – exon or intron centered – regions of U1 snRNA 
complementarity, obliterating splice site motif information 
in downstream positions +7 and +8. This becomes evident 
when 5' ss subsets are selected according to the U1 snRNA 
complementarity of the exonic nucleotides. Within the 
subset of 10,796 5' ss sequences with full U1 snRNA 
(Watson-Crick-) complementarity in the three exonic 
positions (upper left), the intronic complementarity is less 
pronounced. Vice versa, the 3,830 5' ss with no 
complementarity in the exonic positions (lower left) clearly 
display a bias (12 and 8 percentage points) towards 
complementary bases even in position +7 and +8. 

 
Furthermore, the stability of the RNA duplex does not seem 
to be exclusively determined by its complementarity to U1 
snRNA, but also by additional interactions of protein 
components with the pre-mRNA in the vicinity of the 5' ss, 
including the U1-specific proteins, U1-C, U1-A and 
U1 70K, which bind to the loop I of U1
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Figure 2. Sequence logos of annotated canonical human 5' ss. At each position the height of a base is proportional to its 
frequency in that position. Bases are ordered top to bottom in decreasing frequency. A sequence logo of 46,308 5' ss compiled 
from human chromosomes 6, 7, 9, 10, 13, 14, 20, 22 and X is shown in the upper right corner, with percentages of the “top” 
(most frequent) bases given below the intronic positions. This data set is split into three subsets: 10,796 sequences with full 
U1 snRNA (Watson-Crick-) complementarity in the three exonic positions (upper left), 3,830 with no complementarity in the 
exonic positions (lower left), and the remainder (mixed complementarity). To indicate the effect of the exonic (non-) 
complementarity on the intronic nucleotide frequencies within the splice site, the “top” intronic bases’ frequency change is given 
in percentage points above the logos. 
 
snRNA (29, 30, 31). In addition, the recognition of 5' ss 
seems to be subjected to a proofreading mechanism since 
conformational rearrangement during spliceosome 
assembly results in the displacement of U1 by U6 snRNA 
which base-pairs to positions +2 to +6 of the 5' ss through 
an invariant ACAGA-box sequence in U6 snRNA, and by 
U5 snRNA (32, 33, 34, 35, 36).  

 
4.2. 3' Splice site recognition 

The 3' ss is a multipart signal comprising a less 
conserved branchpoint consensus YNYURAY (Y = 
pyrimidine, R = purine, N = any nucleotide, branch point is 
underlined), and a stretch of pyrimidines (known as the 
polypyrimidine tract or PPT) adjacent to the invariant 3' ss 
AG (37).  

The distances between 3' ss signals are highly 
variable. The branch point sequence (BPS) is usually 
located 18-40 nucleotides upstream of the 3' ss AG, but 
may also reside up to several hundred nucleotides further 
upstream (38, 39, 40). Accordingly, polypyrimidine tracts 
vary in length and sequence composition. In particular, 
those polypyrimidine tracts composed of long uridine 
stretches promote the use of adjacent 3' ss (41, 40). 
However, natural polypyrimidine tracts are frequently 
interrupted by cytosines or purines (42). This is reflected by 
the essential pre-mRNA splicing factor U2AF65, which 
guides splice site selection by recognition of the 
polypyrimidine tract near the 3' ss AG. U2AF (U2 auxiliary 
factor) is a heterodimer comprising a large subunit, 
U2AF65, and a small subunit, U2AF35 (43, 44). U2AF65 
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might distinguish purines (adenine and guanine) from 
pyrimidines (uracil and cytosine) on the basis of their size, 
but more likely on the basis of their unique patterns of 
hydrogen bond donors and acceptors (45). Since U2AF65 
preferentially binds uridine-rich RNA segments, 
polypyrimidine tracts with long uridine stretches are 
stronger than those with interruptions of other nucleotides 
(46). These weak polypyrimidine tracts require an 
additional U2AF35-3' ss AG interaction for their 
recognition (40, 47). The branch point, which often bears little 
resemblance to the consensus motif, appears to be specified 
independently of the 3' ss AG by its immediate sequence 
context and by its proximity to the polypyrimidine tract (48). 
The 3' ss itself seems to be recognized in a scanning process 
for the first AG dinucleotide downstream of the 
branchpoint/polypyrimidine tract. Interestingly, CAG, UAG 
and AAG triplets were efficient 3' ss whereas GAG was not 
used at all (49, 50). This was also shown for ‘tandem’ 
(NAGNAG) 3' ss that effectively compete with each other 
(51). Exceptions of the scanning process occurred, if the AG 
resides very close to the BPS and then can be bypassed (52, 
38). 

 
The 3' ss recognition can be subdivided into 

several steps. In a first recognition step, mBBP/SF1 
(mammalian branchpoint binding protein / splicing factor 
1) specifically recognizes both the branch site sequence and 
the branch site adenosine through its KH (hnRNP K 
homology) domain (53, 54). SF1 cooperatively interacts 
with the splicing factor U2AF65 (55), which binds to the 
adjacent polypyrimidine tract through its RNA recognition 
motif (RRM) (56, 57, 45). Mutational analysis and in vitro 
genetic selection indicate that U2AF35 has a sequence-
specific RNA-binding activity that recognizes the 3' ss 
consensus, AG/G (58, 47, 59). The recognition of the 3' ss 
is proofread by DEK, a chromatin- and RNA-associated 
protein, which has to be phosphorylated for intron removal 
and prevents binding of U2AF65 to pyrimidine tracts not 
followed by AG (60). 

 
Concurrently, U2AF65 recruits the U2 snRNP 

via binding to the U2 snRNA associated protein SF3b155. 
SF3b155 represents a subunit of the heteromeric splicing 
factor SF3b (61, 62), which interacts with the 5'-half of the 
U2 small nuclear RNA (U2 snRNA), whereas SF3a 
associates with the 3'-portion of U2 snRNA (63). There is 
evidence that sequence-independent binding of the highly 
conserved SF3a/SF3b subunits upstream of the branch site 
is essential for anchoring U2 snRNP to the pre-mRNA (64). 
The U2 snRNP base pairs with the branch point region 
while the nucleophilic branch site adenosine does not base 
pair with the U2 snRNA, but rather bulges out of the 
recognition helix (65, 66, 67). Binding of mBBP/SF1 is 
mutually exclusive with the U2 snRNP, thus the U2 snRNP 
replaces mBBP/SF1 (68). Upon stable integration of the U2 
snRNP into the spliceosome, a 14 kDa protein (p14) 
interacts directly with the branch adenosine (69). Most 
probably, p14 is positioned within the inner cage of the 
SF3b structure (61).  

 
As soon as both splice sites are recognized, the 

tri-snRNP complex of U4/U6·U5 snRNP enters and 

interaction between the U2 snRNP and U6 snRNP 
generates the catalytic core of the spliceosome (70, 71, 72, 
73, 74). In addition to the snRNPs spliceosomal “DExD/H 
box”, ATPases are required for promoting RNA 
rearrangements and many non-snRNP protein factors are 
involved in proofreading the steps of splicing within the 
spliceosome that is composed of as many as 300 distinct 
proteins (75, 76, 32). 
 
