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1. ABSTRACT 
 

The rapid advances in high-throughput 
microarray technologies greatly facilitate the disease 
biomarker discovery. However, the potential of these 
microarray data has not yet been fully utilized. This is 
partly due to the limited sample sizes of each individual 
study. Combining microarray data from multiple studies 
improves the statistical power of detecting differentially 
expressed genes. Here we present a method for combining 
the microarray datasets at array probeset level. Using 
datasets from two commonly used array platforms, the 
Affymetrix Human Genome U133A and Human Genome 
U133 Plus 2.0 arrays, we found laboratory effects may be 
more influential than the platform effect.  A visualization 
scheme for merging the array data from different array 
platforms was proposed to qualitatively judge the degree of 
agreement between datasets.  A mixed-effects model was 
applied to identify differentially expressed genes from the 
merged array data.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Microarray gene expression experiments are 
widely used for the identification of candidate genes and 
biomarkers for cancer detection, diagnosis, and prognosis. 
The number of publicly available microarray datasets is 
increasing rapidly.  Combining datasets that address the 
same disease process offers the opportunity to reliably 
identify candidate genes across a larger sample set.  Meta-
analysis approaches that integrating multiple microarray 
datasets have gained more attention recently, especially for 
these aimed to identify cancer associated genes.  Various 
studies have been done to compare array platforms (1-5), 
provide better cross-platform gene matching (6-10), 
perform cross-platform normalization (11, 12), and test 
dataset compatibility (13).  Lin et al developed 
Reproducibility Probability Score from multi-lab 
experiments to improve gene selections in future studies 
(14).  To identify differentially expressed genes by merging 
multiple experiments, methods were developed to combine 
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expression studies by generating summary statistics from 
individual p-values (15-17), false discovery rates (FDRs) 
(18), or gene ranks (19-21).  In addition to merging 
summary statistics, some integrative modeling approaches 
were developed.  Shen et al. used a mixture model 
approach to define an inter-study “meta-signature” (22).  
Huang et al. developed weighted regression methods to 
combine multiple datasets (23).  Different variations of the 
effect-size approach, which models the effect-size from 
each study using a mixed effects model, were widely used 
(24-28).  Park et al. proposed an ANOVA model that 
includes the lab effects and a two-stage method for model 
fitting (29).   
 

In this study, we focused on two Affymetrix 
array platforms, the Human Genome U133A array and the 
Human Genome U133 Plus 2.0 array. We chose these array 
platforms as they have been widely utilized for 
expressional analyses, and massive amount of array 
datasets have been generated based on these array 
platforms.  We combined in-house generated data with 
publicly available data from both platforms to study the 
inter-platform and the inter-laboratory variation.  We then 
developed a dimension reduction scheme to visualize 
combined data that is resistant to inter-laboratory variation.  
A linear mixed effects model was used to identify 
differentially expressed genes from the combined data.   
 
3. MATERIALS AND METHODS 
 
3.1. Array Hybridization and data processing 

The RNA samples from skin fibroblasts 
GM00302, GM05386 and GM04522 (Coriell Cell 
Repositories/NIGMS) were utilized to generate the array 
dataset using both Human Genome U133A and Human 
Genome U133 Plus 2.0 GeneChip arrays.  A total of 150 
to 200 ng of purified total RNA was utilized to generate 
cRNA probes according to standard Affymetrix 
protocols. The quantity and the purity of biotinylated 
cRNA were determined by spectrophotometry, and an 
aliquot of the sample was checked by gel 
electrophoresis. The sample was hybridized to the 
Affymetrix Human Genome U133A or Human Genome 
U133 Plus 2.0 GeneChip arrays (Affymetrix, Santa 
Clara, CA) according to Affymetrix protocols. The 
arrays were scanned with a GeneChip Scanner 3000. 
The scanned array images were processed with 
GeneChip Operating software (GCOS).  The data were 
processed using Robust Multiarray Analysis (RMA) 
(30).  Two additional datasets from previously published 
studies of oral tongue squamous cell carcinomas 
(OTSCC) were also used, including 1)  the U133A array 
dataset of 7 OTSCC samples and 7 normal samples from 
Ziober et al. study (31), and 2) the U133 Plus 2.0 array 
dataset of 15 OTSCC samples and 7 normal samples 
from Zhou et al. study (32). 
 
