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1. ABSTRACT 
 
 Despite its name, discovery history and approval 
as anticancer agent, tumor necrosis factor (TNF) has been 
implicated in both cancer development and progression in 
some preclinical models. In particular, as a central mediator 
of inflammation, TNF might represent one of the molecular 
links between chronic inflammation and the subsequent 
development of malignant disease. Furthermore, 
deregulated TNF expression within the tumor 
microenvironment appears to favor malignant cell tissue 
invasion, migration and ultimately metastasis formation. 
On the other side, TNF clearly possesses antitumor effects 
not only in preclinical models but also in the clinical 
setting. In order to reconcile these conflicting findings, we 
provide readers with an overview on the most relevant 
available evidence supporting anticancer as well as cancer-
promoting TNF effects; on the basis of these data, we 
propose a model to explain the coexistence of these 
apparently paradoxical TNF activities.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 Tumor necrosis factor (TNF) is a vital cytokine 
involved in inflammation, immunity, and cellular 
organization (1). This biological response modifier was 
shown to replicate the ability of endotoxin to induce 
hemorrhagic necrosis of solid tumors in animal models (2), 
which provided an explanation for the anticancer effect of 
the so called "Coley's toxin". This filtrate from cultures of 
Streptococcus pyogenes and Serratia marcescens was 
developed at the turn of the 20th century (3) and was 
associated with high fever and tumor necrosis in 
responding patients (particularly those with sarcoma, but 
also patients with carcinoma and lymphoma) (3). The 
phenomenon of tumor necrosis is now attributed, at least in 
part, to a vascular thrombotic mechanism mediated by TNF 
released by macrophages activated by the endotoxin 
contained within the Coley's toxin (Figure 1). In the light of 
these potential TNF therapeutic properties, after the TNF
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Figure 1. The four hallmarks of TNF anticancer activity. 
Although in preclinical models TNF exerts both direct 
cytotoxicity against malignant cells and stimulates 
anticancer immunity, the antitumor activity observed in 
humans appear to depend mainly on the cytokine ability to 
act as vascular disrupting agent and to increase the 
therapeutic effect of conventional antineoplastic drugs (see 
text for more details). 
 

 
 
Figure 2. The six hallmarks of cancer. According to 
Hanahan and Weinberg (92), six cellular alterations 
collectively drive a population of normal cells to become a 
cancer. These cancer hallmarks are: 1) self-sufficiency in 
growth signals, 2) insensitivity to antigrowth signals, 3) 
evasion of apoptosis, 4) limitless replicative potential, 5) 
sustained angiogenesis, and 6) tissue invasion and 
metastasis. Some preclinical evidences suggest that TNF 
overproduction during chronic inflammation (by immune 
cells) and within the tumor microenvironment (by 
malignant cells and/or tumor infiltrating macrophages and 
lymphocytes) might promote tumor development and 
progression by influencing the six hallmarks of cancer (13) 
(see text for more details). 

gene cloning in 1984 (4), investigators tested the anticancer 
activity of this cytokine in the clinical setting either alone, or in 
combination with conventional chemotherapeutic agents or as 
part of anticancer vaccination regimens (5-7). However, 
systemic TNF therapy proved ineffective with a lack of 
objective tumor response and serious side-effects (septic 
shock-like syndrome), which redirected researchers towards 
alternative forms of local delivery such as isolated limb 
perfusion (for the treatment of limb-threatening melanoma (8, 
9) and soft tissue sarcomas (10, 11)) and isolated hepatic 
perfusion (for the treatment of unresectable liver tumors (12)), 
as described in detail in other articles of this Frontiers in 
Bioscience issue.  
 

A decade of clinical experimentation ultimately led 
to a license from the European Medicine Evaluation Agency 
(EMEA) for the use of TNF (in combination with melphalan) 
as a loco-regional treatment for inoperable soft tissue 
sarcomas. Despite its approval for human use as anticancer 
agent in Europe, TNF is not approved in the USA and its role 
in cancer therapy is still debated (13-16), as its activity in 
advanced melanoma has been recently questioned (17) and no 
survival advantage has ever been demonstrated with its loco-
regional administration (5, 10, 18). 
 

