
[Frontiers in Bioscience 13, 1665-1680, January 1, 2008]  

1665 

Mechanical stimulation of primary cilia 
 
Andrew Resnick1, Ulrich Hopfer2 
 
1Department of Physiology and Biophysics, Case Western Reserve School of Medicine, 10900 Euclid Avenue, Cleveland OH 
44106, 2Department of Physiology and Biophysics, Case Western Reserve School of Medicine, 10900 Euclid Avenue, Cleveland 
OH 44106 
 
TABLE OF CONTENTS 
 
1. Abstract  
2. Introduction 
3. Flow through ducts 

3.1. Coordinate system 
3.2. Poiseuille flow 
3.3. Limitations of model 
3.4. Effect of projections 
3.5. Evaluation of ‘k’ 
3.6. Further developments 

4. In vitro approximation for U(r) 
4.1. Flow chamber 
4.2. Body forces 
4.3. Optical tweezer 
 4.3.1. Principles of operation 
 4.3.2. Biological considerations 
 4.3.3. Trap strength measurement 
4.4. Summary 

5. Bending of a cilium 
6. Perspective 
7. Biological effects 

7.1. Cellular level 
7.2. Organ level 
7.3. Organism level 

8. Defining experiments 
9. Conclusion 
10. Acknowledgement 
11. References 
 
 
 
 
 
 
 
 
 
 
 
1. ABSTRACT 
 
 The ciliary/flagellar system is perhaps unique in 
biology in that not only are biochemical manipulations used 
to elucidate the function, but physical manipulations as 
well.  Thus, there is a considerable need to have an 
integrated physical-biochemical model of a cilium and its 
function.  The emphasis of this paper will be to firstly, 
provide a mechanistic picture of the cilium and its 
environment because the biological community is perhaps 
less aware of this type of model development, and second, 
to point the way towards future experiments that will 
elucidate the role of the cilium in organ and organism level 
signaling and regulation. 

2. INTRODUCTION 
 
 Just as there are ‘mouse models’ for disease and 
in vitro models for biochemical processes, and in as much 
as cell cultures are model systems to study physiological 
processes, mathematical models of real objects simplify 
and omit extraneous details.  What is important when 
selecting a particular model is to retain some essential 
component of the problem of interest. In this spirit, the bulk 
of this paper will cover ductal flow over primary 
(nonmotile) cilia as this represents from a physical point of 
view the most simple relevant system while still retaining 
the essential ingredients.  We will indicate along the way 
how this simple model can be extended to other systems, 
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primarily ducts containing a brush border, a dense array of 
microvilli projecting into the lumen, which occurs in the 
proximal tubule segment of a nephron, or ducts containing 
motile cilia. Specifically, we are concerned with renal 
tubules (proximal tubule, loop of Henle, and collecting 
duct), but our results are also relevant to other, similar, 
ductal systems. 
 
 Our hypothesis is simply this: fluid flow bends 
the cilium, converting kinetic energy of the fluid into 
elastic energy, which drives strain-sensitive proteins to 
initiate or participate in flow-dependant signaling and 
regulatory processes.   It is important to note that this 
hypothesis has several testable predictions, some of which 
have already been confirmed by experiment.  Some specific 
predictions of this hypothesis are that sensitivity to flow 
depends on ciliary length, the greatest strain energy due to 
bending of a cilium is located at its base, and the 
orientation of tensile and compressive strain in the cilium is 
determined by the direction of the fluid flow. Biological 
sequella of these predictions may be that ciliary length is 
regulated, that relevant strain-sensitive proteins will be 
localized to the base of the cilium, and that spatially 
directed cell division and growth can occur in proliferating 
epithelia. 
 
 We also note that ciliated ducts typically connect 
non-ciliated structures. In the kidney, a duct connects the 
glomerulus to the renal pelvis.  In the digestive system, the 
biliary ducts connect the liver and duodenum.  The 
pancreatic ducts connect the acinii to the small intestine.  
Thus, our hypothesis can also imply that sensory cilia are 
used to monitor total amounts of a secreted substance.  That 
is, if the concentration of a solute and fluid flow rate are 
sensed and integrated by cells, the total amount of a 
substance secreted by an upstream structure can 
conceivably be calculated. 
 
 In order to prove or disprove our hypothesis, we 
require physical information about the fluid environment 
around a cilium and information about the mechanical 
response of the cilium to the fluid action.  Additionally, we 
require information about biochemical processes initiated 
upon (physical) stimulation of the cilium.  Some of this 
information can be generated a priori from established 
physical law, while the remainder requires data from 
physiological and genetic experiments.  Consequently, we 
first derive some simple models for the in vivo mechanical 
environment of the cilium (section 3), next, in vitro 
approximations (section 4), and finally, we describe the 
effect mechanical forces have on the cilium. 
 
 We model the cilium as a cylindrical rod of 
radius ‘a’ capped by a hemisphere. As fluid with dynamic 
viscosity µ (or kinematic viscosity ν = µ/ρ) and velocity U 
moves past a cilium, a drag force develops which can bend 
the cilium. For a half-sphere of diameter ‘2a’, this drag 
force (f) is simply f = 3πµaU.  Calculating the drag force 
per unit length against a cylinder of diameter ‘2a’ is 
considerably more complex, but was solved by Oseen (1) 
for low Reynolds number (see below for the meaning of 
this number) and given by: 

Eq.1    
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where γ is Euler’s constant (0.577…) and Re = Reynolds 
number, given as Re = 2aU/ν.  (An alternative equivalent 
formulation of Eq 1 is 
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24 2

Re(2.002 ln Re )
U af πρ

=
−

 used by 

Schwartz et al, (60). 
 
The total drag force on a cilium is then given schematically 
by (2):   
 
Eq. 2    
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Where ‘s’ is the coordinate along the axoneme of the cilium 
and L = cilium height (see Section 5 of this paper for more 
detail). 
 
 Thus, in order to calculate the force incident on a 
cilium and the response of a cilium to this force, we must 
first know the fluid velocity as a function of height along 
the cilium, which we calculate next. 
 
3. FLOW THROUGH DUCTS 
 
 The central thesis is that the cilium is used by the 
cell to gain information about the fluid flow through a duct. 
Proof or disproof of this thesis requires information about 
the flow profile. We develop a mathematical description for 
slow flow through long cylindrical tubes which may 
contain protrusions (cilia, brush border) into the lumen. 
There are several ciliated ductal systems that could be 
described by this simple model: the renal ducts, the biliary 
ducts, pancreatic ducts, and the developing bronchi and 
oviducts.  For all of these tubes, their length is much longer 
than their diameter, they have long straight sections and 
their diameter is nearly constant over a considerable length.  
Thus, we idealize a real tubule by an artificial tubule which 
is strictly uniform, straight, and perfectly rigid.  Later, we 
will discuss modifications to the model to more accurately 
mirror a real tubule.  We note in passing that the mature 
airway fails to meet any of the simple approximations we 
make here, and so falls outside of the scope of this 
manuscript. 
 
3.1. Coordinate systems 

The coordinate system for tube flow is defined in 
Figure 1. 
 