4.3. Cis-active regulatory elements 

Accurate splice site recognition further depends 
on cis-regulatory elements in the pre-mRNA that modulate 
splice site selection and allow to discriminate between real 
and pseudo splice sites (77, 78) (Figure 1). Most exons 
contain exonic splicing enhancers (ESEs), which define 
them as recognition units promoting the use of their splice 
sites (79, 80, 81). In addition, exons also contain functional 
splicing suppression units known as exonic splicing 
silencers (ESSs) (82, 83). Moreover, intronic splicing 
enhancers (ISEs) or intronic splicing silencers (ISSs) 
enhance or repress the use of nearby 5' or 3' ss (84, 85, 86, 
87, 88). These cis-acting splicing regulators are short 
degenerate RNA sequences, which occur frequently in the 
genome.  

 
Enhancer motifs are frequently bound by the 

group of serine/arginine rich (SR) proteins, which mostly 
exerts a positive effect on splice site recognition and 
stimulates spliceosome assembly (89, 90, 91, 92, 93, 94, 
95, 96, 97, 98). These positive effects can be antagonized 
by heterogeneous nuclear ribonucleoproteins (hnRNPs) that 
usually bind to silencer elements (99, 100, 101, 102, 103, 
104). However, it should be noted that the same sequence 
motif can act as an enhancer or silencer, depending on its 
position with respect to the splice sites (105, 106). The 
activities of cis-acting elements were shown to be context 
specific and there is compelling evidence that SR proteins 
can suppress splicing when bound to sequences located 
within the intron, and there are also examples of members 
of the hnRNPs exhibiting stimulating effects on splicing 
(107, 108, 109, 110, 111, 98). HnRNPs recognize the RNA 
via their KH (K homology) and RRM RNA-binding 
domains and RGG and glycine-patch domains. The 
multiple α-helices and antiparallel β-strands bind short 
motifs of 4-7 nucleotides in single-stranded DNA or RNA. 
Moreover, the β-sheet surface on the RRM domain of many 
SR proteins recognizes specific RNA sequences through 
base stacking, hydrophobic, polar and electrostatic 
interactions (112, 113, 114, 115, 116). The majority of KH 
and and RRM proteins contain more than one copy of each 
RNA recognition domain engaging a range of different 
motifs leading to ‘fuzzy’ identity of cis-active regulatory 
elements (117).  

 
Specific splice site regulation, despite frequent 

occurrence of the degenerate target motifs, is achieved by 
clusters of degenerate RNA motifs bound by several 
different activator and repressor proteins. In addition, 
competition between SR proteins and hnRNPs or between 
these proteins and general splicing factors modulate splice 
site selection (118). Furthermore, the activity of SR 
proteins as splicing factors depends on the phosphorylation 
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status of the serine residues in their RS domains, which can 
lead to a movement into a different subcellular localization 
(such as from the nucleus to the cytoplasm), where they are 
unable to affect splicing (119, 118, 120). The RS domains 
of SR proteins engage in protein-protein interactions 
promoting interactions between the components of the 
spliceosome to define exons or interactions across the 
intron during spliceosome assembly (121). Binding of RS 
domains to RNA presumably shields negative charges 
facilitating annealing of complementary RNA strands 
during numerous base-pairing rearrangements required for 
spliceosome assembly and catalysis (122, 123, 118). 
 
5. SPLICE SITE STRENGTH AND 
IDENTIFICATION OF REGULATORY MOTIFS 

 
Mutations, even single nucleotide changes, can 

modify splicing in various ways: they can strengthen, 
weaken or even destroy an existing proper splice site or cis-
regulatory element, or create a new one. Such splicing 
signal modifications may or may not lead to observable 
phenomena like exon skipping, activation of cryptic or de 
novo splice sites, or intron retention. Most patients, 
however, are genotyped only, and diagnostic RNA-level 
information about aberrant splicing is usually not available. 
Therefore, any computational prediction of DNA mutation 
effects on splicing (for an overview see Table 1) can be 
beneficial for the human geneticist. Such predictions can be 
obtained from algorithms scoring the functionality of a 
given splice site and/or cis-regulatory element. 

 
Ab initio gene prediction mostly employs 

probabilistic algorithms like Hidden Markov Models 
(HMM) (124), dividing the gene structure into 
interconnected submodels (“states”) for components as 
promotors, splice sites, start and stop codons (GENSCAN, 
AUGUSTUS) (http://genes.mit.edu/GENSCAN.html (125, 
126), http://augustus.gobics.de/submission (127, 128, 
129)). It is a forte of HMM to accommodate both 
unobserved (“hidden”) variables as well as observable ones 
– the actually generated nucleotides –, with transition 
probabilities governing their relations (130, 131). 
Moreover, ab initio methods often use additional, highly 
non-local information as reading frame and protein content 
(132). In contrast, splice site prediction methods try to use 
only the information available to the biological splicing 
machinery, and are primarily based on computational 
models for the neighborhood of the conserved 
dinucleotides GT and AG (133, 134). 
 
5.1. Splice site strength algorithms 

The “splice site strength” is a useful and central 
concept in judging the possible effect of a splicing signal 
mutation. Together with a “threshold” for splice site 
functionality, comparing strengths of wild type and mutant 
signal could yield reliable predictions of splicing effects 
(22). However, although widely used in the literature, the 
term “splice site strength” does not refer to a unique 
definition. In principle, any measure of “functional splicing 
signal strength” should quantitatively describe, why a given 
splice site is preferred over competing nearby potential 
(“pseudo”, “mock” or “decoy”) splice sites under cell-

specific conditions. It should take into account not only the 
proper 5' or 3' ss sequence, but also its context of cis-
regulatory elements and pseudo splice sites, and even the 
cellular environment of SR proteins. In practice, this 
ambitious comprehensive concept (“the splicing machinery 
itself”) has not yet been implemented in silico and is 
approximated by more limited computational procedures. It 
comes natural that a wide variety of concepts from 
computational physics, artificial intelligence and machine 
learning have been applied to this problem.  

 
In principle, two types of computational methods 

for splice site detection can be distinguished: those that are 
trained only by positive examples (real splice sites) – e.g. 
Weight Matrix/Array Models and Maximum Dependency 
Decomposition –, and those additionally requiring a 
training data set of negative examples (decoy splice sites). 
Locally, several different algorithms calculate a splice 
site’s intrinsic strength from a narrow region of nucleotides 
around the respective consensus dinucleotides (GT or AG), 
irrespective of its wider sequence context. A splice site’s 
relative strength then refers to the difference (or ratio) of its 
intrinsic strength to the neighboring pseudo sites, thus 
depending on the splice site context. The meaningful 
combination of cis-regulatory elements and relative splice 
site strength into a single functional strength measure still 
remains an open question, although a first step towards 
combining splice site scores and those of cis-regulatory 
elements has been taken by the splicing simulation software 
ExonScan, which independently adds up log-odds-scores of 
individual components to obtain one overall score 
(http://genes.mit.edu/exonscan/ (82, 83)). 

 
However, all local primary sequence methods are 

bound to misdiagnose splice sites, due to the huge overlap 
of sites in the real and decoy data sets. This property yields 
an upper bound on the accuracy of splice site prediction, 
since predicting a real splice site as real also admits the 
decoys with the same sequence, and vice versa. E.g., 98% 
of the real 5' ss sequences in the Yeo-Burge data set 
(http://genes.mit.edu/burgelab/maxent/ssdata/) are also 
contained in the decoy set, so that for this data the 
maximum accuracy for 5' ss is found to correspond to a 
correlation coefficient C = 0.676 (135). 