3.2. Dimension reduction in the context of cancer-
associated gene identification 

From the data generation point of view, the 
hidden factors which contributing to the data structure may 
contain several categories.  The major categories include: 

(1) gene expression dependencies unrelated to disease 
status, i.e. normal physiological dependencies; (2) gene 
expression variation caused by laboratory/experiment–
specific sample treatment, i.e. tissue preservation, RNA 
extraction reagents/procedure etc; (3) gene expression 
changes related to disease process (e.g., cancer); and (4) 
gene expression dependencies specific to the person 
(contributions of individual genetic background).  In 
microarray data analysis, personal effects are implicitly 
absorbed by the error term in various models, unless 
paired data is available.  In the current discussion we 
assumed the data is generated from unpaired samples.  
Considering the first three categories of factors, for each 

gene i , we can describe its expression level in sample 
j  of experiment k  by a factor model.  Here a linear 

additive relationship is assumed between the categories 
of factors for simplicity.  Depending on the 
transformations performed on the y values, it can mean 
multiplicative or other relationships.   
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In this model, the vector u represents regular 
physiological factors; the vector ( )kv  represents lab-
related factors that are specific to the lab (or experiment 
batch within the same lab) k; xj represents the cancer factor; 
and ε  is the error term.  After proper data normalization is 

performed, we assume hi() and iσ  to be the same across 
labs/experiments.  It is not our goal to conduct estimation 
and inference on the factor model.  Rather, this model is 
only used for a conceptual explanation of our procedure.  
Suppose in the kth experiment, there are Nk normal samples, 
the mean expression level of gene i in the normal group 
will follow: 
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If we subtract normaliky ,  from every expression value of 

gene i in experiment k, for normal samples, we have: 
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For cancer samples, we have: 
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After the subtraction within each experiment, we 
eliminated the lab/experiment–dependent term ( )kv .  The 

ratio between 
kk NN )1( −  and kk NN )1( +  reaches 

0.8 when Nk is 5, and 0.9 when Nk is 10.  We can ignore 
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their difference for the purpose of dimension reduction and 
visualization.  By subtracting the normal mean on a gene-
by-gene basis from the same experiment, the normal data 
becomes noise, and the cancer data contains the 
information of the cancer–dependent function that is 
not reliant on the lab/experiment.  We can combine 
the data from different labs/experiments at this stage, 
and use dimension reduction techniques to extract 
information about the relationship between the genes’ 
expression with cancer.  Up to now we have assumed 
hi() to be arbitrary and gene-specific.  In the current 
study, where there are only two groups “cancer” and 

“normal”, 
)0()1( ii hh −

 reveals the difference in 
first-order.  If more groups are under study, all 
groups are normalized against the normal group.  
This would preserve all the between-group 
differences.  For the purpose of cancer-associated 
gene identification, our major interest is to find genes 
that linearly associate with cancer status.  Thus, the 

remaining signal in the cancer data, 
)0()1( ii hh −

, 
retains the desired information.  In this study we 
performed the Principal Component Analysis (PCA) 
on the combined data.   
 
3.3. Mixed effects model for the identification of cancer-
associated genes 

Park et al. (29) proposed using the ANOVA 
model with hospital/laboratory effects.  They applied a 
two step fitting procedure, the first step of which is to 
remove the uninteresting effects.  When the design is 
unbalanced, i.e. there are unequal numbers of 
normal/cancer samples from each laboratory, this step 
may lead to biased estimates.  Consistent with our 
visualization scheme, we take two steps to identify 
differentially expressed genes: (1) quantile–normalizing 
the array data at the gene/probeset level; (2) fitting a 
mixed effect model for each gene i:  
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In the model, the random effect ikα
 is the 

physiological and laboratory effect combined, and iβ  is 
the first-order cancer effect, which is our major interest 
in the identification of cancer–associated genes.  The 
purpose of the quantile-normalization is to make the 
effect size similar between different datasets.  The 
model fitting can be easily done in most statistical 

softwares, providing the overall effect size estimate iβ̂  
and its significance.   
 
