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1. ABSTRACT 
 

Neutrophils are the first to be recruited to a site of 
infection or a diseased site.  Among various inflammatory 
mediators, CXC chemokines including IL-8 (CXCL8), 
MIP-2 (CXCL2), and KC (CXCL1) are the most critical for 
such recruitment.  Neutrophils have been considered as 
effector cells that kill bacteria or destroy affected tissues 
mainly through the production of reactive oxygen species.  
Recent studies, however, revealed that neutrophils are 
involved in the production of chemokines in response to a 
variety of stimulants including LPS, TNF-α, and IFN-γ, 
thereby contributing to immunomodulation.  These 
functions are also regulated by selectins during infiltration 
into various sites.  In this review, I summarize the current 
knowledge on this area and propose that neutrophils are a 
fascinating target for basic as well as clinical scientists. 

 
 
 
 
 
 
 
2. INTRODUCTION 
 

Neutrophils are continuously produced in the 
bone marrow, and are promptly recruited to a site of 
inflammation or an injured tissue through the bloodstream 
in response to infection or injury.  As compared with 
classic chemoattaractants, such as complement protein C5a 
and leukotriene B4, CXC chemokines, such as IL-8 
(CXCL8), MIP-2 (CXCL2), and KC (CXCL1), are 
selective for neutrophils.  Recent studies revealed that these 
CXC chemokines are the main chemotactic mediators 
involved in neutrophil recruitment in various in vivo 
models, as reviewed previously (1).  Neutrophil recruitment 
can be categorized into several steps, namely mobilization 
from the bone marrow, rolling along and tight adhesion to 
endothelial cells, and transmigation.  All the steps are 
regulated by CXC chemokines (2).   
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At a site of inflammation or a diseased site, 
neutrophils exhibit various activities such as bacterial 
killing, tissue destruction, and angiogenesis through the 
oxidative burst, degranulation, and production of vascular 
endothelial growth factor (VEGF).  These activities are also 
regulated by chemokines, as described in this review.  In 
addition, recent studies revealed that neutrophils are 
directly or indirectly responsible for the production of 
chemokines, thereby regulating an immune response, as 
described in this review.   

 
Consequently, in this review, I focus on the 

mechanisms by which chemokines regulate neutrophil 
recruitment and how chemokines induce various activities. 
 
3.  NEUTROPHIL RECRUITMENT 
 
3.1.  Mobilization of neutrophils from the bone marrow 

A variety of agents including G-CSF mobilize 
neutrophils from the bone marrow where stem cells 
differentiate into neutrophils, whereas SDF1 (CXCL12) 
causes the retention of neutrophils in the bone marrow.  It 
was found recently that G-CSF suppresses SDF1 
(CXCL12) expression in the bone marrow, thereby 
inducing the release of neutrophils from the bone marrow 
(3).  In addition to G-CSF, LPS also induces neutrophilia, 
which is caused by down-regulation of CXCR4 expression 
on neutrophils (4).  Furthermore, KC (CXCL1) also 
induces neutrophil release from the bone marrow, and the 
release is augmented by low doses of CXCR4-blocking 
antibody that otherwise shows no mobilizing effect, 
suggesting that KC may act on the SDF-1 
(CXCL12)/CXCR4 axis (5).  CXCR4 is a sole receptor for 
SDF1 (CXCL12), and of note is that surface expression of 
CXCR4 decreases in peripheral neutrophils as compared 
with bone marrow neutrophils and further decreases in 
peritoneal exudates neutrophils (5).  Indeed administration 
of the cyclized CXCR4 agonist peptide (CTCE-0021) with 
improved stability elevates blood neutrophils (6).     

 
CXC chemokines, such as IL-8 (CXCL8), 

MIP-2 (CXCL2), and KC (CXCL1), contribute greatly to 
several disease models in which neutrophils are recruited to 
diseased sites, as reviewed previously (1).  G-CSF also 
plays an important role in regulating neutrophil 
responsiveness to IL-8 (CXCL8) and MIP-2 (CXCL2) in 
vivo, because G-CSF receptor-deficient mice do not have 
the expected neutrophilia after administration of human IL-
8 (CXCL8) (7).  Of note is that neutrophils from G-CSF 
receptor-deficient mice also exhibit significant defects of 
chemotaxis and adhesion in response to IL-8 (CXCL8) and 
formyl-methionyl-leucyl-phenylalanine (fMLP) (7). 