 
  The performance of a splice site scoring 
algorithm on two given data sets of real and decoy splice 
sites is usually evaluated by receiver-operating 
characteristic (ROC) curves, plotting sensitivity versus 1–
specificity while varying the prediction threshold X 
between predicted positive sites with score >X and 
predicted negative sites with score <X. The prediction 
sensitivity is the rate of predicted positives among all real 
splice sites, while the specificity (= 1–false-positive ratio) is 
the rate of predicted negatives among all decoy splice sites. 
By construction, the ROC-graph lies above the unit square 
diagonal, and increases monotonously from the lower left 
corner (high X, low sensitivity, high specificity) to the 
upper right corner (low X, high sensitivity, low specificity). 
A greater true positive rate at a given false positive rate 
indicates a more accurate scoring method. The area under 
the ROC-graph (AUC), a number between 0.5 and 1, serves
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Table 1. Currently available web tools for splice site assessment and identification of putative cis-regulatory elements 
Algorithm Basic principle Link Input Output 
Shapiro&Senapathy 
Score (S&S) 

Position-specific weight matrix (PSWM);  
Coincidence with consensus sequence 

http://ast.bioinfo.tau.ac.il/SpliceSiteFrame.
htm 
 
 

5' ss motif (9-mer) 
position -3 to +6; 
3' ss motif (15-mer) 
position -14 to +1 

S&S Score 
(0-100) 

Weight matrix model 
(WMM) 

Quantification of the relative likelihood of 
candidate splice site sequence with respect 
to the background nucleotide distribution 
from a training set of splicing signals 

http://genes.mit.edu/burgelab/maxent/Xma
xentscan_scoreseq.html 
 

5' ss motif (9-mer) 
position -3 to +6 ; 
3' ss motif (23-mer) 
position -20 to +3 

Numerical 
Score  

Maximum Dependence 
Decomposition Model 
(MDD) 

Iterative decision-tree approach; captures 
dependencies between neighboring and 
non-neighboring positions by WAM 
(weight array model) and WMM 

http://genes.mit.edu/burgelab/maxent/Xma
xentscan_scoreseq.html 
 

5' ss motif (9-mer) 
position -3 to +6;  
 

Numerical 
Score  

First-order Markov 
Model 

Statistical approach which considers 
dependencies between adjacent positions  

http://genes.mit.edu/burgelab/maxent/Xma
xentscan_scoreseq.html  
 

5' ss motif (9-mer) 
position -3 to +6 ; 
3' ss motif (23-mer) 
position -20 to +3 

Numerical 
Score  

Maximum Entropy 
Model (MEM) 

Statistical approach representing the least 
biased approximation for the distribution of 
sequence motifs, consistent with a set of 
constraints estimated from available data 
(real and decoy splice sites), incorporates 
local adjacent and non-adjacent position 
dependencies 

http://genes.mit.edu/burgelab/maxent/Xma
xentscan_scoreseq.html 
 

5' ss motif (9-mer) 
position -3 to +6; 
3' ss motif (23-mer) 
position -20 to +3 

Numerical 
Score  

H-Bond Model Hydrogen bond pattern between the 5' ss 
and all 11 nt of the free 5' end of the 
U1 snRNA; hydrogen bond formation at 
individual positions, models nucleotide 
interdependence beyond nearest 
neighborhood relationships; experimental 
evidence 

http://uni-duesseldorf.de/rna 
 

5' ss motif (11-mer) 
position -3 to +8; 
 

Numerical 
Score 

Neural Network (NN) Machine learning approach that recognizes 
sequence patterns once it is trained with 
sets of DNA sequences encompassing 
authentic and decoy splice sites 

http.//www.fruitfly.org/seq_tools/ 
splice.html 
 

long sequence 
stretches 

Score between  
0 and 1 

Branch Site Tool Algorithm that locates both the BPS based 
on its consensus sequence  together with 
the PPT by searching known combination 
of BPS and PPT. The PPT borders are 
determined by a heuristic method based on 
experimental evidence 

http://ast.bioinfo.tau.ac.il/BranchSite.htm 
 

long sequence 
stretches 

Numerical 
Score 

ESEfinder Prediction of SR protein specific putative 
ESE, based on an in vitro SELEX 
approach dependent on addition of 
individual SR proteins 

http://rulai.cshl.edu/tools/ESE/ 
 

long sequence 
stretches 

ESE motif 
score 

RESCUE-ESE Statistical approach based upon different 
distribution of hexamers in exons and 
introns with different properties, e.g. weak 
and strong splice sites 

http://genes.mit.edu/burgelab/rescue-ese 
 

long sequence 
stretches 

Z-score  
(picks out 
extremely 
over- or under-
represented 
hexamers) 

PESX server Statistical approach based on over-
representation of octamers in exons versus 
pseudoexons or versus the 5' UTR 
(untranslated regions) of intronless genes; 
Predicts enhancers (PESE) and silencers 
(PESS) 

http://cubweb.biology.columbia.edu/pesx/ 
 

long sequence 
stretches 

P-score, 
I-score  
(see Z-score) 
 
 

ESR search Evolutionary conservation of wobble 
positions with statistically significant 
overabundance of dicodons (hexamers) 
relative to the expected frequency of their 
independent individual codons 

http://ast.bioinfo.tau.ac.il/ESR.htm 
 

long sequence 
stretches 

Z-score 

 
as an overall parameter of description accuracy (for an 
example ROC see Figure 3). 
 
5.2. 5' Splice site strength algorithms 

The most widely-used intrinsic strength concept 
simply measures the 5' splice site’s similarity with a

 
consensus motif. Initially, Shapiro and Senapathy (S&S) 
developed a position-specific weight matrix (PSWM) for 5' 
ss, which reflects the degree of sequence conservation of 
the known 5' ss from position −3 (the third nucleotide from 
the 3' end of the upstream exon) to +6 (the sixth nucleotide 
in the intron) in an alignment of 1,446 5' ss (42, 136). From
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Figure 3. Exemplary receiver-operating characteristic 
(ROC) curve comparing sensitivity and specificity of three 
5' ss scores, maxent (red), HBond (green) and Shapiro-
Senapathy (black), on a given data set of 7.839 canonical 
real and 56.408 exonic decoy 5' ss (not used in alternative 
transcripts) from human chromosome 6. For each score 
(prediction) threshold X, 5' ss with score >X are predicted 
positive, and those with score <X are predicted negative. 
The prediction sensitivity is the rate of predicted positives 
among all real 5' ss, while the specificity (= 1–false-
positive ratio) is the rate of predicted negatives among all 
decoy 5' ss. The ROC plots the sensitivity as function of the 
false-positive ratio, obtained by variation of the assumed 
threshold X. Only the sensitivity range 0.7 – 1.0 is plotted 
here. By construction, the ROC-graph lies above the unit 
square diagonal, and increases monotonously from the 
lower left corner (high X, low sensitivity, high specificity) 
to the upper right corner (low X, high sensitivity, low 
specificity). A greater true positive rate at a given false 
positive rate indicates a more accurate 5' ss scoring method. 
The area under the ROC-graph (AUC), a number between 
0.5 and 1, serves as an overall parameter of description 
accuracy. Note that both maxent and HBond score 
significantly outperform S&S score. ROC curves for 
maxent and HBond scores are very close; only in the 
HBond score range 10.45 to 11.85 does maxent outperform 
HBond. 
 
this matrix they derived the S&S score in the range 0–100, 
with score 100 representing full coincidence with the 
consensus sequence, and score 0 obtained, if every position 
is occupied by the least likely nucleotide. All positions in 
the 5' ss are assumed independent by the S&S score, as 
with every weight matrix model. 