 We approximate the luminal space within a duct 
as an infinitely long uniform cylinder of radius ‘R’. These 
geometrical assumptions simplify the mathematics. Failure 
to reconcile theory with experiment could be due to 
instability of the exact mathematical solution to small 
perturbations that can occur in real systems.  This point will 
be revisited periodically throughout the paper.      
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Figure 1. Coordinate systems for a cylindrical tubule with 
radius ‘R’.  The fluid flow is in the ‘z’ direction (axial).  
Ciliated cells are taken to lie at the outer perimeter of the 
cylinder (r = R) with the cilia growing along the ‘r’ axis.  
Thus, the axoneme of cilia are normal to the flow direction. 
 
 We first begin with a general mathematical 
model for fluid flow, because the fluid velocity gives us 
information about the physical environment of the cilium 
and how it is acted upon.  We initially make no 
assumptions here about the type of fluid, how it is 
constrained, or how it moves. First consider Newton’s 
second law generalized to a continuum, known as Cauchy’s 
first law of motion: 
 

Eq. 3. b
DU T F
Dt

ρ = ∇ +         

 
Where ρ is the density of the medium, U the velocity, D/Dt 

is the material derivative (
D U
Dt t

∂
= + ∇

∂
), and T the 

stress tensor. We have implicitly set the density to be 
constant. Fb is called a ‘body force’ term and can be used to 
introduce gravity, centripetal force, friction, or a force 
applied from a motile cilium onto the fluid. The intuitive 
meaning of the material derivative can be explained 

(fatuously) by the following device: 
[the weather]D

Dt
 

means the weather can change in two ways: either by 

sitting still and waiting (
[the weather]

t
∂

∂
) or by getting on 

an airplane and going somewhere else 
( [the weather]U ∇ ).  For steady state conditions, 

0U
t

∂
=

∂
.  The term ( )U U∇  is nonlinear (U appears 

twice) and for sufficiently slow flow (Reynolds number << 
1), we can neglect this term. 
 
For simple fluids (constant viscosity at a given temperature 
regardless of the rate of shear), the divergence of the stress 
tensor is given as 
 
Eq. 4. 2T P Uµ∇ = −∇ + ∇ , 
 
and Cauchy’s first law is then referred to as the Navier-
Stokes system of equations.   For our geometries above, we 
are most interested in the axial component of flow for two 
reasons.  First, the axial flow is likely to be much larger 

than the radial flow.  Second, the axial flow is 
perpendicular to the cilia and thus likely has a larger effect 
on the cilium.  Consequently, we can again simplify the 
equations by assuming that the fluid velocity in the axial 
direction is a function only of the radial coordinate. 
 
 We have, as a beginning point, the steady-state 
Navier-Stokes equation for the axial (z) component of the 
fluid velocity Uz: 
 

Eq. 5. 2
,0 z b z

dP U F
dz

µ= − + ∇ +  

 
To completely solve any differential equation, either the 
function (Dirichlet boundary condition) or the derivative of 
the function (Neumann boundary condition) must be 
defined on a boundary.  In fluid dynamics, perhaps the 
most important boundary condition is the no-slip condition.  
This boundary condition means that the velocity of a fluid 
layer adjacent to a solid surface is zero.  This case gives 
rise to Poiseuille flow at low Reynolds numbers and will be 
discussed first and foremost. However, the no-slip 
condition does not hold for two relevant classes of 
biological problems- wetting (a solid surface partially 
covered by a moving fluid) and permeable boundaries.  A 
simplified model that includes mass flow through the walls 
of the tube, corresponding to fluid and ion absorption will 
be presented below, while wetting is a subject beyond the 
scope of this manuscript. 
 
3.2. Poiseuille flow 
 Because Poiseuille flow is covered in many other 
publications (3), we will only present the final results in 
Table 1. To simplify equations, the subscript 'z' in Uz will 
be dropped from now on when it is clear that only this 
component of U is discussed and the relevant flow qualities 
are expressed in terms of the volumetric flow rate  

0

2 ( )*
R

VQ U r rdrπ= ∫  rather than the pressure drop, as the 

former is more amenable to experimental manipulation and 
measurement. Note that the volumetric flow rate does not 
depend on fluid density, and is linearly proportional to the 
axial pressure gradient.  The basic predictions of this model 
are the velocity profile U(r) and maximum velocity Umax, 
which can be directly measured, and the wall shear stress 
and Reynolds number, which cannot.   
 
The Reynolds number, in general, is defined as the ratio of 
inertial forces (kinetic energy) to viscous forces (dissipated 

energy) and mathematically expressed as Re l U
ν=  , 

whereby l =  a characteristic length constant and U and ν 
are as defined above (see also above the expression for the 
Reynolds number of a cylindrical projection). It has two 
important properties. On one hand, the Reynolds number 
contains information about the flow- whether the flow is 
laminar or turbulent. On the other hand, the Reynolds 
number also allows us to compare disparate systems (e.g. 
differently sized ducts, different fluid viscosities) in a 
rational manner. 
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Table 1. Characteristics of tube Poiseuille flow in terms of volumetric flow rate (QV) 
Geometry Velocity profile U(r) Maximum velocity Umax Reynolds Number Re 
Cylindrical tube ( )2 2

4

2 VQ R r
Rπ

−
 

2

2 VQ
Rπ  

4 VQ
R

ρ
π µ  

U = axial flow rate; R = tubule radius; r = radial distance from center of tube; ρ = fluid density; µ = fluid viscosity; Re = 
Reynolds number. 
 
3.3. Limitations of model description 
 Conceptually, we made much use of things being 
‘infinite’, ‘uniform’, concepts that are clearly unphysical.  The 
important questions are what does this model predict, and 
which phenomena are currently unaccounted for?  Because the 
simplified model here predicts results that are affirmed by 
experiment (for example, the volume of urine is proportional to 
proximal tubule pressure (4, 5) we argue that some essential 
physical features are already contained.  However, there are 
fundamental processes within the renal tubule that are 
unaccounted for.  Two examples are that fluid is resorbed 
through the walls of the proximal tubule (‘leaky tubules’), and  
another, that measurements have shown the pressure within 
renal tubules is subject to many external effects, including 
renal pelvic contractions (6).  As to the first, we can 
incorporate permeable tube walls into the model (7-11). 
Although the details are beyond the scope of this paper, the 
result obtained using some well-justified simplifications (10) 
results in the volume flux as a function of position along the 

tubule wall to take the form 
0( ) z

V VQ z Q e α−= , where α is 

related to the permeability of the tubule wall and 
0
VQ is the 

volumetric flux at the tubule inlet.  The volumetric flux decays 
exponentially along the length of the tubule.  
 
 Regarding the difficulty in quantitative description 
of the intratubule pressure, we can attempt to dispense with the 
problem also by working in terms of the volumetric flux. 
Although we do not include the explicit results here, the 
detailed solutions we obtain below still maintain a linear 
relationship between the pressure drop and volumetric flux.  
Consequently, when reconciling theory and experiment, one 
can simply measure the local volumetric flux and ignore the 
many processes which create a particular pressure drop. 
 
 Thus, both perturbations (leaky tubules, pelvic 
contractions) can be treated in a straightforward way by 
parameterizing the flow in terms of the local volumetric flow 
rate defined earlier. 
 
