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1. ABSTRACT 
 

Systemic lupus erythematosus (SLE) is an 
autoimmune disease characterized by multi-organ damage 
and neuropsychiatric complications (NPSLE) associated 
with increased morbidity and mortality.  The pathogenesis 
of NPSLE is not yet fully understood, but focal symptoms 
are thought to most likely result from vascular lesions, 
whereas diffuse manifestations are more likely related to 
autoantibody- or cytokine-mediated impairment of 
neuronal function.  Recent progress also has provided 
evidence that levels of several cytokines/chemokines are 
upregulated in the central nervous systems of NPSLE 
patients during active disease and downregulated  by 
treatment.  In particular, chemokines appear to play 
significant roles in both inflammatory and immunological 
processes in the brain.  For instance, we recently showed 
that levels of the soluble form of the chemokine CX3CL1 
are elevated in the cerebrospinal fluid of patients with 
active NPSLE.  In this review, we will discuss the 
involvement of chemokines in the pathogenesis of NPSLE 
and their significance as a useful laboratory parameter 
indicative of active neuropsychiatric disease. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Systemic lupus erythematosus (SLE) is an 
autoimmune disease characterized by multi-organ damage 
with infiltration and sequestration of various leukocyte 
subpopulations and the presence of autoantibodies (1, 2).  
A variety of diffuse and focal neuropsychiatric symptoms 
are seen in patients with SLE (NPSLE), reportedly 
affecting 14-75% of SLE patients at any given time during 
the course of their disease (3).  These complications are 
associated with increased morbidity and mortality and may 
include seizures, stroke, depression, psychosis and 
cognitive disorders (4).  Although the pathogenesis of 
NPSLE is not well understood, the direct and indirect 
effects of various inflammatory mediators (e.g., cytokines) 
on the central nervous system (CNS) are thought to be 
involved (5-7).  Moreover, focal symptoms are thought to 
more likely result from vascular lesions, while diffuse 
manifestations are more likely related to autoantibody- or 
cytokine-mediated impairment of neuronal function. 

 
Within the CNS, chemokines regulate the migration 
potential of microglial cells, astrocytes and
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Figure 1.  Simplified schematic overview of the 
pathogenesis of NPSLE. Ischemia, microangiopathy and/or 
neuronal dysfunction may contribute to NPSLE.  Although 
the precise pathogenic mechanisms of NPSLE are not fully 
understood, the direct and indirect effects of various 
chemokines and cytokines in the CNS are thought to be 
likely contributors. *These autoantibodies include 
antineuronal antibody, antiribosomal P antibody, 
antineurofilament antibody, and anti-MNDA NR2 receptor 
antibody.  APS: antiphospholipid antibody syndrome 

 
 

neurons (8-11).  In addition, proinflammatory stimulation 
of glial cells and astrocytes can lead to the elaboration of a 
cascade of cytokines and chemokines, several of which 
play crucial roles in both physiological and pathological 
brain functions.  For instance, increases in the expression 
and/or presence of various chemokines have been 
documented in intracranial infection, multiple sclerosis 
(MS) and experimental allergic encephalitis (EAE).  In this 
review, we will focus on the expression and function of 
chemokines within the CNS under pathological conditions 
and on the degree to which they are involved in NPSLE. 
   
3. PATHOPHYSIOLOGY OF NPSLE 
 

Small vessel angiopathies play a central role in the 
pathogenesis of NPSLE (6).  Multifocal microinfarcts, 
repeated ischemia associated with inflammation of the 
small vessels, and the presence of antiphospholipid 
antibodies and increased numbers of pericapillary 
microglial cells are the predominant abnormalities thought 
to underlie the development of NPSLE (6, 12).  In fact, the 
association of microvascular lesions with microinfarcts 
suggests that occlusion of the small vessels is the basis for 
the enduring damage to the nervous system, including 
damage to neurons and astrocytes, which has been 
demonstrated in NPSLE (13).  In addition, some 
neurological diseases such as MS and, perhaps, NPSLE are 
associated with damage at the level of brain endothelial 
cells (ECs), which leads to altered expression of adhesion 
molecules, chemokine secretion, changes in the 
organization of tight junction proteins and lymphocyte 
extravasation from vessels into the CNS.  While both 
microglia and astrocytes are thought to be responsible for 
chemokine secretion (11, 14), activated astrocytes 
contribute to the innate immune response of the brain and 
produce a large variety of mediators, including cytokines 

and chemokines, also known to be secreted by activated 
macrophages (15).  They can also form a link between the 
innate and adaptive immune response by processing and 
presenting antigens to T cells, and mediating mononuclear 
leukocyte migration into the brain (16).  As discussed 
below, these activated astrocytes are crucial for the 
induction of cytokine/chemokine expression in the CNS 
and thus play a central role in the development of NPSLE 
(Figure 1). 
 