 
Traditionally, splice sites with a high degree of 

resemblance to the consensus have been considered as 
strong splice sites, whereas non-consensus splice sites have 
been assumed to be intrinsically weak. Although this is still 
widely accepted, significance of such a consensus sequence 
remains arguable, because resemblance to frequency-based 
consensus matrices of independent nucleotides turned out 
to be insufficient for reliable prediction of 5' ss (137). 
Moreover, many matches to each consensus are present 
along pre-mRNAs, but the vast majority of these sequences 

are pseudo or decoy splice sites never selected for splicing 
(78).  

 
Weight matrix models (WMM) represent an 

extension to the S&S score, indicating the relative 
importance of each base at every position: they quantify 
the relative likelihood of a given candidate splice site 
sequence with respect to the background nucleotide 
distribution from a training set of splice signals, but they 
still fail to incorporate nucleotide interdependencies. To 
score a given sequence, WMM add up the logarithm of 
the independent likelihood in each motif position and 
yield a log-odds score that is not normalized. Although 
no decoy splice sites enter into the construction of 
WMM, real and decoy sites can be ranked according to 
the log-odds score, and WMM can be evaluated by 
receiver operating characteristics (ROC), plotting 
sensitivity versus 1 – specificity for different cutoffs 
between predicted real and predicted decoy sites (Figure 
3). Weight array methods (WAM) slightly increase the 
discriminative power of WMM by using conditional 
probabilities for pairs of neighboring nucleotides (138, 
139). Mathematically, both WMM and WAM are special 
cases of first order Markov chains. First-order Markov 
models (MM) only consider dependencies between 
adjacent positions, representing the sequence as a chain 
of “states” with transition probabilities from each 
position to its successor. 

 
A complementary approach to the description by 

numerical weights can be implemented as a “dictionary 
procedure”, looking up sequences in different dictionaries 
(data sets) for real and decoy splice sites. The primary 
sequence rank (PSR) method ranks all sequences in the 
training data set according to their frequency of occurrence 
in the real data set versus the entire (real + decoy) set. To 
accommodate unknown sequences not contained in the 
training data set, the ranking is smoothed by adding 
pseudo-counts from neighboring sequences, permitting to 
calculate ranks for all training sequences plus their single 
and double point mutations (http://rna.williams.edu/). For 
the Yeo-Burge data set, the maximum correlation 
coefficient obtained for a smoothed 5' ss PSR model is 
C = 0.668, close to the theoretical upper limit Cmax, Y-

B = 0.676, which is < 1 due to the considerable overlap of 
real and decoy splice sites (135). 

 
An improvement for 5' ss prediction has been 

achieved by considering dependencies between bases of the 
5' ss. Burge and colleagues developed three different 
algorithms that take into account dependencies between 
positions −3 to +6 of the 5' ss motif (140): these algorithms 
apply probabilistic approaches to large datasets of known 
RNA splicing signals. The maximum dependence 
decomposition model (MDD) is an iterative decision-tree 
approach that captures the strongest dependencies – also 
between non-neighboring positions – in the early branches 
of the tree by WAM, and uses WMM for nearly 
independent positions.  

 
The maximum entropy model (MEM) performs 

better than previous models and is based on the maximum 
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entropy distribution (MED). In statistical theory, this 
approach represents the least biased approximation for the 
distribution of sequence motifs, consistent with a set of 
constraints estimated from available data – known real and 
decoy signal sequences. It makes no further assumptions about 
the distribution than consistency with this empirical 
distribution, and different sets of constraints generate different 
models. The MEM incorporates local adjacent and non-
adjacent position dependencies consistent with low-order 
marginal constraints for “few” nucleotides estimated 
from available data (MaxENTScan algorithm: 
http://genes.mit.edu/burgelab /maxent/Xmaxentscan_scoreseq.html). 
These algorithms use input sequences of constant length – a 
9-mer in case of the 5' ss and 23-mer for the 3' ss –, and 
assign each sequence a numerical score reflecting the 
likelihood of the sequence being a true splice site. 
According to ROC curve analysis, the currently most 
successful 5' ss maxent model is me2x5 at a correlation 
coefficient C = 0.659, which is close to the theoretical 
maximum for this data set, and additionally has the lowest 
number of proximal intronic higher-scoring decoys. 
Comparing me2x5 to MDD and WMM, the sequence ranks 
are found to strongly differ between different models. Top-
scoring sequences are usually well-correlated between 
models, while lower-scoring sequences vary much more. 

 
While weight matrix/array models require the 

selection of relevant information features by hand, machine 
learning techniques automatically deduce a classification 
function (“rule”) that optimizes a given criterion in 
distinguishing training data sets of positive and negative 
sequences (real and decoy splice sites). For example, the 
neural network method (NN) is a machine learning 
approach that recognizes sequence patterns once it is 
trained with sets of DNA sequences encompassing 
authentic and decoy splice sites 
(http://www.fruitfly.org/seq_tools/splice.html) (141, 142, 
143). It employs a backpropagation feedforward neural 
network with one hidden layer, and produces an output 
score between 0 and 1 for each splice site candidate. 
Interestingly, decoy GT sites close to a real 5' ss have 
weaker neural network scores than those farther away, 
which seems consistent with the concept of relative splice 
site strength, comparing a real 5' ss with decoy sites in its 
neighborhood. 

 
Support vector machines (SVM) also belong to 

the category of machine learning systems that infer a 
classification function from a training data set. By using 
an appropriate representation for features of real and 
decoy sequences, specific splice site patterns can be 
obtained from the discrimination function of such 
models. Typically, only a small fraction of the large 
number of features, represented by a high-dimensional 
feature vector, are relevant for the classification and are 
mutually independent. Genetic algorithms have been 
successfully applied in the selection of such a “minimal 
feature set” with best classification performance. 
Estimation of distribution (EDA) algorithms have been 
shown to improve on these, most importantly providing 
normalized “feature weights” as ranking criterion (144, 
145, 146).  

SVM algorithms were also applied to detect 
splicing features in the human genome: 2,200 real and 
2,300 pseudo exons including flanking intronic sequences 
were divided into five non-overlapping sequence 
compartments. The strongest features searched in words of 
length 4–7 nucleotides were the presence or absence of 4-
mers and 5-mers, consistent with motifs identified by other 
methods, and at comparable sensitivities and specificities 
(147). 

 
With a view to the biological function of the 5' ss 

as a recognition site for the U1 snRNP early in spliceosome 
assembly, it seems obvious to determine a 5' splice site’s 
intrinsic strength regarding this interaction. Indeed, stable 
RNA duplex formation between the U1 snRNA and the 5' 
ss is a prerequisite for spliceosome formation, and it has 
been shown that the stability of the U1 snRNA duplex has 
strong influence on the selection between two nearby 5' ss 
(148, 149, 28). From a thermodynamic viewpoint, the 5' 
ss:U1 snRNA duplex stability can be quantified by its free 
energy ∆G, using the nearest-neighbor RNA base-pairing 
parameters reported by the Turner laboratory (150). These 
empirically fitted formulae are based on measurements 
with synthetic oligoribonucleotides and reflect the 
contribution of hydrogen bonding, base stacking, 
mismatches, and Watson-Crick or G·U base pairs (151). 
The nearest-neighbor approximation works very well for 
Watson-Crick base pairs, satisfactorily well for G·U base 
pairs flanked by Watson-Crick base pairs, but is less 
reliable for mismatches. Moreover, undetermined energy 
corrections at the ends of a short RNA duplex may impose 
limits on the accuracy of the free energy calculations (28, 
152, 153). Therefore, approximate free energies, calculated 
e.g. by popular computational web tools like DynAlign 
(154), HyTher (155) and Bindigo (156), seem insufficient 
for a reliable description of U1 snRNA duplex contribution 
to 5' ss strength. 

