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1. ABSTRACT 
 

Telomeres are DNA regions composed of 
TTAGGG repeats that are located at the ends of 
chromosomes.  Specific proteins associate with the 
telomeres and form non-nucleosomal DNA-protein 
complexes that serve as protective caps for the 
chromosome ends.  There is accumulating evidence that 
progressive telomere shortening is closely related to 
cardiovascular disease.  For example, vascular cell 
senescence has been reported to occur in human 
atherosclerotic lesions and this change is associated with 
telomere shortening.  Impairment of telomere integrity 
causes vascular dysfunction, which is prevented by the 
activation of telomerase.  Mice with short telomeres 
develop hypertension and exhibit impaired 
neovascularization.  Short telomeres have also been 
reported in the leukocytes of patients with cardiovascular 
disease or various cardiovascular risk factors.  Although it 
remains unclear whether short telomeres directly cause 
cardiovascular disease, manipulation of telomere function 
is potentially an attractive strategy for the treatment of 
vascular senescence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Epidemiological studies have shown that age 
is the dominant risk factor for atherosclerotic 
cardiovascular disease (1, 2).  The incidence and the 
prevalence of atherothrombotic diseases, including 
coronary heart disease and stroke, both increase with 
advancing age (1, 2).  However, the molecular mechanisms 
underlying the increased risk of such diseases due to aging 
remain unclear.  For example, arterial stiffness increases 
with age due to structural changes of the walls of arteries as 
well as endothelial dysfunction, but convincing 
explanations at the molecular level for these age-associated 
alterations of vascular structure and function have not yet 
been discovered. 

 
 Cellular senescence occurs due to the limited 
ability of normal cells to divide in vitro and is accompanied 
by specific changes of cell morphology, gene expression, 
and function.  The occurrence of such changes has been 
suggested to play a role in human aging (3).  This 
hypothesis (the cellular hypothesis of aging) was first 
described by Hayflick in the 1960s and is supported by the
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Figure 1.  SA β-gal-positive vascular cells in human 
atheroma. Photographs of the luminal surface of human 
coronary artery (CA, left) and internal mammary artery 
(IMA, right) stained with β-gal staining.  Senescent-
associated β-gal activity was observed in human coronary 
arteries but not in internal mammary arteries.  Adapted 
from ref (14) with permission. 
 
finding that primary cultured cells from patients with 
premature aging syndromes, such as Werner syndrome and 
Bloom syndrome, have a shorter lifespan than cells from 
age-matched healthy persons (4, 5).  Until recently, 
however, little attention has been paid to the potential 
impact of vascular cell senescence on age-related vascular 
disorders. 
 
 Over the past few decades, significant progress 
has been made in our understanding of the role of telomeres 
in cellular senescence, enabling us to reassess the 
cellular hypothesis of aging with regard to human 
vascular disorders.  For example, it may be possible that 
cellular senescence contributes to age-associated 
vascular diseases or that telomere shortening promotes 
vascular aging.  In this review, we will describe recent 
evidence that supports the cellular hypothesis of aging 
in relation to the vasculature and discuss the potential 
involvement of cellular senescence induced by telomere 
shortening in the pathogenesis of human vascular 
disorders. 
 
3. VASCULAR CELL SENESCENCE IN VIVO 
 

Vascular cells have a finite lifespan in vitro 
and eventually enter a state of irreversible growth arrest 
called cellular senescence.  Flattening and enlargement of 
vascular cells are known as morphological characteristics 
of senescence (6).  Expression of negative regulators of cell 
cycle (such as p53 and p16) increases with cell division and 
thereby promotes growth arrest (7).  Primary cultured cells 
that undergo senescence in vitro also show increased 
expression of β-galactosidase (β-gal) activity at pH 6, 
which is distinguishable from endogenous lysosomal β-gal 
activity that can be detected at pH 4.  The activity at pH 6 
is known as senescence-associated β-gal (SA β-gal) 
activity, and it shows a correlation with the aging of cells 
and thus is regarded as a biomarker for cellular senescence 
(8).  The in vitro growth of vascular cells obtained from 
human atherosclerotic plaques is impaired, and such cells 
develop senescence earlier than cells harvested from 
normal vessels (9, 10).  The histology of human 
atherosclerotic lesions has been extensively studied, and it 
has been demonstrated that both vascular endothelial cells 
and vascular smooth muscle cells (VSMCs) exhibit the 
morphological features of cellular senescence (11, 12).  