4. CHEMOKINES: OVERVIEW AND THEIR 
INVOLVEMENTS IN CNS PATHOLOGY 
 

Chemokines are a family of over 40 small, secreted 
proteins shown to induce chemotaxis and other functional 
changes in subsets of leukocytes in vitro.  They are 
produced by a wide variety of cell types of both 
hematopoietic and nonhematopoietic origin, and have been 
shown to play a key role in the migration and activation of 
leukocytes in vivo.  Chemokines are known to belong to 
two major superfamilies that share substantial homology 
via four conserved cysteine residues (17-19).  The CXC 
chemokine family [e.g., CXCL1 (growth related oncogene 
alpha; GRO-α), CXCL5 (expression of neutrophil 
activating protein-78; ENA-78), CXCL8 (IL-8), CXCL9 
(monokine induced by interferon-gamma; MIG), CXCL10 
(interferon-inducible protein 10; IP-10), CXCL11 
(interferon-inducible T cell A chemoattractant; I-TAC) and 
CXCL16 (CXC chemokine ligand 16)] induces chemotaxis 
mainly in neutrophils and T cells, whereas the CC 
chemokine family [e.g. CCL2 (macrophage 
chemoattractant protein 1; MCP-1), CCL3 (macrophage 
inflammatory protein 1 alpha; MIP-1α) and CCL5 
(regulated on activation normal T cells expressed and 
secreted; RANTES)] induces chemotaxis in monocytes and 
subpopulations of T cells.  Two other minor groups, the C 
and CX3C chemokines, which include CX3CL1 
(fractalkine), also have been identified.  The members of 
these families show considerable structural homology and 
often possess overlapping chemoattractant specificities.   

 
In addition to their roles in chemoattraction, chemokines 
have been implicated in the modulation of numerous 
biological functions, including cell adhesion, phagocytosis, 
cytokine secretion, T cell activation, apoptosis, 
angiogenesis, proliferation and viral pathogenesis (20).  
And it is now evident that they can aid in directing immune 
responses either directly by activating antigen presenting 
cells (APCs) and T cells or indirectly by recruiting the 
proper cell populations.  It has been shown, for example, 
that the CC family chemokines CCL3 and CCL5 can 
effectively initiate antigen-specific responses in vivo when 
used in place of an adjuvant such as Freund’s complete 
(21).  These early studies led investigators to hypothesize 
that chemokines are able to skew immune responses toward 
either T helper (Th)1 (IFN-γ producing) or Th2 (IL-4 
producing) responses (22, 23).  More recent evidence 
indicates that the Th1 phenotype expresses certain 
chemokine receptors, including CXCR3, the receptor for 
CXCL9 and CXCL10, and CCR5, the receptor for CCL3 
and CCL5 (24, 25), while the Th2 phenotype expresses 
CCR4, the receptor for CCL17 (TARC) and CCL22
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Table 1. Detectable chemokines in NPSLE 
Chemokines other nomenclature

  
References 

CXC families   
CXCL8 IL-8 13 37 
CXCL9 MIG 42 
CXCL10 IP-10 42 56 
CXCL16  63 
CC families   
CCL2 MCP-1 56 74 
CCL5 RANTES  42 
CX3C family   
CX3CL1 fractalkine/neurotactin 103 

 
(MDC), and CCR8, the receptor for CCL1 (I-309 and 
TCA-3).   Moreover, it has been demonstrated that 
polarized T cells differentially respond to CXCL10, which 
bind to Th1 cells, than to CCL22, which binds to Th2 cells 
(26, 27).  It now appears, therefore, that chemokines not 
only have the ability to recruit specific subsets of 
lymphocytes, they also can aid in determining the type of 
immune response that occurs, which could significantly 
affect the development and progression of autoimmune 
disorders. 