In parallel with the growing availability of clinical 
data for TNF therapy in malignant disease, increasing evidence 
attributed a role for TNF in rheumatoid arthritis, inflammatory 
bowel disease, diabetes, sepsis, and several infections, 
including HIV (1). Furthermore, several studies have 
implicated endogenous TNF in tumor-cell growth and stromal 
interactions that facilitate tumor development and progression 
(13). Although TNF is capable of initiating tumor apoptosis 
(directly or indirectly, as below described in detail), evidence is 
accumulating that these pathways are frequently deactivated 
within tumor cells. Moreover, under some circumstances TNF 
can provide a survival signal for the cancer cell and hence it 
has been referred to as a "tumor promoting factor" (19).  

 
On top of these considerations, the concept of 

cancer as a purely genetic disease has been re-evaluated and 
the importance of the tumor microenvironment and 
inflammation in cancer progression has been emphasized (20-
22). In particular, as a central mediator of inflammation, TNF 
provides a molecular link between chronic inflammatory 
stimuli and the subsequent development of malignant disease 
(23) (Figure 2). Overall, its potential role in cancer progression 
has stimulated interest in the use of TNF antagonists for the 
prevention and treatment of cancer (24, 25). 

 
In order to shed some light on this paradoxical 

situation, we provide readers with an overview on the most 
relevant available evidence supporting anticancer as well as 
cancer-promoting TNF effects; on the basis of these data, we 
propose a model to explain the coexistence of these apparently 
opposite TNF activities.  

 
3. TNF ANTICANCER ACTIVITIES 
 
3.1. TNF direct cytotoxicity 
 Direct cytotoxicity was among the first in vitro 
activities attributed to TNF (26). TNF receptor-1 (TNFR1), 



TNF, cancer, and anticancer therapy   

2776 

which is expressed on virtually any cell type, has been 
demonstrated to exert cytostatic/cytotoxic effects on some 
animal and human tumor cell lines. Intriguingly, the 
genomic derangement proper of cancer development can 
itself sensitize malignant cells to TNF-driven cell death by 
leading to the over-expression of cathepsin-B (27), which 
might partly explain the selective cytotoxicity of TNF 
towards cancer as compared to normal tissues. However, 
several malignant cell lines and most normal cells 
(including endothelial cells) are resistant to TNF. In line 
with the fact that apoptosis can follow direct initiation of 
the caspase cascade by TNFR1 engagement while pro-
survival effects require de novo expression of anti-
apoptotic proteins, inhibition of protein synthesis (e.g. by 
cycloheximide) significantly increases TNF-mediated 
apoptotic rates both in normal and malignant cells (28), and 
is widely used for in vitro experiments dealing with TNF-
induced apoptosis. A growing list of potential mechanisms 
underlying this variability in cell sensitivity to TNF-driven 
cytotoxicity is fostering the search for novel methods to 
boost TNF anticancer properties, as presented in detail in a 
dedicated article of this Frontiers in Bioscience issue. 
 
3.2. TNF as a tumor vasculature disrupting agent 
 Physiologically, blood vessels are among the 
primary targets of the cytokine during inflammation, where 
the major effect of TNF on endothelium is endothelial cell 
activation, including upregulation of cell surface receptors 
(e.g. leukocyte adhesion molecules) and loss of 
intercellular adhesion (29). These events enhance leukocyte 
adhesion and lead to their migration into local areas of 
inflammation, thus favoring the clearance of the noxious 
agent. Under pathological circumstances, TNF 
overexpression sustains inflammatory phenomena (e.g. 
capillary leakage, congestion and leukocyte adhesion to the 
vessel wall, leukocyte diapedesis through the endothelium, 
tissue damage by infiltrating leukocytes) characteristic of 
some disorders, such as septic shock and autoimmunity.  
 

Vascular effects are currently believed to be 
critical also for TNF antitumor activity (7, 15). Since the 
identification of TNF as the major mediator of endotoxin 
necrotizing effects in mouse tumor models, the attention 
has been drawn on the tumor vascular damage caused by 
TNF. The most striking evidence in favor of this hypothesis 
comes from animal experiments. In the syngeneic model of 
methylcholanthrene-induced murine fibrosarcoma, tumor 
cells are resistant to the cytotoxic effect of TNF in vitro, 
whereas in vivo systemic administration of TNF 
consistently causes hemorrhagic necrosis of subcutaneous 
(vascular) but not intraperitoneal (avascular, ascitic) tumors 
(30). Intratumoral TNF injection also causes hemorrhagic 
necrosis of human tumors transplanted into nude mice, 
while TNF intraperitoneal and systemic administration does 
not (31).  

