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1. ABSTRACT 
 

In recent years, there has been a great upsurge in 
the application of data clustering, statistical classification, 
and related machine learning techniques to the field of 
molecular biology, in particular analysis of DNA 
microarray expression data. Clustering methods can be 
used to group co-expressed genes, shedding light on gene 
function and co-regulation. Alternatively, they can group 
samples or conditions to identify phenotypical groups, 
disease subgroups, or to help identify disease pathways. A 
rich variety of unsupervised techniques have been applied, 
including partitional, hierarchical, graph-based, model-
based, and biclustering methods. While a number of 
machine learning problems and tools have found 
mainstream applications in bioinformatics, in this article we 
identify some challenging problems which, though clearly 
relevant to bioinformatics, have not been extensively 
investigated in this domain. These include i) unsupervised 
clustering with unsupervised feature selection, ii) 
semisupervised learning, iii) unsupervised learning (and 
supervised learning) in the presence of confounding 
variables, and iv) stability of clustering solutions. We 
review recent methods which address these problems and 
take the position that these methods are well-suited to 
addressing some common scenarios that occur in 
bioinformatics. 

 
 
 
 
 
 
 
2. INTRODUCTION 
 

In recent years, unsupervised clustering, 
statistical classification, feature selection, and related 
machine learning techniques have found an increasingly 
influential role in bioinformatics, as evidenced by the large 
number of papers involving these topics which are 
appearing in journals such as Bioinformatics, a number of 
recent books (37), research compendia (28), and 
commercialization efforts. While supervised classification 
plays an important role, this paper will focus primarily on 
unsupervised learning methods, as well as hybrid 
(semisupervised) techniques. Clustering methods can be 
used to identify co-expressed genes, shedding light on gene 
function and co-regulation. Alternatively, they can group 
samples or conditions in order to identify phenotypical 
groups, sub-groups of a disease, patient sub-groups that 
respond to drug treatment in different ways, or to segment 
time course data for disease pathway analysis. Some 
examples of clustering techniques applied to bioinformatics 
include e.g. (2),(66),(19). Clustering methods have also 
been applied to computer-aided diagnosis, e.g. (61). A 
variety of clustering methods have been applied in these 
contexts, including partitional, hierarchical, graph-based, 
model-based, and biclustering techniques. There are several 
excellent recent surveys of clustering methods (64), 
clustering applied to gene expression data (28), and 
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biclustering methods (36). This paper aims to be 
complementary to these articles, covering several machine 
learning issues with, we argue, high relevance to 
bioinformatics, and yet which have not been extensively 
addressed in past studies. These include i) unsupervised 
clustering with unsupervised feature selection, ii) 
semisupervised learning, iii) unsupervised learning (and 
supervised learning) in the presence of confounding 
variables, and iv) stability of clustering solutions. We next 
identify these problems, review existing work, and in some 
cases propose new approaches. 

 
3. UNSUPERVISED CLUSTERING WITH 
INTEGRATED FEATURE AND ORDER 
SELECTION   
 
3.1. Introduction  

Microarray expression data sets consist of the 
simultaneous measurement of expression levels for 
thousands (as many as tens of thousands) of genes, for each 
tissue sample in an experimental study. The samples may 
come from different patients. Alternatively, they may come 
from the same patient but under different experimental 
conditions. Consider the objective of clustering samples (or 
conditions). In a typical study, there may be less than a 
hundred samples. Thus, this problem amounts to clustering 
a very sparse data sample, within a very high-dimensional 
space. This is a nontrivial problem even if both the number 
of groups in the data (e.g. (disease present, disease absent)) 
and the relevant gene feature subspace (consisting of the 
genes that are most characteristic of particular groups and 
those most discriminating between groups) are known. 
Even given this information, there is the difficult choice of 
clustering dissimilarity measure (equivalently, the choice of 
parametric statistical form for a mixture model/model-
based clustering solution (3)) and the challenging nature of 
clustering as an optimization problem (27), with sensitivity 
to parameter initialization for local optimization methods 
and high complexity for global optimization methods. 
These aspects are hurdles to achieving accurate, effective 
solutions. However, in the most general unsupervised 
setting (and in many practical bioinformatics contexts), the 
number of clusters and the relevant gene subspace are both 
unknown and need to be estimated in an unsupervised 
fashion, jointly with the (accurate) partitioning of the data 
samples into groups. This is an extremely challenging 
version of the clustering problem, and yet one which has 
been assailed by several recent methods, as will be 
reviewed in the next section. 

  
3.2. Review of recent methods  

Most approaches to unsupervised clustering and 
feature selection perform some type of alternating 
optimizations, with clustering performed given selected 
features and then, alternately, with feature selection treated 
as a supervised problem, to maximize some measure of 
discrimination between the (current) clusters treated as 
classes. The general notion behind these methods is that 
removing noisy features should improve clustering 
accuracy and cluster separation which, in turn, should make 
it easier to find “clean" features that well-discriminate these 
clusters. Thus, both clustering and estimated gene space 

accuracy should tend to improve with the successive 
optimizations. 