These findings suggest the occurrence of vascular cell 
senescence in vivo. 

 
 In fact, this hypothesis has been confirmed by in 
vivo cytochemical analysis of SA β-gal activity.  Fenton et 
al. detected SA β-gal-positive vascular cells in damaged 
rabbit carotid arteries (13).  After repeated endothelial 
denudation, accumulation of SA β-gal-positive cells was 
markedly enhanced.  We have previously demonstrated SA 
β-gal-positive vascular cells in atherosclerotic plaques 
obtained from the coronary arteries of patients with 
ischemic heart disease (14).  These SA β-gal-positive cells 
were predominately localized on the luminal surface of the 
atherosclerotic plaques and were identified as endothelial 
cells, while such cells were not observed in the internal 
mammary arteries of the same patients where 
atherosclerotic changes were minimal (Figure 1).  In 
advanced plaques, however, SA β-gal-positive VSMCs 
were detected in the intima and not in the media (15).  This 
may have been due to extensive cell replication in the 
lesions, as is observed in arteries subjected to double 
denudation.  SA β-gal-positive cells in human atheroma 
exhibit increased expression of p53 and p16 (other markers 
of cellular senescence), which is further evidence in favor 
of in vivo senescence.  These cells also show various 
functional abnormalities such as decreased expression of 
endothelial NO synthase (eNOS) and increased expression 
of pro-inflammatory molecules (15).  Thus, cellular 
senescence may contribute to the pathogenesis of vascular 
aging in humans. 
 
4. MECHANISMS OF CELLULAR SENESCENCE 
 
4.1 Telomeres and telomerase 

One widely discussed hypothesis of cellular 
senescence is the telomere hypothesis (16).  Telomeres are 
non-nucleosomal DNA-protein complexes located at the 
ends of chromosomes that serve as protective caps and act 
as a substrate for specialized replication mechanisms.  As a 
consequence of semi-conservative DNA replication, the 
extreme terminals of the chromosomes are not duplicated 
completely, resulting in shortening of the telomeres with 
each cell division.  A critical reduction of telomere length 
is thought to trigger the onset of cellular senescence.  Thus, 
telomere shortening has been proposed to act as a mitotic 
clock that prevents the unlimited proliferation of human 
somatic cells. 

 
 Telomerase is a ribonucleoprotein that adds 
telomeres to the ends of chromosomes using its RNA 
moiety as a template.  Early studies detected telomerase 
activity in cancer cells and stem cells, but not in normal 
somatic cells, suggesting that telomerase might be essential 
for tumor growth and the self-renewal potential of stem 
cells (17, 18).  However, evidence has since emerged that 
telomerase also regulates the proliferation of normal 
somatic cells by lengthening of telomeres or by telomere 
length-independent mechanisms (19-21).  Human 
endothelial cells and VSMCs express telomerase activity, 
which is markedly enhanced by mitogenic stimuli (22).  
This activity declines with cellular aging in vitro due to a 
decrease of TERT expression, leading to telomere
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Figure 2.  The shelterin complex and the signaling 
pathways in response to telomere damage. Upper panel 
depicts the six subunits of shelterin.  Telomere damage 
activates the ATM/ATR kinases, which leads to a p53-
dependent cell cycle arrest.  The p16/pRb pathway also 
mediates telomere-dependent senescence. 
 
shortening and the occurrence of cellular senescence (23, 
24).  The introduction of telomerase extends the lifespan of 
both endothelial cells and VSMC (23, 25, 26), suggesting a 
critical role of telomeres and telomerase in vascular cell 
senescence. 
 Oxidative stress has been suggested to have a role 
in human aging as well as cellular senescence (27).  
Chronic oxidative stress caused by exposure to chemical 
oxidants induces telomere shortening and accelerates the 
onset of senescence (28), as well as senescence-associated 
death (29), in human endothelial cells.  Homocysteine is 
one of the known risk factors for atherosclerosis, and it has 
been reported to induce telomere shortening and accelerate 
endothelial cell senescence (30).  Oxidized low-density 
lipoprotein has been reported to inactivate telomerase by 
inhibiting the phosphoinositol 3-kinase/Akt pathway in 
vascular endothelial cells (31), thus inducing premature 
senescence (32).  Conversely, suppression of oxidative 
stress or hypoxia preserves telomere length and extends the 
lifespan of cells, at least partly through an increase of 
telomerase activity (23, 33, 34).  NO also activates 
telomerase and delays the onset of endothelial cell 
senescence.  It is possible that NO scavenges intracellular 
radicals and thus decreases oxidative stress, resulting in the 
activation of telomerase (35). 
 