 
Chemokines are normally expressed at low levels 

in the CNS, but their production can be significantly 
upregulated by inflammatory mediators, leading to 
leukocyte infiltration (28).  In the brain, chemokines are 
produced by neurons, astrocytes, microglia and ECs, as 
well as by infiltrating macrophages and/or activated 
leukocytes, including encephalitogenic T cells.  In addition, 
astrocytes, oligodendrocytes, microglia and neurons also 
constitutively express functional chemokine receptors, and 
the networks formed among chemokines and both 
neurotransmitters and neuropeptides are thought to play a 
major role in maintaining proper brain homeostasis and 
function and reacting to perturbations in that homeostasis.  
Research on chemokines in the CNS therefore focused 
initially on immune and local inflammatory responses, 
which led to the recognition that chemokines are 
significantly involved in several neurological disorders, 
including MS, trauma, stroke, Alzheimer's disease (AD) 
and acquired immunodeficiency syndrome (AIDS)-
associated dementia (29-31). 

 
In the next section, we summarize the functions and 

activities of individual chemokines, and their involvement 
in NPSLE and other CNS disorders is discussed.  
Chemokines detectable in the CNS of NPSLE patients are 
listed in Table 1. 

 
5. CXC CHEMOKINES 
 
5.1 CXCL8  

The main function of CXCL8 (IL-8) is to stimulate 
the migration of polymorphonuclear neutrophils during 
acute inflammation, though it also may induce migration of 
specific T cell populations during immune responses (32, 
33).  Indeed, CXCL8 has been implicated in lupus nephritis 
(34, 35).  Little is known about the functional significance 
of CXCL8 expression in NPSLE (36); however, it is known 
that CXCL8 levels in CSF were elevated in a single patient 
with NPSLE with little correlation to the serum CXCL8 

levels (13, 37).  Notably, there is also no correlation 
between intrathecal levels of CXCL8 and pleocytosis in the 
CNS of NPSLE patients (37).  On the other hand, CXCL8 
significantly enhances neuronal survival in hippocampal 
cultures (38).  Furthermore, expression of CXCL8 in the 
CNS leads to the synthesis of matrix metalloproteinase 9, 
which potentially culminates in an insult to the brain 
parenchyma, resulting in the release of neuronal and 
astrocyte degradation products (37).  Taken together, these 
findings suggest that in addition to inducing chemotaxis, 
CXCL8 may exert protective effects against neuronal 
degeneration in the CNS that do not involve induction of 
chemotaxis. 
 
5.2. CXCL9 

CXCL9 (MIG) is a member of the CXC chemokine 
family and is mainly produced by activated macrophages.  
It induces chemotaxis in activated T cells, leading to their 
adhesion via CXCR3 to activated T and B cells and ECs.  
The fact that CXCR3 is expressed on lymphocytic cells 
present in virtually every perivascular inflammatory 
infiltrate in active MS lesions suggests CXCL9 may be 
constitutively expressed in brain, especially by astrocytes, 
and contribute to the development of CNS disorders (39, 
40).  Furthermore, it has been shown that human brain 
microvascular ECs are also able to synthesize and secrete 
CXCL9 after inflammatory stimulation, thereby recruiting 
T cells at the level of the brain ECs (41). 

 
Fragoso-Loyo et al. (42) showed that expression of 

CXCL9 is upregulated in NPSLE, but its precise 
contribution to NPSLE is still unresolved, as CXCL9 
stimulates CD4-T lymphocyte proliferation and effector 

cytokine (IFN-γ) production, in addition to its chemotactic 
effects (43).  Increased peripheral expression of IFN-γ and 
a predominant Th1 response are observed in human SLE, 
as well as in lupus-prone NZB/W and MRL/lpr mice (44-
46), and high levels of IFN-γ were found in the CSF of a 
patient with active lupus meningoencephalitis (47).  
Although IFN-γ appears to be present in the CNS under 
both normal physiological and pathological conditions, it 
likely plays a more important role in abnormal systemic 
immune responses such as the Th1 response seen in SLE.  
CXCL9 thus appears to be involved in the induction of 
proinflammatory cytokines such as IFN-γ and other 
chemokines during the progression of CNS inflammatory 
disorders such as NPSLE and MS. 
 
5.3. CXCL10 

CXCL10 (IP-10) is expressed and secreted by 
monocytes, fibroblasts and ECs after stimulation by IFN-γ 
(48-50) and induces migration of some subsets of T cells 
into inflamed sites.  CXCL10 also promotes the regression 
of angiogenesis (51, 52). 