 Additionally, if one is interested comparing time-
averaged versus acute stimulation of cilia, one may inquire as 
to the effects of pulsatile versus steady flow.  In that case, one 
would allow the pressure to vary with time and then solve the 
time-dependent Navier-Stokes equations. Reasonable 
expressions can be obtained for simple time-dependent 
oscillations (12). Simple manipulations can include stepping 
type oscillations, square-wave type oscillations, having an 
oscillatory component in addition to a constant component- the 
goal being to capture essential components of pulsatile flow or 
to test the thesis of ultrafiltrate flow driven either by pelvic 
contractions or pulsatile circulation.   
 
 Micropuncture measurements of renal tubular 
flow generally present a maximum volumetric flow rate of 

 
5 nl/min per nephron, and given a luminal radius of 10 
microns, the Reynolds number for in vivo flow in a renal 
tubule can then be maximally estimated at 0.15. This 
indicates that we can safely omit the nonlinear term 
( )U U∇ . Additionally, the turns and bends in the 
nephron do not produce a perturbation to the flow pattern, 
justifying our simplification of a straight tubule.   
 
3.4. Effect of projections into lumen 
 When considering the effect of cilia or brush 
border on flow, there are two possible approaches.  On one 
hand, one can assume the projections do not perturb the 
velocity profile and simply calculate the drag force along a 
single projection (Eq. 2.).  On the other, one could treat the 
projections as an ‘effective porous medium’ (13, 14) that 
results in an altered flow profile.  The first is more 
applicable for a sparse array of projections (e.g. primary 
cilia in tubules), while the second is more applicable for a 
dense array, such as the brush border.  
 
 If we consider the projections to be an effective 
medium, one simply adds a “Darcy term” (15) to the 
Navier-Stokes equations, and considers the effect on the 
fluid velocity to be formally identical to a frictional force 
with a constant of proportionality ‘k’ which has units of 
viscosity/area. The identity of 'k' is currently unknown, but 
will be calculated later. 
 

Eq. 6. 20 dP U kU
dz

µ= − + ∇ − . 

 
Again, for steady state flow through a cylindrical tube, 
assuming the velocity is only along the tubule axis, one 
obtains the differential equation (the Brinkman equation): 
 
Eq. 7 10 P Ur kU

z r r r
µ∂  ∂ ∂  = − + −  ∂ ∂ ∂  

. 

 
The solution to this equation is more complex than simple 
Poiseuille flow, but is still easily solved: 
 
Eq. 8

1 0 2 0
1( ) k k dPU r C I r C K r
k dzµ µ

   
= + −      

     
 

whereby Cn = constants of integration, I0 and K0 = modified 
Bessel function of the first and second kind, respectively, 
of order '0' and other symbols are as defined previously. 
 
 Finally, we match the effective medium solution 
above (Darcy flow) to the unperturbed Poiseuille flow 
solution at the tip of the brush border.  That is, for R = 
tubule radius, δ = microvillus length, and r = radial 
coordinate, Poiseuille flow holds from the center of the 
tubule (r = 0) to the top of the brush border (r = R-δ), and 
Brinkman or Darcy flow holds in the region from the brush 
border to the wall (r = R).   
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Figure 2. Change of flow profile due to obstruction by 
brush borders of height (δ), varying between 0 (no 
obstruction) and 5 µm in increments of 0.5 µm. The 
velocity distribution U(r) has been calculated for a constant 
volumetric flux of 10 nl/min within an obstructed 10 µm 
diameter tubule and a frictional constant ‘k’ numerically 
equal to the fluid viscosity.   
 
 

 
 
Figure 3. Change of flow profile due to Darcy frictional 
resistance 'k', varying between 0 (pure Poiseuille flow) and 
10 cP/µm2 in increments of 1 cP/µm2.  The velocity 
distribution U(r) has been calculated for a constant 
volumetric flux of 10 nl/min within an 10 µm diameter 
tubule obstructed by brush borders with a height of δ = 2 
µm.  The inset is the region near the wall, where the brush 
borders are.  
 

Eq. 9a Poiseuille region: 
1

2
1 1

1

1( )
4

UdP r
dz r r r

dPU r r C
dz

µ

µ

  ∂ ∂  =   ∂ ∂   

 = +

 

Eq. 9b Brinkmann region:   
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 Because of the mathematical complexity, this 
“matched” solution must be presented in a separate paper. 

We have solved this system of equations and provide a few 
plots of the complete interior solution for various values of 
the parameters ‘δ’ and ‘k’.    
 
 Figure 2 shows the velocity profile for various 
values of the length of microvilli or cilia (δ) with the 
friction coefficient ‘k’ set numerically equal to the 
viscosity.  The plot is with QV held constant.  What is seen 
is that the velocity in the center of the tubule grows 
extremely fast, for even small changes in the brush border 
height.  Thus, it is possible that the brush border height 
could be controlled by a flow sensor that protrudes further 
into the central region of the tubule- for example, the 
primary cilium. 
 
 Figure 3 shows the velocity profile for various 
values of the friction coellecient 'k' with δ held constant at 
2 µm, keeping also the volume flow QV constant.  It is seen 
that the peak velocity grows while the velocity within the 
Brinkman region decreases as ‘k’ increases. A detailed 
view of the Brinkmann region is shown in the inset.  This 
indicates that cellular regulation of the value of ‘k’ will 
have effects on flow. 
 
 For motile cilia, the cilium exerts a force on the 
fluid, which induces a flow.  Conceptually, we can simply 
allow the parameter ‘k’ in Eq. 6 to become negative.  
Dillon and Fauci (16) present a model where Fb is 
determined from the structure of the axoneme and 
movement of motor proteins.  Allowing ‘k’ to assume 
negative values is known as  “negative friction” (17), and 
so our approach can be considered a macroscopic 
description of the microscopic model presented by Dillon 
and Fauci. 
 
 Although not widely known, negative friction 
systems are well-characterized. The system must be 
coupled to a reservoir of energy, and some experimental 
realizations do exist.  If we hypothesize that a possible 
energy reservoir is due to motile cilia (airway cilia, oviduct, 
etc) imparting motion to the fluid, those particular ducts 
could potentially be modeled in terms of negative friction. 
We include a plot (Figure 4) showing the effect of negative 
friction (negative values of k), with δ = 2 µm and 
volumetric flow held constant.  It should be pointed out that 
the solution rapidly becomes unstable even for moderate 
values of ‘k’, and so it is not clear if this implies the action 
of the motile cilia are tightly regulated, or if the theoretical 
approach is simply not applicable.  In any case, the effect 
of ‘negative friction’ is to increase the velocity near the 
tubule wall and decrease the centerline velocity. 
 
3.5. Evaluation of ‘k’ 
 We have left ‘k’ undefined up until now for 
reasons of clarity.  Now we will present a value for ‘k’ 
based on the area fraction of cylindrical projections. We 
will present values of ‘k’ for hexagonal arrays of 
projections and apply the theory to measured data as well. 
 