 
These findings can be explained by considering 

that, although low-dose TNF has a favorable effect on 
angiogenesis, higher doses cause destruction of newly 
formed blood vessels (32). Concordantly, TNF induces a 
dose-dependent reduction of tumor blood flow (33), and the 
degree of tumor vascularization directly correlates with 

tumor response to TNF-based treatment both in animal and 
human models (34).  

 
The cascade of cellular/molecular events leading 

to the TNF-mediated ischemic insult of tumor tissue is still 
unraveled. In the 1980s, it was hypothesized that TNF-
induced coagulation in the tumor vasculature might be one 
potential mechanism of tumor necrosis. This is supported 
by the observation that tumor necrosis can be achieved 
through selective induction of thrombosis within cancer-
associated endothelium by targeting the pro-coagulant 
tissue factor (PTF) (35), which is known to be induced by 
TNF in vivo. Moreover, if PTF expression is inhibited, 
TNF-mediated fibrin deposition is decreased and blood 
flow restored (36). Besides direct endothelial cell 
stimulation by endotoxin and TNF, adhesion of leukocytes 
to endothelium and co-culture of monocytes with 
endothelial cells can also induce PTF expression by 
endothelial cells (37).  

 
These findings do not allow to define whether 

leukocytes and/or endothelial cells initiate tumor necrosis. 
However, some authors have recently shown that TNFR1 
expressed on the surface of tumor endothelial cells is likely 
to be the most important target of TNF antitumor activity 
(38). Using TNFR1 and TNF receptor-2 (TNFR2) deficient 
mice, they observed that TNF administration results in 
tumor necrosis only in wild-type and TNFR2-/- but not 
TNFR1-/- animals. Moreover, after implanting wild-type 
and TNFR1-/- tumor in wild-type mice, tumor necrosis 
occurs independently of TNFR1 expression by tumor cells 
and leukocytes. As TNF administration results in both 
activation and focal disruption of TNFR1-expressing tumor 
endothelial cells, these cells are indicated as the key target 
of the cytokine. 
 

Nevertheless, it remains unclear whether 
coagulation following induction of PTF expression is the 
cause or rather the consequence of tumor vasculature 
disruption. Moreover, the reason for TNF selective 
cytotoxicity towards tumor tissue as compared to normal 
tissues remains incompletely elucidated. Some 
investigators have demonstrated that TNF causes a reduced 
activation of integrin-alpha-V-beta-3, which is selectively 
expressed by proliferating endothelium, such as that of 
growing tumor masses (39). The antagonization of this cell 
surface molecule is known to induce apoptosis of 
angiogenic blood vessels and might be responsible for the 
tumor-selective activity of TNF.  
 

Alternatively, other investigators have 
hypothesized that higher levels of endothelial nitric oxide 
synthase in tumor vessels (rather than in normal 
surrounding tissues) might condition sensitivity to TNF, as 
nitric oxide neutralization significantly reduces endothelial 
cell sensitivity to TNF in vitro (40). 
 
3.3. TNF synergism with chemotherapeutic drugs 
 Despite the antitumor effects illustrated above, 
TNF alone is only marginally active in inducing tumor 
regression in some in vivo animal models (using both 
autologous and xenogeneic/human tumors) and most 



TNF, cancer, and anticancer therapy   

2777 

importantly in humans, even when high doses are given 
through locoregional drug-delivery systems (26, 41-43). 
Conversely, in several animal and human models of 
systemic and/or locoregional cancer treatment the 
combination of TNF with conventional antineoplastic 
agents (e.g. melphalan, doxorubicin, paclitaxel, 
actinomycin-D, cisplatin) strikingly increases the tumor 
response rates (5, 7).  
 

The mechanism of this anticancer synergism has 
been the object of some hypotheses. The ischemic insult to 
tumor masses following TNF-driven disruption of tumor 
vessels might be insufficient to cause cancer regression and 
might be effectively complemented by the direct 
cytotoxicity of antineoplastic drugs on malignant cells. 
Moreover, TNF improves the pharmacokinetic profile of 
co-administered drugs by increasing the permeability of 
tumor vessels and lowering interstitial pressure within the 
diseased tissue (44), which in turn augments drug 
concentration within the tumor microenvironment. 
 