  
Some early approaches were in fact developed 

specifically for microarray data. In (62), the authors first 
chose an initial set of genes based on their individual power 
to discriminate components in a two-component Gaussian 
mixture model for the data. They then alternately 
performed graph-based clustering and feature filtering 
steps, with the latter based on a supervised selection 
criterion and on a Markov model, with (redundant) genes 
rejected if they fall in the “Markov blanket" of other genes. 
In (54), the authors first clustered in the gene dimension, 
forming k gene subspaces from the gene clusters. For each 
subspace, they then partitioned the samples into two 
clusters. They then defined “cross-product” groups, i.e. sets 
of samples which all fall in cluster i in gene space 1 and 
cluster j in gene space 2 ji,∀ .  There are 2k such sample 

groups, denoted C1,C2…,C k2 , mutually exclusive and 

collectively exhaustive of the samples. They then further 
pooled selective pairs of cross-product groups to form 
“heterogeneous" groups – these are pairs of cross-product 
groups whose cluster labels are different from each other, 
for every gene subspace. Thus, a heterogeneous group is a 
set of samples that is well-discriminated into two distinct 
groups, for each gene subspace. Heterogeneous groups were 
used to guide gene selection – each gene’s vector across 
samples was correlated with a representative vector from a 
heterogeneous group. Essentially, the genes most highly 
correlated with the group were retained and the remainder 
discarded. This sequence of steps represents one iteration of 
the method. The next iteration begins again with gene 
clustering (starting from the now reduced set of genes). (54) 
only addressed clustering samples into 2 groups. 

  
There are several disadvantages to the 

aforementioned methods. First, neither method solves the 
sample clustering and feature selection tasks in a way that 
is consistent with minimization of a common objective 
function. Thus, there is no mathematically well-defined 
sense of convergence for these methods and also no 
reference objective function for assessing solution quality 
(except for comparison to ground-truth biological 
knowledge (if available) on the groups and relevant genes). 
Second, these methods do not estimate the number of 
clusters in the data – this must be known a priori or set by 
the user. Third, both methods require the (user-subjective) 
choice of threshold parameter values. These values will 
certainly affect the results – e.g., (54) uses a threshold to 
control the number of retained genes. Finally, both methods 
are greedy in the sense that each iteration further reduces 
the number of genes, with no ability to “resurrect" a 
rejected gene in subsequent iterations, even if the current 
clustering would warrant this gene’s reinclusion. Recently, 
several new methods have been proposed from within the 
machine learning community which address some of the 
aforementioned shortcomings. These methods are next 
described. 

  
There are three basic strategies in the literature 

for combined clustering and feature selection. The simplest
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Figure 1. BIC curve for a naive Bayes mixture applied to 
Reuters text documents. Note that the predicted (minimum 
BIC) order is one component, a grossly inaccurate estimate 
for this data set with 22 topics. 
  
(but in principle the least accurate) is to first perform front-
end dimensionality reduction and then cluster in a now 
(vastly) reduced feature space. For example, in the text 
domain, (35) used a singular value decomposition (SVD) to 
first reduce from thousands down to 20 features. However, 
the choice of 20 features was author-selected and appears 
somewhat arbitrary. Moreover, principal component 
analysis (PCA) and related approaches are optimal with 
respect to minimum mean-squared error approximation of 
the original data, but may not best preserve group 
discriminability. Clearly, it should be better to choose 
features given knowledge of the clusters being sought, 
rather than “blind" feature selection. Finally, use of 
PCA/SVD for dimensionality reduction maps the data to a 
new space. Thus, some interpretability in the original space 
is lost – in our case, information on which genes are truly 
relevant to a given cluster may be obscured by this process. 

  
A second strategy is wrapper-based, wherein one 

generates numerous clustering solutions, for different 
candidate feature subspaces (which may be chosen either 
randomly or through some directed search), with all 
solutions compared with respect to a common clustering 
fitness function. One such approach is (18), which used 
greedy forward search for feature selection, EM for mixture 
learning, and a clever “cross-projection" criterion that 
allows “level playing field" comparison between clustering 
solutions defined on different feature spaces. The wrapper-
based advantage over the previously mentioned methods is 
that now there is a common criterion for assessing the 
clustering solutions (and also, thus, for guiding the search 
for solutions). However, the set of possible feature spaces 
is vast – if each cluster uses the same feature space, there 
are 2D possible spaces, with D  the number of dimensions 
(genes). Greedy forward or backward feature selection 
methods will search a very small portion of this set and are 
likely to find quite suboptimal solutions. Random selection 
likewise will require generation of a vast number of 
candidates, with clustering needing to be performed and 

fitness evaluated for each one, to find good solutions. This 
may entail vast (and impractical) computational 
complexity. Moreover, the choice of the number of clusters 
further greatly expands the search space (and requires 
model order selection criteria that are effective for high-
dimensional data, as next discussed).  