 
Both CXCL10 and its receptor, CXCR3, are 

reportedly involved in SLE (53, 54).  For instance, we 
recently showed that expression of CXCL10 is upregulated 
in lupus-prone MRL/lpr mice and that its expression 
parallels that of CXCR3 and is correlated with the degree of 
pulmonary inflammation (46).  By contrast, lung expression 
of CCL17 and its receptor, CCR4, are suppressed in 
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MRL/lpr mice, which is consistent with the idea that CXCL10 
acting via CXCR3 is the primary mediator of the pulmonary 
inflammation associated with migration of Th1 cells.  In addition, 
CXCL10 is also reportedly involved in lupus nephritis (55).  There 
have also been a few reports showing enhanced expression of 
CXCL10 in NPSLE (42, 56).  And Asensio et al. (57) 
showed that CXCL10 is markedly elevated in the CSF and 
brain of individuals infected with HIV-1 and contributes to 
the pathogenesis of HIV-associated dementia (HAD) by 
recruiting autoreactive CD3-positive T cells to the CNS.  In 
that report, the cellular sources of CXCL10 were primarily 
astrocytes and to a lesser extent microglia.  Interestingly, 
another report has shown that CXCL10 is present in CSF of 
patients with AD and that levels were well correlated with the 
degree of cognitive impairment when it was mild (58).  
Although there is no significant correlation between CXCL10 
expression and specific symptoms of NPSLE (56), these 
findings suggest that CXCL10 is significantly involved in 
mental disorders. 
5.4. CXCL16 

CXCL16 is a recently identified chemokine that 
exists in both membrane-bound and soluble forms.  In its 
membrane-bound form CXCL16 functions as a scavenger 
receptor for oxidized low-density lipoprotein (59) and 
bacteria (60), and as a cell adhesion molecule.  Expressed 
by APCs, CXCL16 also attracts activated memory type T 
cells.  Like several other chemokines, CXCL16 has been 
detected in the synovial fluid in rheumatoid joints and may 
be involved in the progression of RA (61, 62).  

 
CXCL16 levels are higher in the CSF of patients 

with NPSLE than in their serum, though two other T cell 
attracting chemokines, CCL18 and CCL17, are not detected 
in CSF (63).  Levels of CXC16 in both CSF and serum are 
also significantly elevated in patients with MS or bacterial 
or viral meningitis, suggesting CXCL16 expression is not 
specific to NPSLE.  In addition, CXCL16 appears to play 
an important role in EAE, a typical Th1-mediated 
autoimmune disease (64), and the expression of CXCR6, a 
specific receptor for CXCL16, is correlated with Th1-type 
responses (65), suggesting CXCL16 mediates the influx of 
activated T lymphocytes during Th1 responses in the 
inflamed CNS. 

 
Because macrophages are a major source of 

CXCL16, microglia and/or astrocytes are the most likely 
sources of CXCL16 production in the CNS.  Consistent 
with that idea, Ludwig et al. recently demonstrated the 
expression and release of CXCL16 by glial cells in both 
normal and malignant tissue (66), and one recent finding 
indicates that enhanced cleavage of the membrane-bound 
form by proteases can lead to elevated levels of the soluble 
form of CXCL16 in brain (67).  Indeed, ADAM-10, a 
protease able to cleave membrane bound CXCL16, was 
recently found to be constitutively expressed in both the 
normal and inflamed human CNS (66).  
 
6. CC CHEMOKINES 
 
6.1. CCL2 

CCL2 (MCP-1) acts during chronic inflammation 
to activate the migration of macrophages and specific T 

cells (68).  In the CNS, CCL2 appears to orchestrate the 
activities of neural and inflammatory cells.  For instance, 
findings from both transgenic mice and humans indicate 

that CCL2 is essential for transmigration of macrophages 
into the brain (69), and CCL2 is a potent chemoattractant 
for microglia in vitro (70, 71).  In addition, during 
inflammation and in development, CCL2 recruits 
mononuclear phagocytes to the CNS white matter, where 
they act to clear myelin debris (shown to inhibit axonal 
growth) and enable glial progenitors to expand and 
differentiate (72).  Substantial evidence also indicates that 
by mediating glomerular leukocyte infiltration, CCL2 
contributes to kidney injury in the glomerulonephritis seen 
with SLE, and that serum CCL2 levels are significantly 
elevated in SLE patients and are correlated with the disease 
activity (SLEDAI) score, suggesting a role for CCL2 in the 
pathogenesis of SLE (54, 73).  Furthermore, Okamoto et al. 
recently detected CCL2 in the CSF of patients with NPSLE 
and demonstrated its clinical relevance for diagnosis (56, 
74).   
 