 
Neutrophils mobilized in response to rat MIP-

2 (CXCL2) were found to express more CD11b and CD49d 
(8).  Blockade of CD18 increased this mobilization, 
whereas that of CD49d decreased it dramatically (8).  
Therefore CD18 and CD49d appear to play contrasting 
roles in neutrophil retention and release within the bone 
marrow.  Although CD11b/CD18 (Mac-1) is expressed on 
the cell membrane, a proportion of it is targeted to specific 
(also known as secondary) and tertiary granules.  Upon cell 

activation by chemotactic factors including IL-8 (CXCL8) 
and certain cytokines such as TNFα, the surface expression 
of Mac-1 increases several-fold within minutes due to the 
translocation of such granules and their fusion with the cell 
surface (9, 10).  In addition to CD11b, it is also known that 
CD66b is up-regulated by activation with IL-8 (CXCL8) 
(11).  CD66b is a member of CD66 family, and is 
phosphorylated following stimulation with fMLP, platelet-
activating factor and phorbol myristate acetate (12).    
 
3.2.  Rolling along and tight adhesion to endothelial cells 

During inflammation, neutrophils roll along 
the walls of postcapillary venules, CXC chemokines 
playing a critical role in this process.  For this purpose, 
tissue-derived CXC chemokines have to traverse 
endothelial cells.  An electron microscopic study showed 
that IL-8 (CXCL8) is internalized by venular endothelial 
cells abluminally and then transcytosed to the luminal 
surface, and that IL-8 (CXCL8) is presented to the adherent 
neutrophils on the endothelial cell membrane, 
predominantly in association with the endothelial cell 
projections.  The C terminus of IL-8 (CXCL8) is required 
for endothelial cell binding, transcytosis, and the ability of 
IL-8 (CXCL8) to recruit neutrophils in vivo, suggesting that 
such transcytosis is essential for neutrophil recruitment (13).   

 
Two molecules responsible for such 

transcytosis have been identified so far.  One is Duffy 
antigen and the other is endothelial heparan sulfate.  Duffy 
antigen is expressed on red blood cells, capillaries, and 
postcapillary venular endothelial cells, and binds certain 
CXC and CC chemokines.  The Duffy antigen exogenously 
expressed in human endothelial cells facilitates the 
movement of CXC chemokines, in this case Gro-
α (CXCL1), across an endothelial monolayer, and 
neutrophil migration towards CXC chemokines, such as 
Gro-α (CXCL1) and IL-8 (CXCL8), is enhanced across an 
endothelial monolayer expressing Duffy antigen.  In 
agreement with this in vitro observation, IL-8 (CXCL8)-
driven neutrophil recruitment in the lungs was markedly 
attenuated in mice deficient in Duffy antigen (14).  On the 
other hand, mice deficient in the enzyme N-acetyl 
glucosamine N-deacetylase-N-sulfotransferase-1 in 
endothelial cells and leukocytes, which is required for the 
addition of sulfate to heparin sulfate chains, showed 
impaired neutrophil infiltration.  In these mice, chemokine 
transcytosis across endothelial cells and presentation on the 
cell surface were reduced, resulting in decreased neutrophil 
firm adhesion and migration (15).   

 
Neutrophils scan the surface for IL-8 

(CXCL8), which is transcytosed and immobilized through 
the mechanisms described above.  The administration of 
MIP-2 (CXCL2) and KC (CXCL1) induced a dose- and 
time-dependent increase in neutrophil rolling, which was 
significantly inhibited by an antibody against P-selectin, 
suggesting that MIP-2 (CXCL2) and KC (CXCL1) induce 
P-selectin-dependent rolling (2).   

 
Although IL-8 (CXCL8) arrests rolling 

neutrophils in vitro (16), no neutrophil arrest chemokine 
had been demonstrated in vivo until recently.  In inflamed 
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cremaster muscle venules in TNF-α-treated mice, 
neutrophil adhesion was almost completely abrogated in E-
selectin (-/-) mice treated with pertussis toxin, an inhibitor 
of chemokine signal transduction, and significantly reduced 
in CXCR2 (-/-) mice treated with a monoclonal antibody 
blocking E-selectin.  However, the adhesion was not 
abrogated in E-selectin (-/-) or CXCR2 (-/-) mice (17).  
Therefore, CXC chemokine and E-selectin appear to 
mediate tight adhesion cooperatively.   