 
A final approach is developed from the viewpoint 

that feature selection is simply another facet of model 
selection, along with choosing the number of components 
(model order). Order selection is often performed using 
statistical penalty functions such as minimum description 
length/Bayesian Information Criterion (BIC) (45). BIC is 
defined as follows:  
 

( ) ( ) ( )[ ]MPN
M

MBIC Θ−
Θ

= |loglog
2

χ  ,           (1) 

 
where X = {x  i, i=1, …, N} is the data set, N the number of 
samples, M the model order, Θ(M) the parameter set at this 
order (whose values specify a parametric statistical model), 
and |·| the number of free parameters in the set. The first 
term in BIC penalizes complex models while the second 
(log-likelihood) indicates how well the model explains the 
data. In (22),(23) the question was raised of whether one 
can jointly optimize all parts of the solution – the selected 
features, the number of components, and the sample 
partitioning – with respect to a single objective function, 
this model penalty function. Criteria such as BIC, which 
involve a data fitness term and a model complexity term, 
seek the order that can be supported by the given (finite) 
amount of data. Why should the same principle not also be 
applicable to the choice of features? There are several 
recent works which follow a related strategy (5),(34),(23). 
The first two, however, were not intended for high-
dimensional data – (5) only considered D = 10 and (34) 
only tried D up to 47. We will focus on (23), which was 
motivated particularly by the high-dimensional text 
document domain and which developed a suitable model. 
  
(23) considered “naive Bayes" mixtures (diagonal 
covariances in the Gaussian case). In such models, there are 
k parameters per dimension (k = 2 in the Gaussian case) for 
each component in the model. In a text document database 
with 2000 articles and ~ 10,000 data (word) dimensions 
(and 20 ground-truth components/topics), this amounts to 
more than 200,000 parameters for only 2000 data points1. 
Standard application of BIC in this case will grossly 
underestimate the model order because the model 
complexity cost of each additional component is too high, 
relative to its benefit to the log-likelihood. An example 
from (23) is shown in Figure 1 where the BIC-estimated 
order is one (component), even though there are 22 ground-
truth topics. The situation is even worse for microarray 
data, where the dimensionality is similar but the number of 
data points is at least an order of magnitude smaller in most 
studies. As explained in (23), the fundamental problem here 
is not the criterion, BIC. It is the fact that there are 
insufficient degrees of freedom in the naive Bayes mixture 
for trading data fitness for reduced complexity. (23) 
proposed structured naive Bayes mixtures that allow
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Figure 2. BIC curves for several variants of naive Bayes 
mixtures applied to Reuters text documents. The best 
approach, from (3), gives each component flexibility in the 
choice of its feature space and optimizes all model 
parameters. This method estimates a model order of 25 
components for this 22 topic data set. 
 
sharing of parameters across components, i.e. the 
likelihood model:  
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Here, P[xk|θj]and P[xk|θs] are component-specific and 
shared distributions, respectively, with vjk∈  {0, 1}a binary 
switch variable, where  
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These variables specify the informative features for each 
component. We emphasize these variables are model 
parameters that need to be learned. In the text domain, 
these variables determine topic-specific keywords and for 
microarrays they determine the “informative” genes for 
each cluster, j.  This type of “parsimonious” mixture was 
previously introduced in (24). A crucial aspect is an 
efficient method for coding the model parameters, which 
was developed and described in (23). 
  

In (23) it was proposed to directly minimize BIC 
in determining all parts of this model – the order M, the 
component parameters, the switching variables, and the 
data partitioning. All of this was done in a purely 
unsupervised fashion. There are several benefits to this 
model. First, it offers large flexibility in trading off model 
fitness for complexity – the {vjk} switches are additional 
parameters, but they allow sharing distribution parameters 
across multiple components, which can greatly reduce the 
number of model parameters and thus the model 
complexity. If a component does not use a shared model for 
a given feature, we say the feature is “informative" for the 
given component. As the number of “informative" features 