4. RESULTS AND DISCUSSION 
 

In this study, we focused on two Affymetrix 
microarray platforms, Human Genome U133A and 
Human Genome U133 Plus 2.0.  The probesets in 

U133A are a subset of those in U133 Plus 2.0.  Hence 
the merged data contains 100% of the probesets in the 
U133A array and 41% of the probesets in the U133 Plus 
2.0 array.  It has been shown that gene matching 
between different platforms (e.g., oligo array vs. cDNA 
array) may have substantial influence on the level of 
correlations (9).  By using data from the two Affymetrix 
platforms, for which gene matching is trivial, we 
eliminated the possible gene-matching effect and 
focused on the analysis of the combined data.   
 
4.1. The inter-laboratory effects on microarray data 

The gene expression analyses were 
performed on 3 skin fibroblast primary cultures, 
GM00302, GM05386 and GM04522, using both array 
platforms.  GM00302 was analyzed twice 
independently using both platforms (2 U133A arrays, 
and 2 U133 Plus 2.0 arrays).  By plotting the 
correlation coefficients (Figure 1a), we found that 
between these two array platforms, when sample 
preparation was well-controlled, the inter-platform 
consistency is comparable to intra-platform 
consistency.  We then analyzed two datasets from 
published studies of oral tongue squamous cell 
carcinomas (OTSCC) of the tongue.  The U133A 
array dataset of 7 OTSCC samples and 7 normal 
samples from Ziober et al. study (31), and the U133 
Plus 2.0 array dataset of 15 OTSCC samples and 7 
normal samples from Zhou et al. study (32) were 
used.  Although some of the samples were paired, we 
performed analyses as if they were unpaired for 
simplicity.  We compared the correlation structure across the 
samples (Figure 1b).  Comparatively, the inter-study 
correlations were much lower, although they were still high in 
absolute terms (~0.7).  By comparing Figure 1a and Figure 1b, 
we observed that the inter-laboratory difference was a 
crucial factor affecting the analyses of expression data.  It 
was not a simple baseline-shifting problem, as a baseline-
shift would not have substantially influenced the 
correlations.  Rather, different probesets were influenced 
differently by the laboratory effects.  Since the array 
hybridization protocols are relatively standardized, the 
observed laboratory effects were most likely caused by 
differences in experimental procedures, such as tissue 
procurement, RNA isolation, and sample preparation.  In 
situations where datasets are generated from completely 
different microarray platforms (e.g., cDNA microarray vs. 
oligo array), we would expect higher platform effects. 
Nevertheless, the platform effects and the lab effects would 
still be confounded.  If we can assume the two effects have 
a close to additive relationship, the same data processing 
procedure can still be applied.  
 
4.2. Merging the microarray datasets 

We merged the two datasets by extracting 
overlapping probesets and performed Principle 
Component Analysis (PCA) (Figure 2a).  We found 
that the second principal component (PC) 2 
summarized the inter-laboratory difference, while 
PC3 contained some information of cancer/normal 
differences. After quantile-normalization, the inter- 
laboratory difference still dominated PC1 and PC2 
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(Figure 2b).  We then removed the normal group mean within each dataset on a probeset-by-probeset

 
 

Figure 1.  Correlation between datasets from Human Genome U133A and Human Genome U133 Plus 2.0 arrays.  All 
array datasets were processed with Robust Multiarray Analysis (RMA) to generate probeset-level expression values.  
Correlation coefficients from overlapping probesets between arrays were visualized using heatmap.  (a) Three cell 
lines measured by both U133A and U133 Plus 2.0 arrays.  GM00302 was analyzed twice independently using both 
platforms. The second analysis of GM00302 is labeled with a star.  (b) Cancer/normal tissue samples measured by 
U133A (Ziober study) and U133 Plus 2.0 (Zhou study) arrays.   
 