 
Phosphoinositide-3 kinase γ (PI-3Kγ) can be 

activated directly by the βγ dimer of heterotrimeric G 
proteins coupled to CXCR2.  PI-3Kγ null mice showed a 
significant decrease in KC (CXCL1)-induced neutrophil 
adhesion in venules of exteriorized cremaster muscle.  In 
wild-type mice rolling neutrophils showed rapid and 
sustained adhesion, but in PI-3Kγ (-/-) mice, adhesion was 
not triggered at all.  Lethally irradiated wild-type mice 
reconstituted with the bone marrow cells of PI-3Kγ null 
mice showed a 50% decrease in KC (CXCL1)-induced 
neutrophil adhesion, suggesting that PI-3Kγ must function 
in the adhesion of neutrophils (18). 

 
3.3. Transmigration 

Neutrophils then move in an ameboid manner 
across the endothelial cell barrier, followed by passage 
across the subendothelial basal lamina.  The former process 
involves homophillic interaction of CD31 and JAM-A on 
neutrophils and endothelial cells where CD31 and JAM-A 
act sequentially to mediate neutrophil migration through 
venular walls (19).  On the other hand, the latter process 
may involve proteolysis.  Because the basal lamina 
comprises a dense meshwork of extracellular matrix 
proteins, including type IV collagen, laminin, fibronectin, 
and glycosaminoglycan, it is thought that the matrix 
proteins are degraded by matrix metalloproteases stored in 
specific (also known as secondary) and tertiary granules of 
neutrophils.  Among MMPs, MMP-9 is thought to be a 
candidate that participates in such degradation.  MMP-9 is 
indeed induced by not only ligation of L-selectin and Mac-
1 (20) but also IL-8 (CXCL8) and TNF-α (21).  In MMP-9 
(-/-) mice, neutrophil infiltration was impaired at the peak 
during zymosan-induced experimental peritonitis (22).  In 
such mice, however, neutrophils infltrated into the 
peritoneal cavity at later stages, suggesting that other 
mechanisms compensate for the function of MMP-9. 
 
3.4.  Fate of transmigrated neutrophils 

Peripheral blood neutrophils circulate through 
the vascular system with a lifespan of 6-12 h (23), after 
which they die due to apoptosis, but under inflammatory 
conditions neutrophil apoptosis is inhibited in vitro (24) as 
well as in vivo (25).  Such prolongation of life span may 
allow neutrophils to perform effector functions such as 
killing bacteria.  In one study, IL-8 (CXCL8) and Gro-α 
(CXCL1) greatly suppressed neutrophil apoptosis, whereas 
they augmented superoxide anion production and 
phagocytic activity towards E. coli (26).  In another study, 
however, IL-8 (CXCL8) failed to suppress neutrophil 
apoptosis, whereas GM-CSF, IL-6, and IL-15 suppressed it 
through down-regulation of Bax (27).  In a second study, 
even when neutrophils migrated through human umbilical 

vein endothelial cells (HUVEC) in response to IL-8 
(CXCL8), neutrophil apoptosis was only minimally 
inhibited, while neutrophils transmigrating through TNF-α 
or IL-1β-treated HUVEC were strongly protected against 
apoptosis (28).  Overall, although it is not known at present 
why such a discrepancy arose, IL-8 (CXCL8) appears to be 
ineffective in prolonging the neutrophil lifespan in vivo.  
    