are reduced, more components can be supported by the 
limited data and, thus, accurate model order selection can 
be achieved using BIC, even on huge feature spaces. An 
example from (23) is shown in Figure 2 where optimizing 
BIC for various model orders yields an optimal model at 
order 25 for a document data set with 22 ground-truth 
topics. Order 25 is also best in a generalization (test set 
likelihood) sense. Even though D =10,000 in this case, the 
total number of “informative" features is only ~ 500. Thus, 
choosing the model to minimize BIC yields a sparse set of 
informative features. This is suggestive, for microarrays, of 
finding a sparse set of informative genes associated with a 
disease group. In addition to facilitating accurate cluster 
number estimation (and accurate data partitioning (23)) in high 
dimensions, the model in (23) is also interesting in that each 
component/cluster has its own set of informative features, i.e. 
its own feature space. Most methods tie the feature 
space across all the clusters. However, for example, 
individual genes may only be relevant to a subset of 
disease groups/clusters. This is captured by the model 
in (23). In Figure 2, it can be seen that tying the 
feature space across components performs poorly, 
underestimating the number of topics in the data. 
Allowing a customized “informative feature space” 
for each component is more efficient in allocating the 
model complexity across components and gives much 
better results. This flexibility in defining the feature 
space for each component is related to the 
representation capability of biclustering – note that 
biclusters are defined by subsets of genes and subsets 
of conditions (36). The mixture model in (23) 
likewise captures a subset of conditions/samples 
within a cluster that is defined over a customized 
informative gene subset. Unlike many biclustering 
methods, though, (23) postulates a stochastic 
generation model for the data array. Moreover, based 
on optimization of BIC, this method gives a 
statistically principled approach (and accurate 
approach for the text domain (23)) for estimating the 
number of clusters. 

  
The mixtures in (23) are learned via a generalized 

EM algorithm, embedded within a model order reduction 
procedure, which directly minimizes BIC at each order. 
Thus, the solution is locally optimal with respect to BIC. At 
each order, within the optimization, both switch values are 
evaluated (multiple times) for each gene – thus, 
“uninformative” genes can switch to “informative”, or vice 
versa, for a given cluster (unlike the greedy methods, which 
solely shrink the “current” feature space). This method was 
tested and demonstrated favorably against several other 
unsupervised techniques such as (34),(56),(51) on UC 
Irvine Machine Learning data sets and on text. We believe 
this approach should be useful for microarray data. One 
limitation, however, is the naive Bayes (component-
conditional feature independence) assumption. Given a 
solution for the Gaussian case and its associated data 
partition, one can estimate (nondiagonal) covariances and 
change the model to include these correlation terms. 
However, this new solution will increase model complexity 
and could increase the BIC cost.  
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Figure 3. An example of coarse-to-fine data partitioning 
obtained using VISDA. 
 
4. SEMISUPERVISED CLUSTERING   
 
4.1. Introduction 

In some cases, the data set may contain some 
partial class information which, while insufficient to allow 
the learning problem to be treated as supervised 
classification, can still help to “guide” clustering solutions, 
so as to be most relevant to the ground truth classes present 
in the data. One possibility is that the class of origin may be 
known for a labeled subset of the training set, e.g. 
(46),(40). Parameter estimation based on unlabeled data, in 
addition to labeled samples, can in some cases improve the 
accuracy of class-conditional models that will be used in a 
pseudo-Bayes classification rule. However, there is a 
cautionary tale here (14). There are also purely 
“discriminative” learning methods for building classifiers 
while trying to make use of mixed labeled/unlabeled data 
e.g. (9),(11). Another point of view developed in (38) is 
that the labeled data can be effectively used to “label” the 
learned clusters, identifying the subset of clusters that 
contain known content (i.e., clusters which own at least 
some labeled data, in addition to possibly owning unlabeled 
samples). Clusters that do not contain any labeled samples, 
by contrast, may contain novel content, i.e. heretofore 
“unknown” classes. A semisupervised class discovery 
procedure was thus defined, which identifies putative 
unknown classes (purely unlabeled clusters in the data) 
relative to the existing, known classes in the data (38). In 
principle, this approach could be used to identify new 
subtypes of a disease – in a semisupervised patient sample 
where all patients are known to be sick, but with only a 
subset labeled by accurate disease diagnosis, learned 
compact clusters of samples that are strictly unlabeled may 
be taken as putative new disease subtypes (with this 
tentative hypothesis tested through further analysis). While 
there has been some investigation of related ideas on 
biological data (50), semisupervised class discovery has not 
been substantially investigated in the biological domain. 

  
Another case of significant interest in biosciences 

is wherein there is partial supervision in the form of user 
interaction to guide the search for grouping structure in the 
data. One such approach, known as visual and statistical 
data analyzer (VISDA), was developed in (59). This is a 
top-down, hierarchical, soft (mixture-based) clustering 
scheme that, at each level of the hierarchy, linearly maps 