basis.  As discussed in the Methods section, this 
operation removed most of the non-cancer 
physiological effects and laboratory effects.  The first 
PC was dominated by cancer effect after the mean 
removal (Figure 2c).  In addition, we found that the 
samples from the two laboratories (triangles and 
spheres) were mingled together, which indicated the 
two datasets contained similar cancer-related 
information.  To confirm this point, we first permuted 
the sample labels within the U133A dataset, before 
subjecting the combined data to quantile-
normalization and normal-mean removal.  After 
permuting the sample labels, the normal-mean 
becomes an estimate of the overall mean.  All the 
U133A samples, regardless of cancer/normal status, 
grouped with the normal samples in the U133 Plus 
2.0 dataset (Figure 2d).  Further, we permuted half of 
the probeset names in the U133A dataset before 
combining the two datasets.  The purpose of this step 
was to artificially create the scenario that the two 
datasets contained different cancer-related genes, 
with a certain amount of overlap.  The resulting PCA 
plot showed that in addition to cancer/normal 
separation, cancer samples from the two datasets 
were also separated, while all the normal samples 
were mingled together (Figure 2e).  Overall, the 
results showed that the separation of cancer samples 
in the PCA plot could be an indication of strong 
disagreement between datasets.   

4.3. Utilizing the mixed-effects model for analyzing 
merged microarray datasets 

We applied the mixed-effects model to 
identify OTSCC associated genes from the two 
datasets, and compared the results to those obtained 
by t-test from individual datasets (Figure 3).  All the 
p-values were adjusted to FDR based on the method 
described previously (33).  Genes were selected at the 
FDR level of 0.05 and effect size ≥  2 fold.  Using 
the U133A dataset alone, 91 genes were selected, 48 
of which were also identified in the meta-analysis.  
Using the U133 Plus 2.0 dataset alone, 33 genes were 
selected, 30 of which were also identified in the 
meta-analysis.  A total of 343 extra genes were 
selected by pooling the two datasets, indicating a 
much higher statistical power by combining datasets.  
The better agreement between the U133 Plus 2.0 
dataset and the pooled data was caused partially by 
the larger size of the U133 Plus 2.0 dataset (22 
arrays, compared to 14 arrays from the U133 dataset).  
Details on these identified candidate genes will be 
presented in a manuscript in preparation.    

 
 

In summary, we presented a simple 
dimension reduction procedure for the visualization 
of combined microarray data.  After quantile-
normalization, the mean normal-group expression 
vector of each dataset was subtracted from every 
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Figure 2. Principal component analysis on original and transformed data.  The first three principal components (PC) of the 
merged data from the U133A dataset (Ziober study) and the U133 Plus 2.0 dataset (Zhou study) were plotted.  (a) Original data; 
(b) quantile-normalized data; (c) the data after quantile-normalization and the removal of normal group mean; (d) tissue type 
labels were permuted within each dataset, then quantile-normalization and normal-mean removal were performed; (e) half of the 
probeset labels were permuted in the U133A dataset, then quantile-normalization and normal-mean removal were performed.   
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Figure 3. The differentially expressed genes in OTSCC 
identified by different array datasets. The differentially 
expressed genes were selected based on the U133A dataset 
(Ziober study) and the U133 Plus 2.0 dataset (Zhou study) 
using the criteria of FDR=0.05 and fold change≥ 2.  All 
samples: genes identified by combining both datasets; 
U133A: genes identified using the U133A data alone; U133 
Plus 2.0: genes identified using the U133 Plus 2.0 data 
alone. 

 
sample within that dataset before data merging.  
When the agreement between the datasets is poor, the 
visualization scheme could help reveal the 
discrepancy.  In accordance with the visualization 
scheme, we used the mixed effects model including 
random lab effects to find cancer-associated genes.  
Such a model is well-established and the fitting is 
straight-forward.   
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