3.4. TNF and antitumor immunity 

 Some investigators describe a 
significant reduction in tumor response rates when 
immunodeficient mice are treated with TNF, suggesting 
that TNF antitumor activity is at least in part mediated by 
the immune system (45, 46). It is well known that TNF 
stimulates innate immunity both in vitro and in animal 
models (1). TNF induces the production of other 
cytokines (e.g. interleukin-1 [IL-1], IL-6 and IL-8) and 
cytotoxic factors (e.g. nitric oxide (NO), reactive 
oxygen species [ROS]) by macrophages, which can 
mediate tumor suppression in mice (47). In humans, 
antitumor cytolytic activity and production of 
cytotoxicity-related proteins (e.g. interferon-gamma 
[IFN-gamma]), TIA-1) by natural killer (NK) cells are 
enhanced by TNF in vitro (47, 48). 

 
Adaptive immunity also appears to be involved in 

TNF mediated tumor regression, as suggested by the 
observation that the ability of T-lymphocytes to reject 
established tumors is severely compromised in TNF-
knockout animals (49, 50) as well as in animals treated 
with neutralizing anti-TNF antibodies (51). As it effectively 
promotes the maturation of CD34+ myeloid cells into 
dendritic cells, which are the most powerful antigen-
presenting cells, TNF has been included in most protocols 
of dendritic cell-based cancer vaccines (52). However, in 
this case, TNF is not used as a direct anticancer agent but 
rather as an immunological adjuvant aimed at reversing the 
state of tolerance of immune cells towards malignant cells. 
 
4. TUMOR PROMOTING EFFECTS OF TNF 
 
 While physiologically TNF plays a major role in 
growth regulation, cell differentiation, response to viral, 
bacterial, fungal, and parasitic infections, its inappropriate 
overexpression has been implicated in the pathogenesis of a 
wide spectrum of human disorders, such as autoimmunity 
(e.g. multiple sclerosis, rheumatoid arthritis, inflammatory 
bowel disease), allergy, septic shock, allograft rejection and 
insulin resistance (1).  

Despite the above-discussed evidence of its 
antitumor activity, TNF may also exert tumor-promoting 
effects (19) (Figure 1). Within the tumor 
microenvironment, TNF can be produced by both tumor-
infiltrating macrophages and by several types of animal and 
human malignant cells (e.g. ovarian, colorectal, esophageal, 
prostate, bladder and renal-cell carcinomas; melanoma, and 
hematological malignancies). The role played by TNF in 
tumor promotion has been extensively analyzed, as below 
summarized. 
 
4.1. TNF and cancer development 
 In vitro, low-dose TNF can promote the 
proliferation of some malignant cell lines (53, 54). This 
finding is supported by the recent observation that the 
cytokine upregulates the expression of positive cell-cycle 
regulators (Ras, c-Myc) and decreases the levels of cyclin-
dependent kinase (Cdk) inhibitors, a phenomenon that has 
been linked to the progression Barrett’s disease > mucosal 
dysplasia > esophageal adenocarcinoma in humans (55). 
 
TNF may act as an autocrine tumor growth factor also by 
promoting cell survival through the activation of the anti-
apoptotic/ survival/proliferation pathways hinging upon the 
activity of nuclear factor kappa B (NFkB), protein kinase B 
(PKB)/Atk and mitogen activated protein kinase (MAPK) 
family members. Although TNF shows a protective effect 
on radiation-induced lymphoma (56), other in vitro and in 
vivo animal models of chemical carcinogenesis suggest that 
TNF can favor cancer development (57, 58): in particular, 
knockout experiments have shown a higher incidence of 
cancer in animals TNF+/+ rather than in those TNF-/-.  
 

The molecular details of such tumor promoting 
activity are unknown, but it has been hypothesized that 
TNF might cause DNA damage and inhibit DNA repair by 
enhancing the production of genotoxic molecules (e.g. 
nitric oxide, ROS) by cancer cells themselves or bystander 
cells, such as tumor-infiltrating macrophages (59). 
Moreover, the resistance of TNF-/- mice to chemical 
carcinogenesis might be related to a temporal delay in the 
activation of protein kinase C (PKC) and AP-1 (60). This 
delay appears to affect the expression of genes known to be 
involved in tumor development, such as granulocyte 
macrophage colony stimulating factor (GM-CSF) and 
matrix metalloproteinases (MMP)-3 and -9, which are 
suppressed in the TNF-/- mice but not in wild-type mice 
treated with carcinogens.  

 
Finally, the fatal lymphoproliferative disorder 

that develops in FAS ligand (CD95L) deficient mice is 
attenuated by crossing these animals with TNF-/- mice 
(61). Analogous findings have been reported using TNFR 
knockout animals. In a model of skin carcinogenesis, both 
TNFR1 and TNFR2 are required for tumor development 
(62). By contrast, in a liver tumor model, carcinogenesis 
only depends upon TNFR1 expression (63). 
 