 
In a complementary approach to experimentally 

determine intrinsic 5' ss strength in a model system, 
U1 snRNA duplex formation has been monitored within a 
retroviral-derived model transcription unit (28). It is well 
known that stable U1 snRNA duplex formation with 5' ss 
can protect pre-mRNA against degradation prior to 
splicing, and also initiates formation of the spliceosome. In 
combination with functional splicing assays, this protection 
mechanism has been used to obtain biological evidence of 
duplex stability. This experimental evidence was 
supplemented with a computational hydrogen bond weight 
model, translating the hydrogen bond pattern between the 5' 
ss and all 11 nt of the free 5' end of the U1 snRNA into a 
numerical HBond score (available at the web-interface 
http://www.uni-duesseldorf.de/rna/html/hbond_score.php). 
Beyond hydrogen bond formation at individual positions, 
the HBond algorithm also partially models nucleotide 
interdependence beyond nearest neighbor relationships. 
Contrary to purely statistical approaches currently ignoring 
nucleotides beyond position +6 due to lack of information 
content, the HBond algorithm fully takes positions +7 or +8 
into account, with experiments confirming the dependency 
of the U1 snRNA duplex on these nucleotides. This 
observation is consistent with in vitro selection experiments 
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to isolate functional 5' ss from pools of random sequences, 
where those 5' ss with the best complementarity to 
U1 snRNA were selected most efficiently, even if base-
pairing to U1 snRNA extended to positions +7 and +8 
(157). 

 
Moreover, mutual relationships between 

nucleotide positions within the 5' ss motif have been 
confirmed by human-mouse comparative genomics, and the 
contribution of individual 5' ss nucleotides to the intrinsic 
strength of human 5' ss has been examined extensively by 
in vitro 5' ss competition assays of the human β-globin 
gene (158, 152, 153). Studies with this gene revealed that 
the authentic 5' ss of the first exon lies in the vicinity of a 
cryptic 5' ss located 16 nucleotides upstream, which is only 
activated when the authentic one is sufficiently weakened 
by mutation (159, 152). In this case, the cryptic splice site 
can outweigh the mutant authentic one and be selected for 
splicing. Six 5' ss scores, including free energy ∆G, S&S, 
MM and MAXENT, were compared regarding their ability 
to explain these in vitro splicing analyses. However, no 
discriminating score threshold could be determined for any 
score that stringently separated activated from unused 
potential splice sites. Correlation (Pearson’s r) between 
experimentally determined percentage of splicing 
activation and scores was maximal for MAXENT, MM and 
∆G in different competition schemes, suggesting 
mechanisms captured by different score algorithms. Indeed, 
both authentic and weakened 5’ ss (reference sequences) 
have complementary nucleotides in positions +7 and +8, 
while the test sites do not. All examined 5' ss scores ignore 
these positions, which may be accountable for the lack of 
stringent differentiation. Interestingly, there was no 
correlation between the extent of complementarity of the 5' 
ss with U6 snRNA, which is in accordance with the 
observation that hyperstabilization of the 5' ss:U1 snRNA 
interaction does not inhibit replacement of the U1 snRNP 
by the U6 snRNP in higher eukaryotes (160, 152). 
 
5.3. 3' Splice site strength algorithms 

The description of the inherent strength of 3' ss is 
more complicated due to sequence constraints of the 3' ss 
motif including the AG dinucleotide, the presence of the 
polypyrimidine tract (PPT) and the branch point sequence 
(BPS) upstream of the 3' ss. In addition, the distances 
between 3' ss signals are highly variable.  

 
Algorithms that describe the intrinsic strength of 

3' ss are based on nucleotide frequency matrices, machine 
learning approaches, neural networks, and on information 
contents of individual nucleotides, or apply probabilistic 
approaches considering dependencies between adjacent and 
non-adjacent positions (142, 143, 161, 162, 42, 136, 140). 
The Shapiro and Senapathy matrix counts base frequencies 
at positions -14 to +1 of the 3' ss motif, whereas the first-
order Markov (MM) and maximum entropy model 
(MaxEntScore) use a wider sequence range of 3' ss 
positions from -20 to +3 (AG consensus at positions –1 and 
–2). Since the 3' ss sequence motif is much longer than the 
5' ss, in a first step the maxent approach breaks up the 3' ss 
sequences into 3 consecutive non-overlapping fragments of 
length seven each, excluding the invariant AG dinucleotide. 

This splitting, however, ignores the dependencies across 
fragment boundaries. To avoid that, six additional partially 
overlapping subfragments are introduced, and the final 
maxent likelihood is calculated from the appropriate ratio 
of individual segment distributions using second-order 
marginal constraints in each segment. While this second-
order Markov model is superior to a first-order model, 
performance is decreased again for third-order models. 
Long-range dependencies across several “skipped” 
nucleotides are neglected in these models, but introducing 
additional dependencies does not significantly improve the 
performance beyond two-nucleotide-separation. 

 
The optimal performance among the examined 

models was achieved by an me2x2-model, skipping up to 
two nucleotides, with a maximum correlation coefficient of 
C = 0.6291, which only slightly exceeds the simpler 
modified me2s0-model (C = 0.6172). Comparison of the 
splice site strength using current prediction algorithms 
showed that the maximum entropy model class allowed the 
best discrimination between authentic and mutation-
induced aberrant 3' ss (134).  

 
Ast and colleagues developed an algorithm which 

combines pairs of PPT and BPS to identify the location of 
functional BPS, since consensus scores alone are not 
sufficient to locate the BPS in introns due to frequent 
occurrence of high score motifs in exons and introns 
(http://ast.bioinfo.tau.ac.il/) (163). This algorithm is based 
on the BPS consensus calculated by Burge (164) and 
locates both the BPS and the PPT together by searching 
known combinations of BPS and PPT. The PPT borders are 
determined by a heuristic method based on experimental 
evidence (41, 165). 

 
Their approach is contrasted by an algorithm 

which is primarily based on AG dinucleotide exclusion 
zones between the 3' ss AG and the BPS for branch point 
prediction (38). This algorithm incorporates exons with 
distant BPS extending the usual search for probable branch 
points within a fixed distance of the 3' ss. Nevertheless, 
prediction of cryptic and de novo 3' ss is still a difficult task 
(166). 

 
In general, local primary sequence data is 

insufficient to determine, if a given sequence will be a 
splice site, already due to the substantial overlap of real and 
decoy splice site sets. Additional information away from 
the exon/intron junction is needed to put a definitive label 
on a splice site. Besides splicing enhancers and silencers 
treated in the next section, RNA secondary structure may 
be an important non-local splicing determinant. 

 
5.4. Computational identification of exonic regulatory 
elements 

Even translationally silent mutations can act on 
RNA level by altering cis-regulatory elements and thereby 
disrupt splicing. Hence, the combination of intrinsic or 
relative splice site strength with context information on the 
identity and distribution of cis-regulatory elements may 
improve the prediction of aberrant splicing in disease 
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mutations, and may further clarify its pathway (exon 
skipping or activation of cryptic splice sites). 