6.2. CCL5 

CCL5 (RANTES) is a chemoattractant for 
monocytes and memory T and NK cells (75), and may 
contribute to the pathophysiology of such immune disorders 
as RA (76), SLE (77) and MS (39).  In EAE, CCL5 
amplifies the inflammatory process, and its expression 
correlates with the intensity of neuroinflammation (78).  In 
addition, CCR5, a CCL5 receptor, has been detected on 
lymphocytic cells, macrophages and microglia in actively 
demyelinating MS brain lesions (39, 79).  And 
administration of a neutralizing monoclonal antibody 
specific for mouse CCL5 to a mouse model of human MS 

improves neurological function and reduces infiltration of T 
cells (80), suggesting CCL5 is very much involved in the 
pathogenesis of inflammation in the brain. 

 
It appears that cell-cell interaction via 

CD40/CD40L is an important step toward induction of 
CCL5 expression in the CNS.  For instance, secretion of 
both CCL5 and CCL2 by human brain microvessel ECs is 
significantly upregulated following CD40/sCD40L 
interactions, which offers a potential mechanism by which 
activated CD40L-positive T cells could regulate expression 
of CC chemokines by cerebral ECs (81).  Despite the 
absence of evidence indicating CD40/CD40L interactions 
are involved in NPSLE, interactions between these 
molecules in the periphery may be important for B cell 
activation and the renal complications associated with SLE 
(82, 83).  In addition, recent reports indicate that CCL5 acts 
during human fetal astrocyte development (84), and that it 
induces transcription of the chemokines CCL2 and CCL3 
and the cytokine TNF-α in astrocytes (85).  This effect may 
serve to amplify inflammatory responses within the CNS 
and contribute to the progression of both NPSLE (42) and 
MS.  
 
7. CX3CL1 

The recently cloned CX3CL1 (fractalkine) has the 
structure of a CX3C chemokine and is synthesized by ECs 
as a type I transmembrane protein (86) that is then cleaved 
by the metalloproteinases ADAM17 or ADAM10 (87, 88). 
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Figure 2.  The dual effects of CX3CL1 in the CNS. Within the CNS, CX3CL1, and particularly sCX3CL1, appears to have dual 
activities. As proinflammatory mediator, CX3CL1 induces chemotaxis in T cells, NK cells, macrophages and astrocytes, and may 
amplify inflammatory/immune reactions.  On the other hand, sCX3CL1 also appears to exert neuroprotective effects by inhibiting 
the otherwise enhanced cytolytic activity of NK cells interacting with EC-bound CX3CL1 and by reducing spontaneous 
glutamate release, thereby protecting against excitotoxic cell death.  
 
The soluble form of CX3CL1 (sCX3CL1) was first 
reported to exert a chemotactic effect on monocytes, NK 
cells and T cells in vitro, and to induce cellular adhesion to 
ECs.  In addition, CX3CL1 appears to act via its receptor, 
CX3CR1, as an adhesion molecule able to promote the firm 
adhesion of a subset of leukocytes under conditions of 
physiological flow (89, 90).  It is noteworthy that CX3CL1 
and CX3CR1 are both prominently expressed in the CNS, 
where CX3CL1 was previously identified as “neurotactin” 
(91).  Within the CNS, CX3CL1 is constitutively expressed 
by neurons and ECs and is upregulated in neurons and 
astrocytes by the inflammatory stimulation that occurs with 
HIV encephalopathy, bacterial meningitis and Guillain-
Barré syndrome (92-94).  On the other hand, levels of 
transcription of CX3CL1 gene in the CNS appears to be 
unaffected by neuroinflammatory processes such as EAE or 
experimental cerebral ischemia (95).  But once 
proteolytically cleaved from neurons in response to 
excitotoxic stimulation (87), the soluble form of CX3CL1 
likely mediates subsequent migration of activated 
CX3CR1-bearing T cells, macrophages and/or astrocytes 
during the inflammatory response to brain injury.  In 
addition, several studies have shown that sCX3CL1 can 
inhibit the interaction between CX3CR1-positive 
leukocytes and membrane-bound CX3CL1 in ECs, thereby 
suppressing the augmentation of cytolytic activity by NK 
cells (96).  This suggests CX3CL1, especially its soluble 
form, has dual effects at sites of inflammation, and that 
which effects are manifested is determined by the stimulus 

type, the cells activated, the organ affected and/or the phase 
of the inflammation, among other things. 