4.2. TNF and cancer progression 
 In preclinical models exogenous TNF can 
promote the process of tumor metastatization (13). For 
instance, antibody-based neutralization of TNF 
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endogenously produced by malignant cells is sufficient to 
reduce the metastatization rate in a murine model of 
methylcholanthrene-induced sarcoma (64). More recently, 
TNF auto-vaccination has been successfully tested in the 
murine B16F10 melanoma model to inhibit the 
metastatization process in vivo (65). Other investigators 
used TNFR1-/- mice to show that endogenous TNF is 
essential for promoting liver metastasis after intrasplenic 
administration of a colonic adenocarcinoma cell line (66).  
 

While studying the role of TNF in tumor 
progression, transgenic mice overexpressing TNF are 
unsuitable as they become rapidly ill owing to the early 
onset of severe inflammatory diseases. Nevertheless, some 
authors observed that TNF-secreting cancer cells show an 
enhanced rate of metastasis formation, a phenomenon that 
can be reversed by TNF-neutralizing antibodies (13, 64). 
Despite these findings, this effect is not universal as TNF-
transfected tumors could either be rejected or cause 
decreased survival according to the tumor cell line utilized 
(67). 

 
Given its pleiotropic functions, TNF may favor 

tumor progression in different ways. Expression of matrix 
metalloproteinases (MMP) by malignant cells is enhanced 
by TNF (68). Moreover, although high-dose TNF induces 
collapse of tumor vasculature, low chronic doses of the 
cytokine are believed to promote angiogenesis (69). The 
TNF-driven overexpression of various factors (e.g. vascular 
endothelial growth factor [VEGF], VEGF receptors, basic 
fibroblast groth factor [b-FGF], IL-8, ephrin-A, nitric oxide 
synthase, E-selectin, intercellular adhesion molecule-1 
[ICAM-1]) has been postulated to mediate this pro-
angiogenic effect (13, 70, 71).  

 
Finally, it has been recently hypothesized that 

TNF might promote tumor invasiveness by interfering with 
the activation of the oncogene c-Src, which is correlated 
with progression of colorectal cancer in vivo: as a matter of 
fact, in an in vitro model TNF causes c-Src activation 
through the production of ROS, which ultimately lead to 
reduced E-cadherin levels and enhances the invasive 
potential of c-Src transfectants cultured in soft agar (72). 
 
4.3. TNF gene polymorphisms 
 To demonstrate the TNF role in human cancer 
biology in vivo is a highly challenging issue. An approach 
to test the hypothesis that endogenously produced TNF can 
affect human tumor biology in vivo is to study the 
epidemiological correlation between TNF gene 
polymorphisms and cancer incidence.  
 

Many studies report an association between 
single nucleotide polymorphisms of the TNF gene and the 
risk of developing various types of cancers. For instance, a 
significant link between TNF polymorphisms +488A and -
859T and risk of bladder cancer has been detected in a 
study considering 196 patients and 208 controls (73). The 
relative risk of renal cell carcinoma is 6.5-fold higher in 
patients with the GA genotype at locus -238 and 2.9-fold 
higher in those with the GA genotype at locus +488 when 
comparing normal tissue from renal cell carcinoma patients 

(n=81) with that from healthy controls (74). Yet, 
considering 73 patients with prostate carcinoma, the 
relative incidence for cancer is 17-fold higher in subjects 
with genotype GA at +488 region of TNF gene (75). 
Associations between TNF microsatellite polymorphisms 
and basal cell skin carcinoma have been also reported (76).  

 
Most interesting are the observations made on the 

polymorphisms of the promoter region believed to be 
responsible for an increased transcription of TNF. One such 
polymorphism at position -308 is associated with greater 
susceptibility to various carcinomas (e.g. hepatocellular 
(77), gastric (78), and breast carcinoma (79)). Similar 
findings have been reported on the relationship between the 
frequency of the TNF 857T allele, known to be associated 
with high transcriptional levels of TNF, and the incidence 
of adult T-cell leukemia/lymphoma among individuals with 
HTLV-1 infection (n=151) (80). 
 

Polymorphisms leading to a high production of 
TNF are also linked to an increased risk of developing 
multiple myeloma (81) and, in patients with hematological 
malignancies, to treatment failure, shorter progression-free 
survival and poorer overall survival (82). 