4.2 Factors acting downstream of telomere dysfunction 

Although diverse stimuli can induce cellular 
senescence, they appear to converge mainly on either or 
both of two pathways that establish and maintain the 
process of senescence.  These pathways are regulated by 
the tumor suppressor proteins p53 and pRb (36, 37).  Both 
proteins are transcriptional regulators, and each lies at the 
center of signaling pathways responsible for cell cycle 
regulation, DNA repair, and cell death, which include a 
number of upstream regulators and downstream effectors 

(38).  p53 is a crucial mediator of the cellular response to 
DNA damage and it induces the cyclin-dependent inhibitor 
p21 (39).  Dysfunctional telomeres resemble damaged 
DNA and thus trigger a p53-dependent response (40).  
Recent studies have demonstrated that nuclear foci 
containing markers for double-stranded DNA breaks form 
in cells with critically short or dysfunctional telomeres (41, 
42), and it has been shown that such foci are increased in 
fibroblasts of aging primates (43). 

 
 It has been postulated that telomeres form large 
duplex loops (called t-loops) with telomeric proteins, which 
protect the ends of chromosomes.  Mammalian telomeres 
have been reported to associate with the shelterin complex 
(44).  This complex consists of three subunits that directly 
recognize TTAGGG repeats, which are known as 
protection of telomeres 1 (Pot1) (45), telomeric repeat 
binding factor 1 (TRF1), and TRF2 (46), and these subunits 
are interconnected by three additional shelterin proteins 
(Figure 2).  Pot-1 has been identified as a telomeric protein 
that binds to the tips of telomeres and its deletion elicits a 
DNA damage response at the sites of telomeres, resulting in 
p53-dependent senescence (47, 48).  TRF1 was originally 
reported to be mainly involved in the regulation of telomere 
length (49), whereas TRF2 was implicated in protecting 
chromosome ends (50).  However, recent reports have 
shown that both proteins play a crucial role in regulating 
telomere length as well as in protecting chromosome ends 
(51, 52).  Although the DNA damage response activated by 
inhibition of shelterin is thought to be p53-dependent, there 
is some evidence that the p16/pRb pathway is also 
activated by telomere dysfunction (53).  In addition to 
shelterin, telomeres interact with a number of other factors 
that could influence telomere integrity, including Ku70, 
Ku86, DNA-dependent protein kinase, poly (ADP-ribose) 
polymerase (PARP), the RecQ-like helicases, and exision 
repair cross complementing 1 (ERCC1) (54).  These factors 
are involved in the processes of DNA recombination and 
repair, and thus could contribute to telomere damage as 
well as to telomere stability. 
 
4.3 Telomere-independent signaling pathways 

It is now apparent that cellular senescence can 
also be induced by various stresses independently of the 
replicative age of a cell (36, 55).  Cells undergo senescence 
when DNA damage occurs that is irreparable or threatens 
to overwhelm the DNA repair machinery (56).  
Supraphysiological mitogenic signals that result from the 
overexpression of oncogenes also elicit the senescence of 
many normal cells (36).  Finally, cells can undergo 
senescence in response to epigenetic changes of chromatin 
organization that may alter the expression of proto-
oncogenes or tumor suppressor genes (57).  Thus, it is 
possible that atherogenic stimuli may increase cell turnover 
at sites of atherosclerosis, thereby promoting telomere 
shortening, and possibly also activating certain proliferative 
signals that induce senescence independently of telomere 
shortening.  Consistent with this notion, we have 
demonstrated that atherogenic stimuli like angiotensin II 
and insulin promote vascular cell senescence, thereby 
promoting vascular dysfunction (58-60).  Moreover, 
oxidative stress and DNA damage may promote vascular 
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cell senescence and thus further potentiate atherogenesis 
(58). 
 