 Sangani and colleagues (18, 19) have studied 
viscous flow through hexagonal and random arrays of 
infinite cylinders. They derived a relationship between the



Mechanical stimulation of primary cilia 

1670 

 
 
Figure 4. Change of flow profile due to negative values of 
the Darcy frictional resistance 'k', which occurs when 
motile cilia impart velocity to the fluid.  The velocity 
distribution U(r) has been calculated for a constant 
volumetric flux of 10 nl/min within an 10 µm diameter 
tubule obstructed by brush borders with a height of δ = 2 
µm. 'k' has been varied from -1 to 1 cP/µm2 in steps of 
0.25. 
 

 
 
Figure 5. Geometry of obstructed tubule flow.  The view is 
along the radial axis of the tubule, along the axoneme of the 
projections (cilia, microvilli).  Flow is perpendicular to the 
axonemes.  The projections are arranged in a hexagonal 
crystalline array, and a unit cell is highlighted. a = radius of 
cylindrical projection, 2d = distance between projections, θ 
= smallest angle of the triangle formed by diagonal and 
sides of a unit cell. 
 
average pressure drop (equivalently, the average velocity) 
per unit length (transverse to the projection axes) and the 
resultant drag force per unit length (along the projection 
axis) exerted on a single cylinder.  Figure 5 shows the 
geometry for a hexagonal array of cylinders based on a unit 
cell with cylinder radius of ‘a’ and cylinder center-to-center 
distance of 2d. Thus, in order to calculate the drag force, 
the center-to-center distance between projections must be 
measured or calculated.   
 
 One may reasonably ask why this model should 
be applied to a proximal tubule. The answer is that an 
infinite array of cylinders is a reasonable first 
approximation to the brush border elements: microvilli 
have an aspect ratio (length/radius) of approximately 50. 
The fact that the tubule velocity varies along the height of 
the brush border does not disqualify this model either, 
because ‘k’ is independent of fluid velocity. 

 
 Sangani et. al.  begin with the average pressure 
drop due to the cylinder within a unit cell  
 

Eq. 10     
dP nf
dz A

−
= ,  

 
where n is the number of cylinders per unit cell, ‘f’ the drag 
force per unit length, and A the area of the unit cell. 
Darcy’s law (15) is an empirical law for creeping flow 
through a porous medium, and is expressed as: 
 

Eq. 11.
dP U
dz K

µ
= −  

 
where K is the permeability of the porous medium.  

Dimensional analysis shows that K
k
µ

= , and so Darcy’s 

law can also be written as  dP kU
dz

= − , which is identical to 

what we have written above in Eq.6 - recall for Darcy flow, 
the viscous term ( 2U∇ ) is very small and can be 
neglected. 
 

Equating the two expressions for 
dP
dz

 gives 
UK A

nf
µ

=  

or 
1k nf

U Aµ µ
= .  

 
 For a hexagonal array, 1

2
k f

U Aµ µ
=  , whereby A 

refers to the area of a unit cell as shown in Figure 5 and 
which includes only half of a cylinder cross-sectional area.  
The permeability 'K' was computed for hexagonal (18) and 
random (19) arrays as a function of area fraction occupied 
by cylinders 2n a  = 

A
πφ .  Experimentally, what is measured 

is not the number of projections per unit cell ’n’ but rather 
the projections per unit area ξ. If the projections are 
arranged as a regular array, each projection has an assigned 
area of 1/ξ. If they are arranged as regular hexagons, the 
center-to-center distance 2d is related to other parameters 

as follows: 2 21 6 tan 2 3
6

d dπ
ξ

 = = 
 

 ,  the area fraction 

2

22 3
a
d

πφ = , and 2

k f
U a

φ
µ µ π

= . We may now 

substitute the various derived expressions for 
f
Uµ

 to 

obtain values for k.  For the hexagonal array the maximal 

area fraction φmax is 0.9069
2 3
π

= , and the scaled 

area fraction is χ = φ/φmax. 
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Table 2. Values for Darcy’s resistance term ‘k’ for tubules partially occluded by a brush border 
Experimental condition MV density [# per µm2] 2d  [nm] φ χ f/µU [dimensionless] k  [cP/µm2] 
Low flow 49.9 152 0.318 0.350 140 4200 
control 42.5 164 0.273 0.301 109 2800 
High flow 35.5 180 0.226 0.249 84 1800 

Microvilli. Microvillus (MV) density obtained from Maunsbach et. al. (20). 2d = average distance between neighboring 
microvilli; φ = projected area fraction occupied by microvilli; χ = scaled area fraction occupied by microvilli (see text); f = force 
per unit length; µ = fluid viscosity; U = axial velocity. The radius of microvilli is taken as 45 nm. 
 
We have the following cases: 
 
Dilute array: 
Eq. 12a.   

 
( )1/ 2 2

4
0.745 0.25

f
U Ln

π
µ χ χ χ−

=
− + −

 

 
Concentrated array: 
 
Eq. 12b.   

 ( ) 5 / 21/ 227 1
4 2

f
U

π χ
µ

−
= −  

 
 “dilute” means that 0.2χ < , while “concentrated” holds 

for 0.3χ > .   
 
For tubules with only primary cilia (r=0.1 µm, d=10 µm), χ 

=  

2
40.1 1*10

102 3
π −  = 

 
 giving 

f
Uµ

 ~ 3 and k ~ 

5*10-3 cP/µm2.  Thus in the Loop of Henle and collecting 
duct, we have essentially undisturbed Poiseuille flow, as we 
expect. 
 
 For the brush border of the proximal tubule, k can 
be estimated from the density of microvilli and their radii. 
Table 2 presents k values based on the data by Maunsbach 
et. al. (20). As expected, the Darcy resistance term ‘k’ is 
relatively high with values greater than 1,000 cP/�m2. 
Such values for ‘k’ show that the brush border exerts an 
appreciable effect on the flow distribution (refer to Figure 
3).  Interestingly, the k value is higher at lower flow rates, 
but this could be an in-vitro artifact due to the experimental 
conditions of perfused excised tubules: As the tubule wall 
is compliant, isolated, perfused tubules can expand with 
increasing pressure and flow rate, while in vivo, the tubules 
are constrained against expansion by other surrounding 
tubules. The flow velocities in the unobstructed portion of 
the lumen are significantly higher than if the brush border 
was not present. 
 
3.6. Further developments in the model 
 One approach is to simply add complexity to this 
model as desired.  For example, as the microvilli flex, the 
height of the Darcy layer changes.  We may choose to 
model the entire tubule, and perhaps digitize a casting of an 
excised tubule to obtain the shape of the lumen.  We may 
add the effects of fluid resorption, wall compliance, or any 
number of additional refinements.  The relevant issue is the 
accuracy of predictions made by any model, and if adding 
complexity gains an appreciable increase in predictive power.  

 
 Conceptually however, some outstanding issues 
remain which should be resolved prior to increasing the 
model complexity.  As mentioned above, micropuncture 
data on the intratubule pressure is difficult to interpret and 
reconcile, given the many biological processes that 
modulate the hydraulic pressure within a nephron (4-6, 21). 
Also, there is no data on the intratubule pressure or flow 
rates along interior portions of the nephron- the loop of 
Henle, for example.  Thus at present, there is at best an 
incomplete understanding of the in vivo mechanical 
environment of the primary cilium. 
 