 
Exonic enhancers, frequently bound by SR 

proteins, have been identified through the analysis of 
disease alleles and by site–directed mutagenesis of 
minigene constructs, traditionally on a single transcript 
basis, whereas more recent purely computational 
approaches, followed by experimental validation, have 
contributed to general definition of splicing regulatory 
motifs. 

 
ESE protein-binding sites on RNA are typically 

modeled by some form of position-specific scoring matrix 
(PSSM), constructed from aligned sets of experimentally 
determined binding sequences (167). For every position 
along the pre-mRNA strand, a log-odds score (“ESE motif 
score”) is calculated from these PSSM, measuring the 
probability that the sequence at that position is an instance 
of the considered ESE motif, compared to the global 
background nucleotide frequencies. This score, however, 
treats different positions independently and cannot 
accommodate interactions. In a typical analysis, for each 
ESE an individual score threshold (detection sensitivity) is 
given, and only scores above the threshold are considered 
to belong to putative ESE positions. 

 
Position-specific scoring matrices can only be 

successfully derived from sets of binding sites that are 
homogeneous with respect to the binding protein, which 
excludes non-specific screening assays based on cis-
regulatory activity of one or more putative elements (168). 
Derivation of PSS matrices from experimental data is 
typically performed by alignment algorithms, such as the 
Gibbs Motif sampler (169), sometimes followed by 
clustering of the detected motifs to reduce the number of 
independent patterns, e.g. by CLUSTALW (170). 

 
Most early experimental work on enhancers 

focused on purine-rich exonic elements, but it soon became 
clear that a high purine content by itself is not sufficient to 
define an ESE, as the precise sequence of the element, 
which might contain interspersed pyrimidines, is also 
important (171). Functional SELEX (Systematic evolution 
of ligands by exponential enrichment) experiments have 
confirmed the existence of several types of ESE that 
include both purine-rich and non-purine-rich sequences, 
and have uncovered a new broad class of adenosine-
cytosine-rich elements (172). These SELEX methods 
isolate ESEs from a complex pool of random sequences by 
iteratively selecting and amplifying the fraction of 
molecules that can function as ESEs in a highly specific 
reporter assay. Splicing that is dependent on the addition of 
individual SR proteins to cytoplasmic extract allowed the 
selection of distinct motifs for SF2/ASF, SC35, SRp40 and 
SRp55 (94). The identified motifs are short (6-8 nt), 
degenerate, and some overlap partially. 

 
To predict the location of SR protein specific 

putative ESEs, the web-based program ESEfinder 
(http://rulai.cshl.edu/tools/ESE/) permits the calculation of 
ESE motif scores along pre-mRNA sequences (79, 173). 

ESEfinder can also be useful to predict mutation effects: 
e.g., a number of disease-associated point mutations 
resulting in exon-skipping reduced high-score motifs to 
below threshold values (174), and on the other hand, a 
mutation that results in activation of a cryptic 5' ss due to 
increased SC35 binding to an ESE leads to a higher score 
(175). Unfortunately, to date ESE motifs for only four SR 
proteins have been identified, and sequences corresponding 
to the RNA binding specificities of other SR proteins still 
remain to be found. Furthermore, interactions of different 
enhancers and/or silencers have to be taken into account: 
the presence of a high score motif in a sequence does not 
necessarily identify that sequence as an exonic splicing 
enhancer in its native context, since nearby or overlapping 
silencer elements may interfere. 

 
Iterative in vivo selection of exonic sequences 

through splicing in an intact cell may have an advantage 
over in vitro SELEX methods by recapitulating a true 
process of molecular evolution. An advanced in vivo 
SELEX has recently been used in a proof-of-concept 
experiment for SMN1 exon 7 analysis, employing partial 
randomization of an entire exon of 54 nucleotides (176, 
177). Based upon the mutability of residues, two negative 
elements near the 5' and 3' ends of SMN1 exon 7, and one 
positive element in the middle were identified. 
Interestingly, these elements were considerably larger than 
current computationally predicted enhancer or silencer 
motifs, which is consistent with the fact that most splicing 
factors are capable of forming multi-component complexes 
with higher RNA specificity than their individual 
components, e.g. SR proteins. Since by this in vivo method 
the relative significance of every exonic position was 
tested, the variable impact of individual nucleotides within 
an identified cis-regulatory element could be determined. 
Beyond uncovering key positions within the exon, 
mutability values also provided clues about the critical 
roles of terminal stem-loop RNA structures. As the chosen 
example demonstrates, a forte of the method is the 
identification of cis-regulatory elements in the context of 
the entire exon. With the proof-of-concept in place, it will 
be a natural extension to examine cis-regulatory elements 
in more complex, alternatively spliced exons, and to 
incorporate flanking intronic sequences. 

 
There are several statistical approaches to 

identify cis-regulatory elements based upon the different 
distribution of oligomers in exons and introns with different 
properties, e.g. weak and strong splice sites. Calculating 
statistically normalized Z-scores, they pick out extremely 
over- or underrepresented oligomers as candidate 
sequences. Evidently, such Z-scores are highly dependent 
upon the strength concept chosen, and suboptimal 
underlying splice site scores will lead to less useful Z-
scores and motifs. 

 
In the RESCUE-ESE (relative enhancer and 

silencer classification by unanimous enrichment) approach, 
hexamers were identified in constitutively spliced human 
exons by enrichment in exons versus introns, and in exons 
with weak splice sites versus exons with strong splice sites 
– separately for 5' and 3' ss (178). Here, the splice site 
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strength was measured by a log-odds-score, derived from a 
position-specific weight matrix measuring the splice site 
similarity with the consensus motif for nucleotides –3 
through +6. Hexamers that were significantly enriched in 
exons with weak splice sites are assumed to act as 
enhancers, consistent with the view that exons with weak 
splice sites are not accurately spliced without the aid of 
additional enhancer elements. The identified 238 distinct 
hexamers clustered into ten motifs on the basis of sequence 
similarity. Two of them were specific to 5' ss, five were 
specific to 3' ss, and three associated with both splice sites. 
For each cluster a representative hexamer was validated by 
its ability to “rescue” exon recognition in a splicing 
reporter construct and the robustness of the approach with 
respect to differences in the local context was demonstrated 
by extended exemplars of the hexamers. 

 
This study revealed an average of 5.2 ESE 

"clumps" (multiple overlapping ESE hexamers) per exon, 
with most exons having between 3 and 7 ESE clumps. The 
RESCUE-ESE method has recently been applied to three 
additional species (mouse, zebrafish and pufferfish) and is 
also available as an online ESE analysis tool 
(http://genes.mit.edu/burgelab/rescue-ese) (80). Similar 
caveats as with the ESEfinder motifs apply to the 
RESCUE-ESE candidates, since context effects and 
interactions with adjacent silencer motifs, as well as 
secondary structure could not be taken into account. 

 
By following a similar rationale, RESCUE-ISE 

predicts as ISEs (intronic splicing enhancer) hexamers that 
share two properties: significant enrichment in introns 
relative to exons and significant enrichment in introns with 
weak 5' ss or 3' ss relative to introns with strong splice 
sites. Applying this method to large datasets of human and 
mouse introns identified the triplet motif GGG and a C-rich 
motif, respectively (179). When the RESCUE-ISE 
approach was applied to datasets of Fugu introns, the 
analysis revealed dramatic differences in candidate ISEs 
between mammals and fish, which may be important with 
regard to the evolution of the splicing process. 