5. PROGRESSIVE TELOMERE SHORTENING IN 
AGE-ASSOCIATED VASCULAR DISEASES 

There is also evidence that telomere 
shortening occurs in human vessels and that this process 
may be related to age-associated vascular diseases.  The 
telomere length of endothelial cells from the abdominal 
aorta and iliac arteries shows a strong inverse correlation 
with age (25, 61).  Importantly, telomere shortening occurs 
more rapidly in endothelial cells from the iliac arteries 
compared with those from the internal mammary arteries 
(25).  Thus, greater hemodynamic stress may enhance the 
rate of endothelial cell turnover in the iliac arteries 
compared with that in vessels subjected to less 
hemodynamic stress.  Telomere shortening is also more 
advanced in coronary artery endothelial cells obtained from 
patients with coronary heart disease compared with cells 
from healthy subjects (62).  Furthermore, it has also been 
reported that fibrous cap VSMCs have markedly shorter 
telomeres than normal medial VSMCs (63). 

 
 The telomere length of white blood cells from 
healthy subjects shows an inverse correlation with their 
pulse pressure that is independent of chronological age, at 
least in men (64).  The telomeres of white blood cells from 
patients with severe coronary artery disease are 
significantly shorter than those of cells from healthy 
controls, which might reflect the accelerated biological 
aging of various tissues (including the coronary arteries) 
(65).  In fact, the risk of myocardial infarction is increased 
by ~3-fold in subjects with short telomeres (66), and this 
increased risk associated with shorter telomeres can be 
ameliorated by statin treatment (67).  Short telomeres are 
associated with an increase of carotid atherosclerosis in 
hypertensive subjects (68).  Degenerative aortic valve 
stenosis is also correlated with telomere shortening in the 
elderly, and this correlation is independent of coronary 
heart disease (69).  Furthermore, short telomeres are found 
in patients with vascular dementia (70).  It has been 
reported that various risk factors for cardiovascular disease, 
such as obesity, smoking, psychological stress, insulin 
resistance, hypertension, and diabetes, are associated with 
reduced telomerase activity or telomere shortening in white 
blood cells (71-76).  Cawthon et al. (77) examined the 
white blood cell telomere length in 143 normal unrelated 
subjects over the age of 60 years and found that those with 
shorter telomeres had worse survival, which was 
attributable to a 3.18-fold higher mortality rate from heart 
disease and an 8.54-fold higher mortality rate from 
infections.  In contrast, two other recent studies found no 
association between telomere length and mortality in the 
elderly (78, 79).  It also remains unclear whether the length 
of white blood cell telomeres is related to that of vascular 
cells. 
 
6. CELLULAR SENESCENCE AND VASCULAR 
DYSFUNCTION 

 
Age-associated changes of the blood vessels 

include a decrease in compliance and an increase of the 

inflammatory response that promote atherogenesis (80).  It 
has also been reported that angiogenesis becomes impaired 
with advancing age (81, 82), and that aging decreases the 
antithrombogenic properties of the endothelium (83).  A 
number of studies have shown that many of the changes 
detected in senescent vascular cells are consistent with the 
known changes that occur in age-related vascular diseases, 
suggesting a critical role of cellular senescence in vascular 
pathophysiology.  For example, NO production and eNOS 
activity are reduced in senescent human endothelial cells 
(84), and the induction of NO production by shear stress is 
also decreased in senescent endothelial cells (85).  The 
decline of eNOS activity in senescent endothelial cells is 
attributable to a decrease of eNOS protein expression, as 
well as a decrease of eNOS phosphorylation mediated by 
Akt (86).  Prostacyclin production shows a significant 
decrease with the in vitro aging of endothelial cells (87), 
while senescent endothelial cells display upregulation of 
plasminogen activator inhibitor-1 (88).  These alterations 
are probably involved in the impairment of endothelium-
dependent vasodilation and also increase the risk of 
thrombogenesis in humans with atherosclerosis. 

 
 Interactions between monocytes and endothelial 
cells are enhanced by endothelial cell senescence (89), 
thereby promoting atherogenesis.  This change appears to 
be mediated by the upregulation of adhesion molecules and 
pro-inflammatory cytokines, as well as decreased 
production of NO by senescent endothelial cells (14, 85).  It 
has been reported that the ability of senescent endothelial 
cells to form capillary structures in vitro is reduced (26).  
Bone marrow-derived circulating endothelial progenitor 
cells (EPCs) are known to participate in postnatal 
neovascularization and vascular repair (90, 91).  The in 
vitro growth and function of bone marrow-derived EPCs 
from patients with coronary artery disease are impaired and 
these changes are correlated with coronary risk factors 
including age (92, 93).  Thus, aging may promote the 
senescence of EPCs as well as endothelial cells, resulting in 
decreased angiogenesis and vascular healing. 
 