 Biology and biochemistry are also required to 
inform the further development of the physical model. As 
examples, it would be interesting to determine if there is a 
definite ratio between microvilli and ciliary length in the 
proximal tubule. An ultrastructural study could check to see 
if there is a change in cilium length with severe tubule 
obstruction.  Measurements of fluid velocity in the oviduct 
could determine if and how much motile cilia contribute to 
the fluid movement. The collecting duct system could be 
artificially occluded, and upstream regulators of water and 
salt transport could be analyzed. 
 
 It is important to keep in mind, however, that 
determination of the flow rate is not the primary goal here.  
Rather, the flow rate determines the force incident on a 
cilium, and determination (and manipulation) of this force 
is the primary goal. 
 
 Let us be clear about what we have done; derived 
a simple model for the in vivo flow through a tubule 
containing cilia and possibly a brush border.  We have done 
this simply because experimental manipulations of cilia 
need to be placed in the context of physiological 
conditions, and this requires a rational framework to 
compare disparate measurements. 
 
4. IN VITRO APPROXIMATIONS FOR U(r) 
 
 The goal of the above section was to develop a 
model for the in vivo flow conditions and in vivo forces 
incident on a cilium. We now turn to in vitro experimental 
approximations. 
 
4.1. Flow chamber 
 Perhaps the most obvious method to approximate 
in vivo conditions is to culture the cells in a flow chamber 
(22-25), or even to perfuse isolated tubules (26-28). In that 
case, the sections above still apply and the experimenter 
can control QV to generate a wide range of mechanical 
forces.  The current experimental difficulty is culturing 
polarized cells (for example, epithelial cells), in a flow 
chamber containing cells on a permeable support. There 
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does not yet appear to be a commercial solution to this 
problem. 
 
4.2. Body forces on a cilium  
Going back to Cauchy’s first law (Eq. 

3)
b

DU T F
Dt

ρ = ∇ +
, we previously mentioned that Fb is 

a ‘body force’ term and used friction (-kU) as a body force.  
We must be careful to distinguish between a static 
equilibrium achieved by application of a (steady) body 
force and fluid flow created by a varying body force, which 
then acts on the cilium via drag.  Here, we are concerned 
with static configurations- equilibrium fluid shape, static 
cilium shape, and it is important to realize under what 
experimental conditions this occurs. 
 
 Another force is buoyancy, which acts to create a 
net force between regions of different density Fb = ∆ρg, 
where ∆ρ is the density difference between the cilium and 
the surrounding fluid and ‘g’ the gravitational acceleration.  
Gravitational effects on cell function are currently being 
studied in the context of lunar and interplanetary travel, 
especially in regards to bone remodeling (29). This 
problem is complicated by fluid flow that results from 
movement- it is not clear if the cells are sensing gravity per 
se, or the resultant fluid flow. 
 
 However, gravity is not the only way to exert a 
force via density differences.  We may attempt to mimic 
the drag force produced by flow by applying an 
acceleration to the cell directly. Any uniform force will act 
differently on regions of different density, and so the net 
force caused by rotation, circular motion or vibration could 
all accelerate a cilium with respect to the surrounding fluid.  
For example, placing cells on a turntable or centrifuge will 
induce a net force of ∆ρω2r, where r is the distance to the 
center of rotation and ω the rotation frequency.  This force 
is directed radially, and so depending on the orientation of 
the cells, the force will act either perpendicular to the 
cilium or along the axoneme axis. Because the cilium is 
anchored at the basal end, one can easily picture that the 
cilia experience an ‘outwardly’ directed force and achieve a 
static, bent configuration even in the absence of fluid flow. 
 
 Similar expressions can be written down for 
linear vibrations of amplitude A and frequency ω: Fb(t) = 
A∆ρω2sin(ωt), or A∆ρω2/2 for the time-averaged 
expression.  Again, depending on the orientation of the 
oscillation with respect to gravity, the vibration can act in 
concert with or perpendicular to gravity, and can act 
transverse or axially, depending on the orientation of the 
cilium. 
 
 For orbital motion with a throw distance R and 
frequency ω, the force is written as 

( ) ( )2 ˆ ˆ( ) cos sinF t R x t y tρω ω ω= ∆ +   .  Averaged 

over time, this simply equal to Fb = ∆ρω2R, the same as 
centripetal force.  The primary difference is that the 
centripetal force varies with distance from the center of 
rotation, while for orbital motion, the force is constant.  We 

have shown (2) that orbital motion induces fluid flow 
through interaction of the fluid with the rigid walls of a 
partially-filled culture container.   
 
 Estimating the cilium contents as 20% protein 
(1.4 g/cm3), 5% carbohydrates (1.6 g/cm3), 75% 
lipids/water (1.0 g/cm3) gives an averaged uniform cilium 
density = 1.11 g/cm3.   Because of the small size and 
density difference between cilium and fluid, it is expected 
that in vivo, body forces are much smaller than fluid drag 
forces.  What emerges are two limiting cases for 
experimental conditions: i) a steady acceleration is applied 
(e.g. centrifugation) which eliminates flow effects while 
applying a meaningful force to the cilium due to the density 
difference between the cilium and fluid; and ii) a small 
time-varying acceleration is applied, resulting in a time-
varying induced fluid flow which then exerts drag onto the 
cilium. Using the in vivo flow conditions calculated above, 
experimental conditions can be tuned to match a range of 
expected incident forces. 
 
 Finally, it is possible to apply a force to a cilium 
by direct contact- for example, by application of a 
microneedle to mechanically deflect the cilium (23, 24, 30, 
31). The final deformation state of the cilium depends on 
both the point of contact and the amount of force 
transmitted.  Thus, it is expected that accurate and 
repeatable results will be obtained only if those particular 
details are unimportant. 
 
 Now if a force acts on a cilium and it moves 
through the surrounding fluid, there will be, by necessity, a 
flow induced by the motion of the cilium which then acts 
on either neighboring cilia (hydrodynamic coupling), or 
back on the cilium itself via viscous drag.  This problem 
will not be addressed here. 
 
4.3. Optical tweezer  
 The development of optical tweezers as a tool to 
manipulate microscopic particles began in the early 1970’s 
with the use of a focused laser beam to levitate transparent 
spheres (32-35).  Optical tweezers found their first 
application within the field of biology to manipulate single 
cells (36, 37) as well as subcellular structures (38).  Laser 
tweezers have found a use in biology chiefly because 
optical trapping is a non-contact method of exerting a force 
on live cells and the magnitude of force applied (fN to 
~100 pN) (39) is appropriate for the cellular and subcellular 
scale. 
 
 Related to optical tweezers are magnetic 
tweezers, which use a magnetic field and paramagnetic 
beads to exert forces.  Magnetic tweezers require lower 
energy levels to operate, and photodamage is not a 
problem. In addition, the force can be applied in a time-
dependent way that is much more general than typically 
found with laser tweezers. However, paramagnetic beads 
must be used to transduce a force, and the spatial precision 
of magnetic tweezers is lower than optical tweezers. In both 
cases, use of functionalized beads has allowed investigation 
of a variety of biological phenomena (40-42). 
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4.3.1. Principles of laser tweezer operation 
 The theory of optical tweezers has been 
extensively published in the literature (43-45), and so a 
detailed derivation will not be presented here. Optical 
tweezers work by creating a potential well due to the spatial 
gradient of the electromagnetic field.  While the specific 
forces involved are well understood, their analytic 
expression remains problematic.  To overcome the 
restrictions involved, it is possible to instead consider 
optical trapping forces derived from Mie scattering theory 
(46).  The series expansions for the electric field E and 
magnetic field H are standard Mie calculations, and solved 
in the typical way.  The key is then to provide a correct 
formulation of the incident beam.   This is not trivial, but 
significant progress has recently been made (47-50), with 
spherical aberration (48, 49) being a notable component of 
the formulation. 
 