 
There is a sharp transition in sequence 

composition between exons and introns because of the fact 
that most exons code for protein, whereas introns do not. 
Since it is not clear to what proportion this information is 
used as “ESE” in addition to protein coding, the PESX 
algorithm compares frequencies of octamers in 
constitutively spliced noncoding exons with those in 
pseudo exons and the 5' untranslated regions (UTRs) of 
intronless genes. Sequences overrepresented in the 
noncoding exons were designated as putative ESEs, and 
underrepresented sequences were designated as putative 
ESS (exonic splicing silencer) (180). Similar to the 
RESCUE-ESE hexamer approach, for each octamer there 
are two normalized Z-scores, describing the joint 
probability of occurrence in the different data sets: the P-
score measures overrepresentation in exons versus pseudo 
exons, while the I-score compares to the 5' UTR of 
intronless genes. For a given significance threshold (0.2% 
probability of chance occurrence), 2,069 (=3% of all 
possible) octamers were found as putative exonic enhancers 

and 974 as exonic silencers. These PESE/PESS can be 
grouped into families of related sequences, and 
consequentially tend to occur in clusters. For representative 
octamers of each class, regulatory effects were confirmed 
by tests in minigene constructs. To examine effects of 
PESE/PESS in their natural context, they were knocked out 
by site-directed mutagenesis in six exons naturally 
containing them (181). Eighteen of the 22 mutations 
actually disrupted splicing or reduced splicing efficiency by 
a factor of at least 2. The high success rate of mutagenesis 
implies a remarkable lack of redundancy among multiple 
ESEs, and in most cases several ESEs must act in concert 
to ensure splicing, underlining the importance of ESE 
interaction. There is some overlap between RESCUE-ESE-, 
ESEFINDER- and PESE-motifs, but each method identifies 
ESEs missed by the other two. Several experimental results 
point to ISEs as alternatives to ESEs (181). The 
identification of PESEs and PESSs is also permitted 
through a web site interface 
(http://cubweb.biology.columbia.edu/pesx/) (181).  

 
A comparative genomics method based upon 

46,103 human-mouse orthologous exons extracted 285 
significant exon splicing regulatory sequences (ESRs) by 
combining evolutionary conservation of wobble positions 
with statistically significant overabundance of dicodons 
(hexamers) relative to the expected frequency of their 
independent individual codons. For a given reading frame, 
wobble positions are codon positions which, due to the 
degeneracy of the genetic code, do not result in amino acid 
changes. Conservation of nucleotides in such wobble 
positions in homologous exons between mouse and human 
may reflect a selective pressure, indicating that mutations 
in these nucleotides did alter appropriate splicing (105). 
ESRs were found conserved to a higher degree in 
alternatively spliced exons, while having higher abundance 
in constitutively spliced exons, which may suggest that 
constitutive exons can afford changes in ESR elements due 
to multiple redundant splicing signals, while alternatively 
spliced exons are more sensitive. The experimental 
validation of ten putative ESRs, measuring exon inclusion 
levels in two suboptimal minigene constructs, revealed that 
the same ESR can have positive as well as negative effect 
on splicing, depending on different exon context and even 
their locations within the same exon. These findings are 
consistent with previous reports of regulatory factors 
having enhancing or repressing effects, depending on the 
location of their binding sites in different RNAs (106). 

 
Exonic silencers have also been systematically 

searched by ‘fluorescence-activated screen for exonic 
splicing silencers’ (FAS-ESS), an elaboration of an in vivo 
functional selection approach using cell-transfection assays 
(83). A library of random decamers was cloned into a test 
exon, stably transformed cells were selected, and cells that 
produced eGFP were selected by FACS. PCR of genomic 
DNA then allowed 141 FAS-ESS decamer sequences to be 
derived, 133 of which were unique. Most of the 133 unique 
FAS-ESS decamers could be clustered into groups by 
multiple alignment with CLUSTALW, yielding seven 
putative ESS motifs, three of which resemble known motifs 
bound by hnRNPs H and A1. The silencer activity of over a 
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dozen of these sequences was also experimentally 
confirmed in a heterologous exon/intron context, and 
statistical overrepresentation in the set of recovered 
decamers was used as a criterion to identify 103 specific 
“FAS-hex3” hexamers occurring at least three times in the 
decamer set and likely to possess intrinsic ESS activity. In 
addition, the identified FAS-ESSs seem to play a role in 
splice site definition and pseudo-exon suppression (82). 
Most FAS-hex3 hexamers were significantly enriched in 
pseudo exons and skipped exons relative to constitutive 
exons, and many also in exons with strong relative to those 
with weak splice sites. The 103 FAS-hex3 hexamers 
partially overlapped with the 974 PESS 8-mers (53%). 

 
FAS-ESS were also included into the first 

generation splicing simulation software EXONSCAN, 
which integrates signal scoring information assumed to be 
used by the splicing machinery, but ignores non-local 
information like sequence composition, conservation or 
reading frame. EXONSCAN derives a composite score for 
each potential exon by independently adding up log-odds-
score contributions from discrete sequence elements like 5' 
and 3' ss sequences and cis-regulatory elements (G triplets 
as ISE, RESCUE-ESE and FAS-ESS hexamers). By 
including different types of ESEs and ESSs into this 
composite score and calculating exon prediction accuracy, 
their individual contribution to exon recognition can be 
estimated. 10,891 internal human exons were screened by 
EXONSCAN – in different versions, incorporating either 
splice site recognition alone, or additional enhancer or 
silencer motif recognition. In this comparison, using FAS-
hex3 resulted in the greatest improvement due to a single 
type of regulatory element, suggesting that ESS may be at 
least as important as enhancer elements. The 103 FAS-hex3 
hexamers were found overrepresented by a factor of at least 
~1.5 in the 200 intronic compared to the 70 exonic 
nucleotides next to constitutive 5' and 3' ss, which 
contributes further evidence for the FAS-ESS’ activity in 
suppression of decoy splice sites upstream and downstream 
of constitutive exons. 

 
Most recently, a new, general method termed 

Neighborhood Inference (NI) combined the results of the 
RESCUE-ESE hexamer approach with PESEs and PESSs 
octamers as well as with FAS-ESSs screened in a 
fluorescence-based assay (168). From two given disjoint 
sets of “trusted” cis-regulatory elements – ESEs and ESSs 
– of length k, the NI approach counts the numbers of ESEs 
and ESSs in a well-defined neighborhood of the examined 
k-mer. The k-mer’s normalized NI-score with values 
between –1 and +1 is calculated from the carefully 
weighted ESE- and ESS-distribution in neighborhoods of 
given radius, and reflects, whether there are relatively more 
trusted ESEs or ESSs at a given sequence space distance 
from the k-mer. Thus, the NI-score is based upon the two 
input (training) sets, and consequently k-mers in the ESE 
(ESS) set have scores +1 (–1). In contrast to PSSM 
approaches, NI does not require that the set of known sites 
be of homogeneous origin (same binding protein) or 
specifically aligned, and multiple potentially overlapping 
motifs can be modeled simultaneously, including both 
positively and negatively acting elements. 

As input sets, 666 trusted ESE hexamers were 
extracted from RESCUE-ESEs and PESE octamers, and 
386 trusted ESS hexamers were obtained from FAS-ESS 
and PESS octamers. Sequences that are inactive in 
splicing are hard to detect reliably, and no “inactive” 
datasets have been reported to date, so that NI accuracy 
was assessed exclusively on the sets of trusted ESS and 
ESE hexamers, with one acting as negative control for 
the other. Excellent separation of trusted ESEs from 
ESSs was achieved in 10-fold cross-validation analysis, 
when both ESSs and ESEs were used as an input.  