3.5.  Genomic changes induced by transmigration 

Microarray analysis revealed dramatic gene 
expression differences between neutrophils which 
accumulated in the air spaces in response to bronchoscopic 
instillation of LPS and circulating neutrophils in man (29).  
Approximately 15% of expressed genes, including 
inflammatory- and chemotaxis-related ones and ones for 
antiapoptotic and IKK-activating pathways, exhibit altered 
expression levels.  Functional analysis also showed 
increased superoxide release, decreased apoptosis, 
decreased IL-8 (CXCL8)-induced chemotaxis, and a 
different pattern of IL-8 (CXCL8), MIP-1β (CCL4), MCP-
1 (CCL2), and TNF-α release in air space neutrophils as 
compared with those of circulating neutrophils.  Of note 
was that many of these changes were not caused by 
treatment with LPS in vitro, suggesting that neutrophils 
sequestered in the lungs become fundamentally different 
from those resident in the circulation.  In another in vitro 
study, IL-8 (CXCL8) and LPS induced partially 
overlapping transcriptional profiles, 50% of IL-8 (CXCL8)-
responsive genes being concomitantly regulated by LPS.  
IL-8 (CXCL8) also modulated a significant number of 
genes unresponsive to LPS (30).  Future studies should 
clarify whether or not neutrophils sequestered in tissues 
such as the lungs in response to IL-8 (CXCL8) or MIP-2 
(CXCL2) also show such dramatic differences.  
 
4.  CHEMOKINES AS SECRETAGOGUES 
 

Neutrophils secrete their granule contents in 
response to a variety of secretagogues, including 
chemokines, TNF-α, and C5a, and/or upon interaction with 
endothelial cells via integrins.   

 
Recently, a member of the TNF superfamily 

of ligands, B-lymphocyte stimulator (BLyS), was found to 
be stored in G-CSF-activated neutrophils and secreted by 
them.  Although IL-8 (CXCL8) and Gro-α (CXCL1) did 
not induce BLyS de novo synthesis in neutrophils, they 
acted as potent secretagogues for BLyS stored in such 
activated neutrophils (31).  A cytokine, TNF-related 
apoptosis-inducing ligand (TRAIL), is also synthesized, 
stored, and released from interferon-activated neutrophils 
upon stimulation with IL-8 (CXCL8) (32).  In such cells, 
TRAIL is mainly retained in secretory vesicles and light 
membrane fractions that are rapidly mobilizable to the cell 
surface upon exposure to IL-8 (CXCL8).  TRAIL is 
subsequently secreted by the cells.  BLyS is important in B 
cell maturation and survival, whereas TRAIL exerts 
selective, apoptotic activities towards tumor and virus-
infected cells, as well as immunoregulatory functions on 
activated T cells, and therefore IL-8 (CXCL8)-induced 
release of BLyS and TRAIL from neutrophils may play 
physiological and pathological roles in vivo. 
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Table 1. Chemokine receptors on neutrophils 
Receptors
  

Stimulants Up or down 
regulation 

References 

CXCR2 substance P Up 34 
CCR1       GM-CSF Up 36 
 substance P Up 34 
 unknown Up 37 
CCR2 unknown Up 37 
 none  33 
CCR6 TNF-α Up 38 
CXCR4 LPS Down  4 
 none   5 

Representative ligands: CXCR2: CXCL1 (KC, Gro-α), 
CXCL2 (MIP-2), CXCL8 (IL-8), CCR1: CCL4 (MIP-1β), 
CCL5 (RANTES),CCR2: CCL2 (MCP-1), CCR6: CCL20 
(LARC), CXCR4: CXCL12 (SDF-1) 
 
Table 2. Chemokines produced by neutrophils 

Chemokines Stimulants References 
IL-8 (CXCL8) LPS, adherence 39, 40 
 LPS, GM-CSF+Zymosan 46 
MIP-2 (CXCL2) substance P 34 
MIP-1α (CCL3) substance P 34 
 LPS, LPS+GM-CSF 41, 42 
 Zymosan 46 
MIP-1β (CCL4) LPS 42 
 Zymosan 46 
Gro-α (CXCL1) Zymosan 46 
IP-10 (CXCL10) IFN-γ, IFN-γ+LPS, IFN-γ+TNF-

α 
43 

MIG (CXCL9) IFN-γ+LPS, IFN-γ+TNF-α 44 
MIP-3α (CCL20) LPS, TNF-α 45 
MIP-3β (CCL19) LPS, TNF-α 45 

 
5.  CHEMOKINE RECEPTOR EXPRESSION ON 
NEUTROPHILS AND CHEMOKINE PRODUCTION 
BY NEUTROPHILS 
 

Neutrophils not only express CXCR1 and 2 
but also CXCR4 (5) and CCR2 (33).  Neutrophils also 
express CCR1 and CCR6 under certain circumstances. 