 Consequently, laser tweezers must be calibrated 
in some way, much like a glass microneedle is calibrated.  
When trapping a cilium or even a microsphere, it is not 
realistic to calculate the applied force ab inito. It should be 
noted that the ability to trap particles does not rely on the 
absorption of light- the force is created by scattering the 
incident field.  This is the origin of the theoretical problem, 
as the scattering of light by particles of arbitrary shape and 
composition is not, in general, analytically solvable. 
 
4.3.2. Biological considerations 
 Other than photodamage concerns (51, 52), 
which relates to the laser wavelength and maximal power, 
the main choice faced by an experimenter is on what to 
apply a force to- one may either trap a cilium directly or 
instead, trap a microsphere that is bound to a cilium via 
some functionalization of the microsphere surface.  
 
4.3.3. Trap strength measurement 
 Properly speaking, the laser tweezer applies a 
restoring force only to a particle that is displaced from the 
center of the trap.  Thus, the correct way to quantify the 
trap is by a spring constant (53), or since the particle is 
confined in three dimensions rather than one, some 
generalization of a spring constant.  There are two 
commonly accepted methods to simplify the 
characterization of a laser trap.  One case uses a known 
particle, a known fluid, and a simple measurement of the 
trap geometry, (54, 55) while the other tracks a trapped 
particle and compares the behavior of the particle with one 
that experiences Brownian motion. 
 
4.4. Summary of in vivo and in vitro models 
 We have so far operated on the assumption that 
ciliary-initiated signaling processes could occur without a 
specific biochemical initiator.  For example, ligand-
receptor binding events are not required to initiate a 
signaling event. It is not clear that any experiment has been 
performed to separate the putative mechanotransduction 
mechanism from a possible chemotransduction mechanism.  
Additionally, mechanotransduction experiments typically 
compare a flow-mediated response with a no-flow 
condition; this is very different from comparing cellular 

responses to two different flow conditions. Finally, 
experiments to date have not consistently separated force 
effects on a cilium from force effects on the cytoskeleton or 
apical membrane.  Thus, isolating the seat of 
mechanotransduction to the cilium has been problematic. 
 
 We have endeavored here to model physiological 
flow conditions in tubules.  The flow contains information 
about organ and organism function (or dysfunction), and so 
the hypothesis that the flow is monitored to regulate 
function and health is reasonable.  Flow can be monitored 
either chemically or mechanically, and it is reasonable to 
assume that a sophisticated regulatory system would 
monitor both.  The next question to be resolved is how the 
flow interacts with the cilium, which is the subject to which 
we now turn. 
 
5. BENDING OF A CILIUM  
 
 Some basic questions regarding cilia-mediated 
mechanotransduction remain.  First, is the process static 
(i.e. dependent on the shape of the cilium) or dynamic 
(depending on the rate of change)? Because flow in the 
renal tubule is at least quasi-static, we hypothesize that 
mechanotransduction can occur in a static situation. It 
should be noted that under this hypothesis, the deformed 
shape of the cilium is not important per se, but rather the 
strain energy contained in the cilium as a result of the 
deformation.  Thus, the kinetic energy contained in the 
fluid flow is transduced, via the drag, to strain energy in the 
cilium via compressive and tensile strain. This strain energy 
could then be transduced, for example, via strain-sensitive 
membrane proteins into a biological function, such as 
transepithelial sodium current (2, 56), protein cleavage and 
translocation (56) at the cellular level, or control of cell 
orientation (57) during cell division at the organ level. 
 
 In this section, we will model bending of cilia by 
fluid flow and the associated strain energy. The modeling is 
based on experimental data of cilium length and fluid 
velocity at some point along the cilium length, which is 
necessary to calculate the drag force, as well as measured 
ciliary deflections for these conditions. The ciliary 
deflection by a known drag allows one to calculate the 
bending rigidity of cilia. Only small deflections are 
considered because then the fluid drag force remaining 
perpendicular to the cilium axis can be approximated. 
Again, the modeling is based on the assumption that the 
cilium can be described as a circular cylinder of uniform 
diameter and mechanical properties, i.e., that it is 
essentially homogeneous in composition. Comparison with 
previous work is problematic for two reasons: First, a wide 
range of values have been presented for the bending 
(flexural) rigidity of cilia (58-61). Second, previous work 
has omitted the drag contribution from the endcap – 
whether a simple hemisphere or large “balloon” protrusion. 
This contribution constitutes close to 50% of the total drag 
force on a cilium (2). Our modeling assumes 31 pN*µm2 
for the ciliary bending rigidity, a value supported by more 
data than others from the previous literature. 
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Figure 6. Schematic of cilium deformation geometry. The 
coordinate ‘s’ runs along the axoneme, and the projection 
of cilium length ‘dr’ transverse to the flow direction in 
terms of the local slope is given. 
 
 The description of ciliary bending requires 
calculations of degree of bending and force in terms of the 
coordinate ‘s’ that runs along the axoneme rather than the 
radial (laboratory) coordinate ‘r’. The bending of a slender 
cylindrical rod under the influence of a distributed force in 
the z-direction is given for the steady-state by Segel (3) as 
follows: 
 

Eq. 13  
4

4 ( )zEI f s
s

∂
=

∂
 

where EI describes a mechanical property of the cilium and 
is referred to as ‘flexural rigidity’ with units of 
‘force*area’. EI is the product of ‘E’, Young’s modulus of 
the cilium (rod), and ‘I’, the second moment of inertia.  
 
‘I’ can be calculated for a cylinder of radius ‘a’: 
 
 

Eq. 14 4

4
I aπ

=  

 
The contribution from the end cap is treated as a 
concentrated load at the free end of the cilium. The drag 
force ( )f s  for  Poiseuille flow in terms of the coordinate 
‘s’ is given by Eq. 1. 
 