 
Hundreds of novel candidate ESE and ESS 

hexamers were identified at NI score cutoff ± 0.8, where 
the numbers of misclassifications of trusted ESEs/ESSs 
in the cross-validation analyses were negligible. 153 of 
313 NI-predicted ESE hexamers (49%) were obtained in 
excess of RESCUE-ESEs from updated data sets and 
using maxent scores, although these “new” RESCUE-
ESE hexamers still contained 85% of the original 
RESCUE-ESEs. A total of 27 NI-predicted ESEs and 
five NI-predicted ESS were also found in a set of exonic 
regulatory sequences based on overrepresented and 
conserved dicodons in orthologous human and mouse 
exons (105).  

 
Moreover, NI scoring was able to quantitatively 

predict the magnitudes of effects on splicing point 
mutations introduced into exons, experimentally 
measured by change in exon inclusion levels. 24 
previously uncharacterized hexamers, evenly distributed 
across the NI-range [–1,+1] were examined in a splicing 
reporter assay engineered to detect both splicing 
enhancement and repression. The correlation between 
hexamer NI-score and test exon inclusion confirmed that 
hexamers with NI-score > 0.8 (< –0.8) had enhancing 
(silencing) effects, while those between –0.8 and +0.8 
were mostly splicing-neutral. Future improvements of 
the NI method may include weighting of individual 
sequences of known activity according to their 
abundance in experimentally determined sequence sets, 
according to their binding affinity, or according to their 
phylogenetic conservation, as well as more sophisticated 
k-mer distance measures incorporating e.g. position-
specific weights for mismatches. 
 
5.5. Computational identification of intronic regulatory 
elements 

To date, intronic splicing regulatory elements 
(ISRE) have been identified to a conceivably lesser extent 
than exonic elements. Studies relating to ISREs exploit two 
possible strategies: evolutionary conservation of non-
coding intronic sequences flanking conserved exons 
indicating regulatory function, and possible regulation of 
differential expression of tissue-specific alternatively 
spliced cassette exons by intronic sequences. The latter 
assumes that critical regulatory elements are most 
prominent in introns adjacent to exons with a highly 
specific regulation pattern. Although it is only recently that 
they have received attention, ISREs can be considered 
cornerstones in understanding tissue-specific alternative 
splicing (182). 
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In a comparative analysis of human and mouse 
genomes, intronic sequences with a high degree of 
conservation (88% upstream and 80% downstream) were 
identified proximal to the enclosed exons: 77% of 
conserved alternatively spliced exons were flanked on both 
sides by conserved intronic sequences, as opposed to only 
17% of constitutive exons. These conserved sequences are 
hypothesized to be involved in alternative splicing 
regulation (183). 

 
Cis-regulatory elements were searched for in 

introns adjacent to 25 brain-specific alternatively spliced 
cassette exons by word contrast algorithms, comparing 
oligomer frequencies to introns next to control exons. 
Statistically overrepresented oligomers were mostly found 
within 100–300 nucleotides up- and downstream of the 
cassette exon, confirming the hypothesis that intronic 
regulatory elements are localized close to the exon. In the 
downstream intron, the brain tissue overrepresented 
hexamer UGCAUG, pentamers GCAUG and UGCAU, and 
the underrepresented GGG triplet have been identified with 
the highest significance. The upstream introns showed a 
remarkably similar oligomer distribution for brain and 
other tissues, with UUUUUU and known PTB consensus 
binding sites as most significant motifs (184). 

 
A well-known and particularly successful 

approach in identification of cis-regulatory elements in 
transcription, correlation of motif occurrence with 
expression has been used to identify ISREs in tissue-
specific alternative splicing. Based upon human exon 
microarray data, 56 cassette exons with significantly higher 
normalized expression level in muscle tissue compared to 
other adult tissue were identified. Hexamers were identified 
as ISRE candidates by statistical significance of log-linear 
regression of hexamer frequency in 200 bases long flanking 
intronic sequences with gene-normalized expression ratios. 
The most prominent downstream ISREs were Fox1- and 
CELF-binding sites, and a branchpoint-like element 
ACUAAC, while pyrimidine-rich elements like PTB-
binding sites occurred upstream. These factors were found 
to act both independently and collaboratively in muscle-
specific splicing (185) 
(http://vision.lbl.gov/People(ddas/NAR_SPLICE1). 

 
A comparative genomics approach across four 

mammalian species searched for highly conserved words of 
length 5–7 in 400 bases long intronic sequences flanking 
conserved exons. ISRE candidates were scored by a 
statistical χ²-parameter measuring their conservation rate, 
and subsequently grouped into families containing an 
average number of five words. This procedure finally 
identified 158 ISREs in downstream and 156 ISREs in 
upstream introns, 84% (94%) of which suppressed 
proximal 5' (3') ss in competing splice reporter constructs in 
human cells. Up to 50% of these ISREs were enriched near 
alternative exons, in particular near tissue-specific 
alternative events, and included nearly all binding sites of 
known alternative splicing factors. A subset of ~40–45% of 
these ISREs may play a dual role as exonic splicing 
silencers (182).  

 
6. CONCLUSIONS 

 
Gene mutations disrupting the splicing 

mechanism are increasingly recognized as having a strong 
disease causing potential, since accurate pre-mRNA splice 
site recognition in the nucleus is a mandatory prerequisite 
for correct cellular function. Splicing regulatory elements 
are sensitive targets of nucleotide alterations: even single 
DNA mutations can strengthen, weaken or destroy a splice 
site or cis-regulatory element, or create a new one, and may 
thus lead to observable phenomena on RNA level like 
aberrant splicing (exon skipping, activation of cryptic or de 
novo splice sites, or intron retention). 

 
Through identification of disease-specific genes, 

genetic testing has found its way into clinical routine and 
supports a variety of clinical decisions in many common 
diseases and cancer syndromes. Most patients, however, are 
genotyped only, and diagnostic RNA-level information 
about aberrant splicing is usually not available. Therefore, 
computational predictions of in vivo DNA mutation effects 
on splicing can be beneficial for the human geneticist – but 
presents a major challenge for bioinformatics, due to the 
complex interplay of splice site-defining sequence 
elements. 

 
Today, in silico implementation of the 

comprehensive splicing machinery is still limited to a 
variety of independent algorithms scoring splice sites 
and/or cis-regulatory elements. Indeed, these dedicated 
scores for 5' ss or 3' ss, as well as exonic or intronic splice 
enhancers or silencers, have been applied to the prediction 
of individual factors with considerable success. However, it 
has been recognized that splicing regulatory elements act in 
concert, and their interactions and dependencies play an 
important role in splice site functionality, but the 
meaningful combination of cis-regulatory elements and 
splice site scores into a single functional measure still 
remains to be achieved. 

 
Nevertheless, currently available web-based tools 

for the scoring of splice sites and cis-regulatory elements, 
as described in this review, may provide the human 
geneticist with valuable information for estimating DNA 
mutation effects on splicing. Although currently 
bioinformatics does not yet cover all bases, appropriate 
combination of the different available algorithms may 
present the next step towards a reliable diagnostic tool that 
one day will become an integral part of clinical diagnosis. 
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