the (high-dimensional) clusters at the current level to a 2-D 
subspace. This allows users both to visualize the current 
clusters and to assist accurate estimation of the number of 
sub-groups (and their initial centroids) for clustering at the 
next level of the hierarchy. The EM algorithm is applied to 
optimize the clustering at each level, with the minimum 
description length criterion, along with user interaction, 
used to estimate the number of clusters. Both the 
hierarchical nature of this clustering and the user 
interaction, which allows coarse-to-fine structure 
exploration, have obvious appeal for bioscience 
applications. While user interaction is one form of “partial 
supervision”, VISDA also has a semisupervised mode 
wherein there is label knowledge for some samples. The 
labels are represented by color-coding the samples in the 2-
D visualization space. This can further assist accurate sub-
clustering at the next level. VISDA has recently been 
adopted as a standard data analysis tool by the National 
Cancer Institute, as part of the caBIG initiative (60). An 
example of (visualizable) top-down clustering of high-
dimensional data obtained by VISDA is shown in Figure 3. 
An application of VISDA to create a pathologically 
plausible hierarchy of thirteen distinct muscular dystrophy 
phenotypes was reported in (68). The learned class 
hierarchy is shown in Figure 4. 

  
Also relevant to molecular biology is the case 

where supervising class labels are not available but where, 
instead, there may be a set of must-link (ML) and cannot-
link (CL) constraints, each indicating a pair of samples that, 
respectively, should or should not be assigned to the same 
group (58). For example, for gene clustering, it may be 
known that a particular pair of genes is involved in the 
same biological function (and hence should belong to the 
same cluster or class). It may likewise be known that 
certain pairs of genes should not belong to the same cluster. 
For clustering expression profile samples, it may be known, 
e.g. using supplementary measurement modalities other 
than gene expression such as radiological images or DNA 
sequence motifs, that a pair of samples should (should not) 
belong to the same group. Some related work applied to 
gene expression data is (41), where knowledge of a 
common function for a subset of the genes was 
incorporated, for gene clustering, via a tied mixture model, 
wherein all genes in the subset use the same mixture priors 
in associating to the mixture components (clusters) in the 
model. This approach represents a particular method for 
“soft" imposition of constraint knowledge while peforming 
clustering and it imposes “must-link” information only. 
More generally, one can incorporate both must-links and 
cannot-links. In general, these constraints can help to 
overcome cluster initialization sensitivity, suboptimality in 
the choice of the clustering distortion metric (e.g., they may 
be used to learn this metric (63)), and as will be discussed, 
they can even help to estimate the number of classes in the 
data. Several such methods are next reviewed in more 
detail. 

  
4.2. Review of recent methods  

Constraint information could be elicited from 
domain experts via on-line interactive databases, where 
(multiple) users/experts may specify must-links and cannot-
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Figure 4. A pathologically plausible tree hierarchy for 13 
muscular dystrophy phenotypes obtained using VISDA. 
 
links for given (or user-selected) pairs of examples. In this 
setting, it may be more appropriate to specify must-link and 
cannot-link information, rather than class labels, because users 
(even experts on a given domain) may not agree on the number 
of classes, class names, or even defining class attributes. 
Constraints can be solicited without even explicitly agreeing 
on class definitions or on the number of classes. A number of 
prior works address clustering with constraints. (58) develops a 
variant of K-means that enforces the learned clusters to be 
consistent with the given constraints. (49) introduced 
constraints within graph-based clustering applied to image 
segmentation. (31) developed an approach suitable for 
hierarchical clustering. (48) incorporates hard constraints 
within mixture model-based clustering. In recent work (67), a 
new approach was proposed for learning Gaussian mixtures 
while agreeing with ML and CL constraints. This approach 
differs from prior works in several respects. First, prior 
works do not make a distinction between clusters and 
classes. In these works, e.g. (58),(48), the individual 
clusters are treated as distinct classes, to be learned 
consistent with the specified ML and CL constraints. 
However, some individual classes may not be accurately 
modeled by a single cluster – they may require multiple 
clusters, i.e. a mixture, for their accurate representation. 
An illustrative example is shown in Figure 5. Whether 
or not this is the case depends on the feature space, the 
chosen distortion metric, and on the class definitions, i.e. 
whether they are very narrowly or broadly defined. In the 
latter case, we would expect multiple clusters to be helpful 
for modeling some classes. Learning the metric (4),(63) 
may mitigate model bias associated with assuming one 
cluster per class. However, multiple clusters will still afford 
greater flexibility. Second, most prior works assume the 
number of clusters (and hence the number of classes) is 
known. In (67), neither the number of clusters nor the 
number of classes need to be assumed known – the cluster 
number is estimated via a model selection criterion (BIC), 
with the class cardinality first upper-bounded by the 

estimated number of clusters, and then estimated as a 
byproduct of the learning, so as to satisfy the constraints. 
 