7. TELOMERE IMPAIRMENT AND VASCULAR 
DYSFUNCTION 

 
In most of the previous studies mentioned 

above, the phenotypic changes associated with senescence 
were studied in vascular cell populations undergoing 
replicative senescence, and thus were suggested to be 
related to telomere-dependent vascular dysfunction.  
However, it remains unclear whether the phenotypic 
changes of senescent vascular cells actually result from 
telomere dysfunction.  Inhibition of TRF2 has been 
shown to induce either senescence or apoptosis of 
various cells by destroying telomere loops (50, 94).  It 
has also been demonstrated that the introduction of a 
dominant-negative form of TRF2 into human 
endothelial cells induces growth arrest along with 
phenotypic characteristics of cellular senescence (14).  
Telomere dysfunction significantly increases ICAM-1 
expression and reduces eNOS activity, suggesting a 
causal link between telomeres and vascular dysfunction 
associated with cellular senescence. 
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 Telomerase-deficient mice show a normal 
phenotype in the first generation, presumably because these 
animals have very long telomeres (19, 95). However, their 
telomeres become shorter with successive generations, and 
they become infertile by the sixth generation due to 
impairment of the reproductive system.  In some respects, 
the later-generation mice mimic changes associated with 
aging.  They have a shortened lifespan and a reduced 
capacity to respond to stresses such as wounds and 
hematopoietic ablation (96). Neovascularization is also 
impaired in the later generations of telomerase-deficient 
mice (97), and such decreased vessel formation may be 
attributable to the impaired function and replication of 
endothelial cells induced by telomere shortening.  In a 
mouse model of atherosclerosis, telomere shortening has 
been shown to decrease the area of atherosclerotic lesions, 
presumably due to reduced macrophage proliferation (98).  
However, telomerase-deficient mice develop 
atherosclerotic plaques with a thin fibrous cap, suggesting 
that shortening of the telomeres of vascular cells may 
induce plaque rupture in patients with atherosclerosis.  
Mice lacking telomerase activity develop hypertension in 
the first and third generations as a result of an increased 
plasma endothelin-1 level due to the overexpression of 
endothelin-converting enzyme (99). 
 
8. RESTORATION OF VASCULAR DYSFUNCTION 
BY TELOMERASE 

 
Introduction of TERT prevents endothelial 

dysfunction associated with senescence such as decreased 
eNOS activity and increased monocyte binding to 
endothelial cells (14, 85).  Immortalized human endothelial 
cells (TERT-ECs) have been established by introduction of 
TERT (26).  TERT-ECs appear to retain their endothelial 
cell characteristics, including various cell surface markers.  
When cultured in Matrigel, these cells form capillary-like 
structures in response to extracellular matrix signals as 
efficiently as early-passage endothelial cells, whereas 
senescent or transformed endothelial cells do not.  In 
addition, TERT-ECs are more resistant to the induction of 
apoptosis than presenescent endothelial cells.  They 
maintain normal growth control and do not exhibit a 
transformed phenotype.  TERT-ECs are also functional in 
vivo, as demonstrated in a Matrigel implantation mouse 
model (100).  In this model, the vessel density achieved 
with primary cultured human endothelial cells decreases 
with time after implantation, while durable vessels persist 
after implanting TERT-ECs, indicating that telomerase 
activity is important for maintenance of the 
microvasculature.  It has also been reported that TERT acts 
as an angiogenic factor and is a downstream effector after 
VEGF signaling (101). 

 
 Introduction of TERT into EPCs has been shown 
to extend the lifespan of these cells and to increase the 
efficacy of vasculogenesis in vivo (102).  An obstacle to the 
effective engineering of human tissues is the limited 
replicative capacity of adult somatic cells.  However, it has 
been demonstrated that telomerase expression in vascular 
cells isolated from elderly patients allows the successful 
culture of engineered autologous blood vessels (103). 

9. PERSPECTIVES 
 

The molecular biology of vascular aging has 
only been studied recently and this field is still in its 
infancy.  However, the recent demonstration that vascular 
cell senescence occurs in vivo along with vascular aging 
has suggested a pathological role of this process in human 
atherosclerosis.  In addition, the finding that introduction of 
telomerase immortalizes vascular cells and maintains a 
juvenile phenotype in vitro and in vivo may be an important 
for the future research in the fields of stem cell biology as 
well as tissue engineering.  Future challenges are to 
determine whether vascular cell senescence actually 
promotes vascular aging in vivo and whether the inhibition 
of cellular senescence is protective against age-associated 
vascular diseases. 
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