 
CXCR2 is up-regulated by neuropeptide 

substance P through neurokinin-1 receptor (34).  Although 
human peripheral blood neutrophils do not express CCR1 
(35), GM-CSF treated neutrophils express CCR1 and 
respond to MIP-1α (CCL3), MCP-3 (CCL7), and RANTES 
(CCL5) (36).  CCR1 is also expressed on substance P 
treated neutrophils (34) and neutrophils from adjuvant-
immunized rats (37).  CCR2 had been regarded as a 
receptor for monocyte chemoattractant MCP-1 (CCL2), but 
recently it was reported that CCR2 is expressed on 
neutrophils from adjuvant-immunized rats (37) and 
neutrophils from the bone marrow (33).  CCR6, a receptor 
for LARC (MIP-3α, CCL20), is also expressed on TNF-α 
treated neutrophils (38).  These findings suggest that a 
variety of chemokines in addition to IL-8, MIP-2 and KC 
may participate in neutrophil infiltration and activation 
particularly under pathological conditions (Table 1).  

 
Upon treatment with a variety of stimulants, 

such as LPS, TNF-α, IFN-γ and G-CSF, neutrophils 
produce chemokines, including IL-8 (CXCL8), Gro-α 
(CXCL1), MIP-1α (CCL3), MIP-1β (CCL4), IP-10 
(CXCL10), and MIG (CXCL9) (39, 40, 41, 42, 43, 44, 45, 

Table 2).  Although there is a discrepancy regarding the 
production of IL-1β, IL-6, and TNF-α by neutrophils (45, 
46), the production of chemokines, such as IL-8 (CXCL8), 
Gro-α (CXCL1), MIP-1α (CCL3), and MIP-1β (CCL4), 
has been confirmed with highly purified neutrophils (46).  
Of note is that the production of each chemokine requires a 
relatively selective combination of stimulants.  For 
instance, LPS and TNF-α induce the production of IL-8 
(CXCL8), Gro-α (CXCL1), and MIP-1α (CCL3), whereas 
IFN-γ plus LPS and IFN-γ plus TNF-α induce that of IL-8 
(CXCL8), Gro-α (CXCL1), MIP-1α (CCL3), IP-10 
(CXCL10), and MIG (CXCL9) (45).  In support of the 
pathophysiological relevance of such in vitro findings, 
there are several reports on detection of chemokines in 
neutrophils in human pathologies (47, 48, 49) and several 
studies using a variety of animal models (50, 51, 52).  A 
recent study showed that macrophage recruitment to 
cutaneous polyacrylamide gel-induced granulomas is the 
result of a sequence of inflammatory processes initiated by 
mast cell-derived TNF-α followed by neutrophil influx and 
MIP-1α/β release (50).  Another study showed that 
Toxoplasma gondii triggered neutrophil synthesis of MIP-
1α (CCL3), MIP-1β (CCL4), RANTES (CCL5), and MIP-
3α (CCL20), followed by DC activation (51).  The other 
study showed that neutrophils produce IP-10 (CXCL10) 
and MIG (CXCL9) in response to IFN-γ to recruit T cells in 
a delayed-type hypersensitivity response to HSV-1 antigen 
(52).  Neutrophils themselves, however, do not always 
produce significant amounts of cytokines and chemokines 
under various conditions.  For instance, we recently 
reported that, although neutrophils are required for the 
production of MCP-1 (CCL2) that leads to the 
accumulation of killer T cells upon injection of late 
apoptotic tumor cells, neutrophils themselves do not 
produce MCP-1 (CCL2) (53).  In another study, we also 
found that in Con A-induced hepatitis neutrophils play a 
role in IFN-γ production and that neutrophils are not IFN-γ 
producers but augment IFN-γ production by T cells (54).  
Future studies should elucidate the mechanism by which 
neutrophils regulate the production of cytokines and 
chemokines in vivo.      
 
6.  PRIMING OF THE OXIDATIVE BURST BY IL-8 
(CXCL8)   
 

Superoxide-producing phagocyte NADPH 
oxidase consists of a membrane-bound flavocytochrome 
b(558), cytosolic factors p47(phox), p67(phox), and 
p40(phox), and small GTPase Rac2, all of which are 
translocated to the membrane to assemble the active 
complex following neutrophil activation.   