 The structure of a cilium and basal body justifies 
using the boundary conditions for a cantilevered rod with a 
built-in end when solving Eq. 13. There is no analytical 
solution for Eq. 13 using Eq. 1, but the problem can be 
readily solved numerically. A trickier problem is properly 
calculating U(s), given that the fluid velocity is specified 
above in terms of the laboratory coordinate ‘r’. In order to 

do so, one must convert the deformed coordinate back to 
the laboratory coordinate. Figure 6 shows the geometry of 
the problem. The conversion is accomplished by the 
transformation: 
 

Eq. 15a
0

( ) cos arcsin
L dzr s ds

ds
  =     

∫  

 
which is intrinsically nonlinear.  It is important to 
remember that for small deflections, ‘r’ essentially 
coincides with’s’.  What we have done is to linearize the 
problem by considering small deflections (ratio of tip 
deflection to cilium length is less than 0.4) and considering 
only the component of the drag force acting transverse to 
the axoneme.  Note that our solution is slightly different 
from that used Schwartz et. al. (60). Our approximation 
changes Eq 15a slightly, to 
 

Eq 15b
0

( ) cos arctan
L dzr s ds

dr
  =     

∫  

 
And we linearly approximate the function cos(arctan (x)) 
by (1-0.3*x), which is reasonably valid for slope values 
less than 2.   Deformation of the cilium by both a 
distributed drag force and concentrated load from the 
endcap is thus approximated by the following system of 
equations: 
 

Eq. 16a
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Eq. 16b.
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Eq. 16c
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Eq 16e
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 Figure 7 shows modeling results based on the 
above equations. Specifically, ciliary deflections were 
calculated for different tubule diameters when the 
volumetric flow and cilium length were held constant. The 
deflection is significantly greater with decreasing tubule 
diameter due to increased flow velocity. This result 
suggests that ciliary deflection could play a role in 
feedback mechanisms that regulate tubule diameter relative 
to volume flow, e.g., during development. 
 
 Figure 8 illustrates the effect of ciliary length on 
bending at constant flow and demonstrates that the degree 
of bending increases significantly with length. This is an 
important result because ciliary length can be biologically 
regulated and hence the sensitivity to bending adjusted. 
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Figure 7. Effect of tubule diameter on deformation of a 3 
µm long cilium.  Shown are the equilibrium shapes of a 
cilium immersed in Poiseuille flow at constant volume flow 
(45 nl/min), but different tubules ranging in diameter from 
16 to 24 µm. Small changes in the diameter of the tubule 
(or velocity within the tubule) result in large changes in the 
cilium deflection.  The flexural rigidity of the cilium is 
taken to be 31 pN*µm2. 
 

 
 
Figure 8. Effect of cilium length on cilium deflection.  The 
volumetric flux is held constant at 45 nl/min, the tubule 
diameter held constant at 20 µm, and the cilium length is 
varied between 2 and 3.5 µm.  Small changes in the length 
of the cilium result in large changes in the cilium 
deflection. The flexural rigidity of the cilium is taken to be 
31 pN*µm2. 
 
 The curvature of a bent cilium indicates strain on 
one side and compression of the other. The strain energy is 
proportional to the curvature, i.e., the square of the second 
derivative. The strain energy per unit cilium length (E ) is 
given by: 
 

Eq. 18  
22

2

1
2

zEI
r

 ∂
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 Calculations of the strain energy for the 
conditions of Fig.8 are shown in Figure 9. They 
demonstrate that, even in the case of slow flows, the strain 
energy density is highest at the basal end of cilia. In other 
words, the strain energy resulting from fluid drag is 
localized at the ciliary base, even though the applied force 

is distributed along the entire length of the cilium with a 
major contribution by the free endcap, where fluid velocity 
is highest.  The plotted strain energy represents an upper 
limit of what is available for strain-sensitive proteins. 
Interestingly, the ciliary location of the proteins polycystin-
1 (22), polycystin-2 (62), and P100 (56) are predominantly 
at the base or basal body. Polycystin-1 and -2 form a 
complex and defects in either protein are associated with  
polycystic kidney disease (63).Based on the coincidence of 
the strain distribution and protein location in cilia, a logical 
hypothesis is that polycystins, at least when they exist as 
complex, are strain-sensitive and mediate the sensation of 
fluid flow to the cell. Sensitivity of such a flow sensor 
could be adjusted by altering ciliary length, as discussed 
above. 
 
 Next, we include the effect of a brush border on 
ciliary bending in our modeling. The simultaneous presence 
of a brush border and cilium represents a situation 
encountered in the proximal tubule.  In Figure 3, the 
velocity profile was modeled for a tubule partially occluded 
by brush border. The cross section is divided into a central, 
unobstructed Poiseuille region and a peripheral Brinkmann 
region containing the brush border, whereby the flow 
profile is described by Eqs. 8a plus 8b. Figure 10a 
illustrates the velocity profile for realistic parameters of 
proximal tubules with or without a brush border. Figure 
10b illustrates the corresponding deformation profile of 
cilia that rise from 1 to 6 µm above the brush border. 
Interestingly, short cilia are bent less and long cilia more in 
presence of a brush border because of the altered flow 
profile with faster central flow. For the conditions of Figure 
10, reversal from decreased to increased bending occurs for 
cilia between 4 and 5 µm.  This result again suggests that 
cells could regulate flow sensitivity of cilia by adjusting 
cilium length. 
 
 Schwartz et al (60) have published flow 
velocities and length and curvatures of cilia in a rat 
kangaroo kidney epithelial cell line. We have used their 
(Table 1) data to estimate the flexural rigidity EI of cilia 
using the equations 17.  The new estimates of EI are 
presented in the right-most column of Table 3, together 
with the corresponding experimental data from Schwartz et 
al. on which they are based (see Table for details of the 
fitting and inherent assumptions). The mean value for EI is 
21 pN*µm2 with a range between 1.8 and 350 pN*µm. 
These results are similar to the estimates by Schwartz et 
al, which ranged between 14 and 51 pN*µm2 depending 
on method for calculation, although the variance based 
on our calculations is much greater than that of 
Schwartz et al.. The reason for this discrepancy is not 
clear at this point. It could be related to inclusion of the 
drag force at the cap by us.  In any case, no error 
estimates of the primary measurements and error 
propagation calculations with respect to the flexural 
regidity have been carried out. This lack of information, 
together with the relatively wide range of calculated 
data, indicates that better quantitative measurements still 
need to be carried out. Such measurements would be 
necessary to determine the energy available to drive 
biochemical processes.  
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Table 3. Flexural rigidity (EI) of non-motile cilia  
Experiment Cilium length [µm] Tip deflection [µm] Tip velocity [µm/s] Flexural rigidity [pN*µm2] 
1 13.2 4.5 6 1.8 
3 11.0 2.3 56 22 
4 17.3 2.1 135 350 
5 11.4 5.0 195 32 
6 17.1 10.5 86 16 
7 18.4 9.5 47 19 
8 14.7 5.7 43 16 

Calculated from the data in Table 1 of Schwartz et al, (60) for cilium length, tip deflection, and tip velocity. Calculations are 
based on solving Eqs. 17 by allowing EI to vary until the calculated tip deflection matched the measured one. The table includes 
all experiments from Schwartz et al. for which the slope at the tip was less than 2, as only this range is valid for Eqs. 17.  After 
omission of 2 outliers, the mean ± standard deviation of the flexural rigidity calculates as 21 ± 7 pN*µm2. This value is 
comparable to the widely accepted value of 31 pN*µm2 in the literature, i.e., the mean + (1.3 standard deviations) = 31 pN*µm2.  
Note that the range of calculated values is large (~200-fold). The reasons for this are unclear, but are not due to uncertainties in 
EI due to the fitting procedure. It was determined that the fractional error in EI (standard deviation/mean) is 5% based on 
multiple independent attempts at fitting. 
 
 

 
 
Figure 9. The distribution of stress along the axoneme.  
The plot shows the deformation energy per unit length for 
cilia of different lengths as a function of position along the 
axoneme. Tubular flow is held constant at 45 nl/min, tubule 
diameter at 20 µm, and flexural rigidity of the cilium at 31 
pN*µm2, while the cilium length is varied between 2 and 
3.5 µm.  Note that the stress is maximal at the base of the 
deformed cilium. 
 