4.3. Formulation  

Suppose there are K clusters in the data, 
belonging to (at most) Lmax classes, with K > Lmax. Let the 
matrix [Cij] specify the constraint information, where Cij 
∈{−1,1,0} indicating, respectively, that samples i and j are 
must-linked, cannot-linked, or without a constraint. We can 
then compose a clustering cost function (complete, 
penalized negative data log-likelihood) that embodies both 
fitting the data and satisfying the constraints (67):  
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where Mik∈  {0,1} indicates whether sample i belongs to 
cluster/component k, Vkl ∈0,1} indicates whether or not 
component k (Mk) belongs to class l (Cl), αk is component 
k’s mass, f(·|θk) is k’s density, based on its parameter set 0k, 
and where P0 > 0 is a constraint violation penalty. The 
probability mass function (PMF) {βl|k} gives the probability 
a given component belongs to each of the classes – these 
PMFs start out uniformly distributed but the effect of the 
penalty term is to drive them to {0, 1} values. Note that 
these PMFs allow more than one component per class, i.e. 
whenever βl|k = βl|k’ = 1, k ≠ k’. Also, if βl’|k = 0∀ k, then 
class l’ is not used. Lmax minus the number of unused 
classes gives the estimated class number. (67) identifies 
conditions under which the constraint information is 
sufficient for uniquely specifying the number of classes in 
the data. An Expectation-Maximization (EM) learning 
algorithm (16) that builds in a mean-field approximation is 
used to optimize this penalized log-likelihood in learning 
the mixture solution.  
 
4.4. Illustrative Experiment  

Figures 5a-c give an illustrative example. The 
data set is 2-D, consisting of 3 isotropic Gaussian 
components (with assumed known variance) and 2 classes, 
with one class owning 2 components; 15% of the points 
come with (ML or CL) constraints. The method in (48) 
assumes one mixture component/cluster per class and 
requires specifying the number of classes. This method 
learns general covariances for individual components, so 
that the cluster shape can be adapted to better satisfy the 
given constraints. If this method assumes 2 classes (Figure 
5a), it has difficulty capturing 2 ground truth components 
within one of its learned classes/clusters. On the other 
hand, if 3 classes are assumed (Figure 5b), ML constraints 
within one of the ground truth classes (between 2 ground 
truth components) make it difficult to capture the true 
cluster structure. In Figure 5c, we show the result of (67), 
which allows multiple components per class. The proper 
number of mixture components (three) is accurately 
estimated via BIC applied to a mixture first learned without 
using the constraint information. We then allowed a 
maximum number of 3 classes and applied the EM 
algorithm with mean-field approximation to minimize the
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Figure 5. Mixture model solutions (given constraint 
information) for (48) assuming 2 classes (a)) and 3 classes 
(b)) and for the approach from (67) (c)), which directly 
estimates 2 classes in the data. 

 
penalized likelihood (3). The optimization chose β3|k=0, k= 
1,2,3. Thus, the method accurately estimated the true 
number of classes as two. The method also gave superior 
mixture model fitting, as seen from Figure 5c. More 
comprehensive experimental results are given in (67). 
There, a semisupervised class discovery approach, 
analogous to (38), was also proposed for the case where 
supervision consists of constraints – in this case, a learned 

cluster that does not own any samples that possess 
constraint information is treated as a putative new class. 

 
5. CLUSTERING IN THE PRESENCE OF 
CONFOUNDING VARIABLES   
 
5.1. Introduction  

A fundamental assumption in much of the 
clustering literature is that there is a single source of 
clustering/grouping tendency in the data – e.g., in a medical 
patient study, in applying a clustering method one would 
expect to discern groups representative of disease 
categorization: disease presence, disease absence, and 
perhaps disease subtypes. Likewise, in clustering a text 
document database, one would expect to reveal the underlying 
topics. However, there are other possibilities. One is that there 
is no clustering tendency. Another is that there are multiple 
sources of clustering tendency for a given data set. In the case 
of text documents, one can group by topic or by author (or by 
writing style). Several methods have recently been proposed 
for successively generating multiple clusterings, exhibiting 
nonredundant group structures, from a given data set. The 
main perspective in these papers is that there are multiple 
informative sources of group tendency and that the desired 
structure depends on the user’s application/interest. 
However, another point of view which, we argue, has great 
relevance for bioinformatics is that some sources of group 
structure are attributable to confounding variables, 
variables of no interest for the given application but which 
do have influence on measured variables. These variables 
may be an irrelevant/nuisance source of group structure, as 
well as a source of measurement variability/noise. 

 
 As one example, in a microarray study involving 

e.g. leukemia, the proportion of patients who are smokers 
may be unusually high. Smoking may have strong 
influence on measured gene responses. Thus, unsupervised 
clustering may reveal smoking/nonsmoking, rather than the 
disease groups. As another example, multiple institutions 
frequently conduct studies on the same diseases, under 
similar experimental protocols (same treatment course, 
same measured variables). The number of patients in a 
single study is generally quite small (from tens to several 
hundred) due to high cost/subject availability issues, which 
severely limits statistical confidence in hypotheses made on 
the basis of learned models. One is thus tempted to pool 
data from multiple studies, in order to increase the 
statistical power of the sample. However, even given 
identical experimental protocols, there are often systematic 
differences in equipment and in sample 
processing/measurement whose effects on measured 
variables may dwarf those stemming from 
presence/absence of disease. Thus, clustering such pooled 
data may simply split the data by institution, rather than 
unearthing the disease structure. Several recent papers have 
developed methods which seek to account for confounding 
effects while clustering data. We will review some of these 
methods shortly and also suggest some alternative 
approaches. 