 
The expression and function of CX3CL1 has 

been observed in RA (97, 98), rheumatoid vasculitis 
(99), pulmonary artery hypertension (100), systemic 
sclerosis (101) and lupus nephritis in MRL/lpr mice 
(102).  We recently showed that sCX3CL1 levels in 
the serum of SLE patients were significantly higher 
than in healthy individuals or RA patients, and 
correlated positively with disease activity, damage 
index scores and disease-specific autoantibodies, and 
correlated negatively with CH50 activity (103).  In 
addition to sCX3CL1, a specific CX3CL1 receptor, 
CX3CR1, has been identified on both the CD4+ and 
CD8+ T cells from SLE patients with active disease 
(103).  Notably, Fraticelli et al. showed that CX3CR1 
was preferentially expressed in Th1 cells, and Th1 but 
not Th2 cells respond to CX3CL1.  Furthermore, 
CX3CL1 is detected in ECs in areas affected by 
psoriasis, a Th1-dominated skin disorder (104).  As 
discussed above, a pronounced Th1 response is 
central to the pathogenesis of SLE, which suggests 
that by mediating Th1 cell-EC interactions CX3CL1 
may contribute significantly to the development and 
progression of SLE. 

 
We also observed that levels of sCX3CL1 

were elevated in the CSF of SLE patients showing 
neuropsychiatric manifestations and that both serum 
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and CSF sCX3CL1 levels declined with successful 
treatment (103).  Recently, antibodies against 
glutamate receptor [N-methyl-D-aspartic acid (NMDA) 
receptor subunit NR2] were detected in serum from 
NPSLE patients (105-107).  Glutamate is the major 
excitatory neurotransmitter of the nervous system and 
plays a key role in cognitive CNS functions, including 
learning and memory (108).  NMDA receptors are also 
thought to mediate the neuronal injury caused by the 
excitotoxic effects of glutamate that occur in many 
neurological disorders, including stroke, dementia and 
neurodegenerative disorders (109, 110).  In that 
regard, CX3CL1 is readily cleaved from neuronal 
membranes during excitotoxic glutamate stimulation, 
after which the cleaved CX3CL1 reduces 
spontaneous glutamate release, thereby exerting a 
neuroprotective effect against excitotoxic cell death 
(111-113).   

 
The findings summarized above suggest 

sCX3CL1 could serve as a highly useful serologic 
marker of disease activity and organ damage in 
patients with SLE, and levels of sCX3CL1 in the CSF 
may prove to be a reliable marker for diagnosis of 
NPSLE and possibly for following the disease course.  
That CX3CL1 exerts both proinflammatory and 
neuroprotective effects is of particular interest in that it 
sheds light on the mechanisms underlying the 
pathogenesis of the brain damage seen in NPSLE 
and other CNS disorders and, perhaps, how those 
effects could be mitigated (Figure 2). 

 
8. CNCLUSIONS AND PERSPECTIVE 
 

Despite the large number of studies performed, the 
pathogenesis of NPSLE is still not completely understood, 
and a diagnosis of NPSLE continues to be difficult to 
make.  The difficulty stems from the fact that NPSLE is a 
complex syndrome with a variety of symptomatic 
manifestations and clinical features reflecting different 
pathogenic processes.  The critical roles played by the 
networks of chemokines that regulate CNS function and 
may even function as neurotransmitters are certainly an 
exciting area of promising research.  During the last few 
years it has become apparent that chemokines not only 
orchestrate immune responses, but are also involved in an 
important way in the pathophysiology of almost every 
acute or chronic lesion of the nervous system (114).   

 
What we know about the pathophysiology of 

chemokines during disease processes is still limited, and 
even in those areas where information is plentiful, it is 
difficult to interpret.  This is because of the highly variable 
nature of chemokine expression, which appears to cause 
chemokine profiles to differ among SLE patients with 
different neuropsychiatric manifestations.  We now 
recognize that it is highly important to determine as 
specifically as possible the correlation between each 
neuropsychiatric feature of SLE and the pattern of elevated 
chemokines in the CNS. 

 

Although the challenge inherent in such a complex 
investigation is severe, additional knowledge about the 
biology of the cytokines and chemokines involved in 
NPSLE could serve as the basis for much needed 
improvements in the clinical management and diagnosis of 
NPSLE, as well as for new therapeutic strategies aimed at 
mitigating the mortality and morbidity associated with SLE 
and its attendant sequelae. 
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