6. PERSPECTIVE 
 
 It is instructive to recall what the purpose of 
this manuscript is: to develop a model for the in vivo 
environment of a primary cilium, and in vitro 
approximations to that environment. The model we have 
presented here is a steady-state model, corresponding to 
chronic conditions. Thus, it is expected that experiments 
involving developmental biology or wound healing 
would be most instructive to show under what 
conditions the model fails.  Additionally, in the airway 
where there is unsteady flow imposed in addition to 
motion induced by the motile cilia, the model is 
expected to fail completely. 
 
 As an example experiment, calcium waves are set 
off by touching cilia (30).  The relevant biological input to 
the model above would be if the calcium wave is initiated 
by (acute) cilium motion, or if steady-state static 

deformation is the cause of intracellular Ca2+ release. This 
could be performed by observing the intracellular Ca2+ 
concentration under a range of bending rates, or by long-
term observation in the presence of steady flow. 
 
7. BIOLOGICAL EFFECTS 
 
 Other manuscripts in this volume will no doubt 
cover this topic in detail, so we simply provide a summary 
of the various cilia-mediated biological actions in an effort 
to bridge the physical model with biological models.  
 
7. 1. Cellular-level effects  
 One acute cellular-level response is clearly 
intracellular Ca2+ release (22, 23, 26). However, many 
signaling pathways (AT1 (64) , STAT (56), wnt (65) 
and TRPV4 (66)) have been shown to be activated by 
the bending of a cilium, and several proteins (PC1/PC2 
(22), Shh (67)) have been shown to become functional 
when a cilium is bent.  We have shown that 
transepithelial sodium transport is also changed in 
response to ciliary bending (2).  Thus, clear evidence 
showing that the deformed state of a cilia initiates 
cellular processes exists, and the hypothesis that fluid 
flow provides the ciliary deformation is reasonable. 
 
7.2. Organ-level effects 
 In kidney, liver, and pancreas, clear evidence 
showing a link between ciliary dysfunction and cyst 
formation exists (68-71). Additionally, organ-level 
cellular organization (tubule growth) has been shown to 
be cilium-dependent (72). Planar cell polarity signaling 
has a ciliary dependence (57).  Organ level diseases 
caused by faulty cilia include nephronophthsis (73), 
retinal degeneration (73, 74) and hydrocephalus (75). 
 
7.3. Organism-level effects 
 Similarly, at the organism level, there are several 
diseases caused either by dysfunctional cilia or by proteins 
associated with cilia.  These include primary ciliary 
dyskenesia (73), hypertension (76), Senior-Loke syndrome, 
Joubert syndrome, situs inversus (73), Bardet-Biedl 
syndrome (73, 77), Alstrom syndrome and Meckel-Gruber 
syndrome (73) . 
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Figure 10. A. Comparison of the flow profile between 
unobstructed (dashed line) and obstructed (solid line) 
tubules. Calculations are based on constant volume flow of 
10 nl/min, a tubule diameter of 20 µm, a brush border 
height of 2 µm, and a friction coefficient of 2800 cP/µm2 
(from Table 2, control flow).  The inset is the region around 
the brush border, plotted on a logarithmic scale to better 
illustrate the flow. B. Deformation profiles of cilia in 
unobstructed (dashed line) and obstructed (solid line) 
tubules. Geometry and flow conditions are as in A, and 
flexural rigidity is taken as 31 pN*µm2. The cilium length 
is allowed to vary between 3 and 8 µm in length, i.e., 1 to 6 
µm longer than the brush border when present.  Note that 
short cilia bend less and long cilia more in the presence of a 
brush border compared to its absence. The switch from less 
bending to more occurs between cilium lengths of 4 and 5 
µm. 
 

For all of these effects, experiments are required 
to show functional links between (possible) mechanical 
stimulation of a cilium and unambiguous changes to cell 
function.  
 
8. WHAT WILL BE THE DEFINING 
EXPERIMENTS? 
 
 Two typical biochemical manipulations of cilia 
are either inhibition of cilia growth or inhibition of ciliary-
targeted proteins. In this manuscript, we have presented 
justification that in addition to these, experiments that act 
solely on mechanical deformations of cilia can yield 

important information. To date, a few pioneering 
experiments have shown that fluid forces in tubules have 
definite consequences, for example Hove and Gharib’s 
paper on cardiogenesis (78). This experiment clearly shows 
that mechanical forces determine ultimate differentiation 
states of developing organs. Future experiments that 
decouple mechanical and chemical effects will provide 
fundamental insights into mechanotransduction 
pathways as well.  For example, observing 
Clamydomonas in a viscoelastic gradient would provide 
insight into how the cell responds to physical changes to 
the environment. Experiments that mechanically 
manipulate the cilium without fluid flow present would 
also be instructive. 
 
9. CONCLUSION 
 
 Our hypothesis has been that the cilium 
mechanically transduces flow energy into stress energy, 
which is used to initiate flow-dependent signaling 
pathways. Some specific biological sequella of this 
hypothesis are that the ciliary length is regulated, that 
relevant proteins will be localized to the base of the 
cilium, and that the tubule diameter will be controlled. It 
has been shown experimentally that certain biochemical 
pathways are initiated in a flow-dependent manner, that 
PC1, PC2, STAT6 and P100 are localized at the base of 
the cilium, and that planar-cell-polarity-signaling 
pathways are ciliary dependent and control the growth 
of tubules.  Thus, we already have evidence supporting 
our hypothesis, and we anticipate that the additional 
experiments outlined above will shed more information 
on this problem. 
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Nomenclature  (units in square brackets: L = length, T = 
time, M = mass), Independent variables, r: Radial 
coordinate, s: Deformed radial coordinate (section 5), t: 
Time, z: Axial coordinate, Specified Functions, In(r): 
Modified Bessel Function of the first kind of order n, Kn(r): 
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Modified Bessel Function of the second kind of order n, 
ln(r): Natural logarithm,  : Gradient operator ('nabla') 
Dependent variables, QV: Volumetric flow rate [L3/T], U: 
Velocity [L/T], Parameters, A: Area of unit cell [L2], 
Vibration amplitude [L], a: Cilium radius [L], Cn: 
Constants of integration, Fb: Body force density [M/L2T2], 
f: Force per unit length [M/T2], g: Gravitational 
acceleration [989 cm/s2], K: Permeability coefficient [L2], 
k: Coefficient of friction [M/L3T], L: height of cilium [L], 
P: Pressure [M/LT2], R: Lumen radius [L], Orbital shaker 
throw distance [L], T: Stress tensor [M/LT2], E: Stress 
energy per unit length [ML/T2], α: decline constant [L-1], δ: 
height of brush border [L], ξ: area density of brush border 
elements [L-2], ρ: Density [M/L3], µ: viscosity [M/LT], ω: 
frequency [T-1], Dimensionless parameters, Re: Reynolds 
number, n: number of cylinders per unit cell, γ: Euler 
constant, φ: Area fraction of brush border elements, χ: 
Scaled area fraction of brush border elements 
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