  
While confounding variables present a severe 

challenge to unsupervised clustering, wherein the predicted 
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(group) variable of interest is unknown and needs to be 
“discovered”, they also present a barrier to knowledge 
extraction in a supervised classification context, despite the 
fact that the predicted variable is in this case known. In 
bioinformatics, it is often just as important to identify 
biomarkers for disease as it is to build models that 
accurately predict disease presence in a patient. Supervised 
feature selection techniques, e.g. (32) are often used to 
identify the biomarkers as a small subset of the full gene 
space (25). However, confounding variables can “deceive” 
feature selection algorithms. For example, consider a 
patient study where, coincidentally, a high proportion of 
patients with leukemia also happen to be smokers 2. If one 
simply ignores this possible confounding influence, the 
selected biomarkers may be more indicative of the 
confounder than of the disease. Clearly, if the confounding 
variable is measured, feature selection should try to account 
for/correct for its effects in the data. We will discuss 
several strategies for achieving this in section 5.3. 

 
5.2. Review of recent methods  

Several works in bioinformatics have addressed 
how to best combine multiple small batches of microarray 
samples collected by different institutions, on different 
platforms, or on the same platform but at different times or 
using different protocols. In principle, pooling sample 
batches to increase the number of data samples can help to 
achieve improved accuracy of subsequent unsupervised 
clustering or (supervised) statistical classifier design. 
Likewise, improved statistical power can be achieved if the 
goal, rather than data clustering, is to make inferences on 
the individual genes or gene subgroups involved in a 
disease process. However, the institution, platform, or 
protocol are confounding variables which may introduce 
systematic biases in microarray measurements. Several 
different approaches have been proposed to “correct” 
systematic biases prior to pooling the multiple microarray 
sample batches (1),(8),(29). These methods assume that the 
different batches represent the same underlying data groups 
– either a single population (e.g. a “disease” group) or a 
mixture of populations (e.g., a “disease” group and a 
“control” group). The premise is thus that marked statistical 
differences exhibited by the different sample batches are 
primarily attributable to the systematic differences in the 
measurement environments associated with each of the 
sample batches. The methods in (1),(8), and (29) modify 
the samples in each data batch so as to “correct” these 
systematic biases. The method in (1) is based on a 
singular value decomposition (SVD) of the pooled data. 
The premise is that the variation along the principal 
direction(s) in the pooled data is primarily a result of 
systematic bias. Thus, the microarray batches should be 
separately altered such that, once pooled, the variation 
along the principal direction(s) is greatly decreased (or 
even wholly removed). In (8), the authors point out that 
this SVD-based approach will fail if the variation due to 
systematic bias is only comparable to or smaller than 
that due to group differences (between “disease” and 
“control”) – in this case, “correcting” the sample 
batches in the principal direction(s) will in fact remove 
information that is needed to distinguish the different 
data groups. 

 A key limitation of the method based on SVD is 
that it does not exploit the batch index of origin, known for 
each sample in the pooled data set. (8) capitalized on this 
information by essentially treating the problem as one of 
statistical classification, with each data batch representing a 
different class. The direction in the data that allows best 
discrimination of the sample batches from each other is 
(reasonably) assumed to be the direction along which 
variation is primarily due to systematic bias. The authors in 
(8) thus proposed to correct the component in each sample 
batch that lies along this “discriminating” direction. The 
corrected batches will then overlap along this direction and 
no longer be discriminable from each other. The method in 
(8) was dubbed distance-weighted discrimination (DWD). 
There are two further aspects of DWD. One is that the 
“correction” amounts to removing the sample mean of each 
batch, projected along the “discriminating” direction. 
Effectively what is being assumed here is that the 
systematic bias only amounts to differences between batch 
means. The variance along this direction which remains 
following batch correction is thus expected to be “genuine” 
variation in gene responses across the pooled sample 
population. Second, the authors proposed a special criterion 
for choosing the “discriminating” direction. One possibility 
is to apply the linear support vector machine (SVM) 
method (15), i.e. learn a hyperplane classifier that 
maximizes margin (minimum distance) to the decision 
boundary and then choose the “discriminating” direction as 
the normal to the learned hyperplane. However, in (8) the 
authors argue that correcting in this direction introduces 
artificial statistical character in the data – in particular, 
“bunching up” of samples at the margin distance to the 
hyperplane. Instead of using the SVM solution, the authors 
proposed to choose the hyperplane to maximize the sum, 
over all samples, of inverse distances to the hyperplane. (8) 
demonstrates on real microarray data sets that their method 
achieves good “mixing” of data batches from two different 
microarray platforms and substantially better mixing than 
that achieved by the SVD method. The authors state that 
their approach works best when there are at least 25-30 
samples per batch.  
 