 
Although IL-8 (CXCL8) does not activate 

NADPH oxidase, it potentiates the oxidative burst induced 
by stimulants such as fMLP and P-selectin.  During 
priming, sialyl Lewis X epitope, a ligand for P-selectin, 
was redistributed to one end of the neutrophils, thereby 
facilitating oxidative burst induced by soluble P-selectin 
(55).  Later, the same group showed that, during priming, 
PSGL-1, a major ligand for P-selectin that contains sialyl 
Lewis X carbohydrate structures, was redistributed to form 
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a more compactly accumulated cluster, PSGL-1-containing 
lipid microdomains (also referred to as lipid rafts) (56).  
Another study also showed that, during priming, IL-8 
(CXCL8) enhanced the Btk- and ERK1/2-dependent 
phosphorylation of p47(phox), as well as the recruitment of 
flavocytochrome b(558), p47(phox), and Rac2 into lipid 
microdomains, thereby potentiating the oxidative burst in 
response to fMLP (57).  Consequently, the mechanism of 
priming by IL-8 (CXCL8) involves recruitment of NADPH 
oxidase components, fMLP receptor, and PSGL-1 into lipid 
microdomains. 
 
7.  INFLAMMATION AND CARCINOGENESIS 
 

Inflammation is associated with 
carcinogenesis.  In the lungs, the influx of neutrophils into 
the airways may be an important process linking 
inflammation with carcinogenesis, and induction of 
oxidative DNA damage by reactive oxygen species and 
myeloperoxidase-related metabolic activation of chemical 
caricinogens appear to be crucial for the process (58).  On 
the other hand, when patients with early gastric cancer 
underwent partial gastrectomy, Helicobacter pylori 
eradication completely normalized mucosal lesions, and 
resulted in complete absence of neutrophil infiltration and a 
significant decrease in the tissue IL-8 (CXCL8) level, 
thereby presumably contributing to a reduction in the risk 
of carcinogenesis (59).  Indeed it was found that IL-8 
(CXCL8) promoter polymorphism increases the risk of 
gastric cancer, which is associated with the IL-8 (CXCL8) 
level and neutrophil infiltration (60).  In another study 
involving an experimental tumor model, co-implantation of 
a foreign body, a gelatin sponge, into a benign tumor-
bearing mouse caused conversion of the tumor into a highly 
malignant one, which was due to neutrophil infiltration 
(61).  All these findings may be explained by neutrophil-
derived reactive oxygen species.    

 
Neutrophils are also directly or indirectly 

involved in VEGF release, thereby contributing to 
carcinogenesis.  Infiltrating neutrophils positive for MMP-9 
were found to be involved in VEGF release and activation 
from pancreatic islets during carcinogenesis of the islets in 
transgenic mice in which SV40 large T antigen oncogenes 
were expressed in all islets under control of an insulin gene 
promoter.  Neutrophil depletion and MMP inhibitors 
significantly reduced such angiogenic switching, as did 
genetic ablation of MMP-9 (62, 63).  In this model, it is not 
known what signals trigger the recruitment of neutrophils 
positive for MMP-9.  In this regard, it should be noted that 
MIP-2 (CXCL2)-induced angiogenesis is mainly mediated 
by neutrophil-derived VEGF-A, because neutrophils from 
mice deficient in the src family kinases, Hck and Fgr (hck(-
/-)fgr(-/-)), normally migrate and release MMP-9 in 
response to MIP-2 (CXCL2) in vitro, whereas they are 
completely unable to release VEGF-A or cause an 
angiogenic response (64). 
 
8.  PERSPECTIVES 
 

Chemokines act on neutrophils in 
collaboration with cytokines such as TNF-α and/or 

selectins in vivo.  On the other hand, the process of 
recruitment, in particular rolling and adhesion, causes much 
more dramatic changes in neutrophil functions than 
treatment with chemokines alone.  Therefore, research has 
been and will be directed towards elucidation of the 
molecular mechanisms underlying such changes, and the 
physiological and pathological roles of the changes. 

 
It is accepted that neutrophils play a critical 

role as producers of chemokines in immunological and 
pathological settings.  The in vivo role of neutrophils as 
regulators of the production of chemokines, however, has 
not been fully explored.  Research along these lines would 
provide us with a new perspective on neutrophil function.  
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