 
Again, available evidence is far from univocal. In 

contrast with the above studies, some authors have reported 
opposite findings. For instance, there is no statistically 
significant association between TNF haplotype and clinical 
outcome of children with lymphoblastic leukemia (n=214) 
(83). In a series including 96 patients with prostate 
carcinoma, the polymorphism of the TNF gene promoter at 
position -308 does not correlate with cancer incidence (84); 
similarly, in a North European study (cases, n=709; 
controls, n=498), no association exists between the -308 
polymorphism and susceptibility to breast cancer (85). In 
another recent study (n=80), the survival of patients with 
osteosarcoma is not affected by the same polymorphism 
(86). 

 
Intriguingly, other authors not only report a lack 

of correlation between the -308 TNF polymorphism and 
cancer risk, but also describe a protective role of 
polymorphisms -238A and +857T in the incidence of 
different tumor types (87, 88). 
 
5. PERSPECTIVE 
 
 The role played by TNF in cancer 
development/progression might appear to shadow the 
anticancer potential of this cytokine. Although further 
elucidation of TNF biology is warranted to explain some 
apparent inconsistencies and define the actual role of TNF 
in cancer therapy, the above reported data support the 
following clear-cut distinction regarding TNF 
dosage/expression levels and timing of 
expression/administration: high-dose single-shot TNF-
based regimens can induce tumor regression in in vivo 
animal and human models, whereas endogenous low-dose 
TNF chronically produced within the tumor 
microenvironment is associated with cancer 
development/progression in some preclinical models. 
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Despite this distinction, some preclinical findings 
remain conflicting and the scientific community awaits for 
an improvement in the cytokine therapeutic index to 
consecrate TNF as an antineoplastic agent for routine use.  

 
Defining the role of TNF in cancer therapy is a 

challenging task. The pleiotropic nature of the cytokine, 
which can stimulate multiple, complexly interconnected 
pathways often involved in opposing phenomena, makes it 
difficult to discern the ultimate effect of TNF based on 
in vitro data. On the other side, the outcome of in vivo 
animal studies can be affected by a number of biological 
variables. For instance, different type/degree of 
derangement of the apoptotic/survival machinery of 
cancer cells might account for the wide range of TNF 
sensitivity observed in different tumor models. Besides 
intrinsic features of malignant cells, tumor 
microenvironment can also have a profound influence 
on the relationship between TNF and malignancy. For 
instance, in a model of TNF-transfected murine 
carcinoma, tumor growth is inhibited in the lungs but 
not in the skin because of the different expression of 
TACE (TNF alpha converting enzyme, a member of the 
matrix metalloproteinase family that cleaves soluble 
TNF from membrane-bound pro-TNF (89)) by normal 
tissues (90). To take another example, the degree of 
tumor vascularization as well as the levels of nitric 
oxide produced by tumor endothelial cells may also 
condition the sensitivity of malignant cells to TNF 
therapy (40), which ultimately might explain different 
tumor responses observed in the clinical setting. 

 
In humans, although TNF antitumor activity 

appears quite evident in some non-comparative studies 
(15), the lack of synergistic effect shown in a recent phase 
III randomized controlled trial (17) (comparing melphalan 
alone to melphalan plus TNF) coupled with the fact that no 
TNF-based treatment has thus far proved to affect patient 
survival does not allow oncologists to use TNF as a routine 
antineoplastic agent. Moreover, due to systemic toxicity, 
TNF administration through sophisticated locoregional 
drug-delivery systems (such as isolated limb perfusion or 
isolated liver perfusion) is currently mandatory.  

 
The impossibility to administer TNF through the 

systemic route likely prevents clinicians from assessing the 
effectiveness of this cytokine in terms of patient overall 
survival, which mainly depends upon the metastatic spread 
throughout the body and thus is not affected by 
locoregional treatments. In this respect, the development 
of novel tumor-specific drug-delivery systems and/or 
TNF sensitizers might not only increase the 
antineoplastic activity of TNF but also allow oncologists 
to administer the cytokine systemically. Hopefully, the 
clinical implementation of TNF sensitizers, that is 
molecules able to augment TNF cytotoxicity selectively 
against malignant cells (91), will allow to increase the 
therapeutic index of TNF to the extent necessary to 
make its systemic administration feasible and effective, 
as discussed in detail in a dedicated article in this issue 
of Frontiers in Bioscience. 
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