In (29), the authors sought to develop a method 
that corrects systematic effects when the batch size is even 
smaller, while achieving robustness to outlier samples. 
Toward this end, they proposed an empirical Bayes (EB) 
method that explicitly models systematic effects via batch-
specific means and variances for each gene. Their approach 
standardizes gene measurements across the batches by 
correcting based on mean and variance estimates for each 
batch. Improved parameter estimation (for the small sample 
case) and outlier robustness are achieved by “borrowing 
strength” across genes, based on empirical Bayes 
estimators that assume priors on parameters that are 
identically distributed across genes for a given batch (and, 
thus, with hyperparameters estimated using measurements 
for all genes in the batch). The authors demonstrated their 
approach on four small microarray batches obtained from 
the same platform but at different times. Each batch 
consisted of the same two groups – a “control” group and 
“treatment” group. They showed that if one simply pools 
the four batches, subsequent hierarchical clustering groups 
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samples based on their batch of origin, rather than based on 
“control”/“treatment”. By contrast, clustering data 
standardized by the EB method yielded the proper cluster 
structure. Moreover, EB was shown to be more robust to 
outliers than a simpler standardization procedure that does 
not perform Bayesian estimation. Finally, an advantage of 
EB over DWD is that EB is naturally suited to pooling two 
or more batches, while DWD, based on the solution of a 
binary classification problem, is naturally suited only to 
pooling pairs of batches.  

 
One concern with all of the above methods is that 

they each perform some type of irrevocable modification of 
the measurements in the batches as a precursor to batch 
pooling (and subsequent clustering, classification, or other 
data analysis). Such “correction” is inherently a source of 
information loss (10). Equivalently, these procedures will 
introduce statistical artifacts in the data if the underlying 
assumptions about systematic effects (e.g. that they alter 
means and variances of gene expression) are incorrect. We 
next discuss several machine learning approaches that 
address confounding effects specifically in clustering 
without requiring any modification of the original data 
measurements and which, again unlike the previous 
methods, do not make parametric modeling assumptions 
about systematic effects.  
 

Several machine learning works that seek 
clustering solutions nonredundant with certain known (but 
irrelevant) structure in the data were developed as 
extensions of the information bottleneck (IB) algorithm 
(56). The objective of IB is to compress one random 
variable X while preserving as much information as 
possible about a related random variable, Y (or a collection 
Y = (Y1,Y2,…, YD)). In the context of clustering DNA 
microarray samples, X ∈{1,2,…,T} could represent the 
patient (sample) index, with Yi,i=1,…,D the response of 
gene i. In this case, the index set is being “compressed” 
(partitioned) into subsets. While there are IB formulations 
that work with continuous-valued random variables, in 
general this requires the choice of a parametric density 
form. The basic IB approach works with discrete-valued 
random variables and thus avoids this issue. Thus, in the 
case of continuous-valued gene expression, some 
discretization (e.g., quantization) may be needed to apply 
IB. The IB approach creates a random variable on the 
cluster index set C ∈{1,2,…, M}, M < T, and views this as 
a “compressed” version of X. IB chooses probability mass 
functions (i.e., a soft partition) {{P[C=c|X = x],c = 
1,…,M},x = 1,…,T}to preserve maximum mutual 
information I(C;Y) with Y while compressing X as much as 
possible, i.e., minimizing I(C;X). That is, IB poses and 
solves the constrained problem: max I(C;Y) subject to 
I(C;X) < I0, with this optimization solved with respect to 
the soft data partition.  
 

The IB framework, based on mutual information, 
is a convenient one for seeking clustering solutions that are 
nonredundant with some known group structure in the data. 
Suppose we have a random variable K which represents a 
confounding influence/known grouping of the data, e.g. K 
∈  {“smoking”, “non-smoking”}. (13) proposed to avoid 

redundant clusterings by penalizing the information the 
learned clustering possesses about K. Specifically, they 
posed the new problem: max I(C;Y)−γI(C;K), subject to 
I(C;X) < I0, again optimizing with respect to the soft data 
partition. They demonstrated the efficacy of this approach 
in a document clustering context.  
 

(20) argued that in practice it may be difficult to 
choose a proper value for γ. They proposed an alternative 
IB extension which accounts for the known information K 
in another natural way: by conditioning on it rather than by 
penalizing solutions that contain information about K. 
Specifically, (20) first proposed the problem: max I(C;Y|K), 
subject to I(C;X) < I0. A potential difficulty with this 
problem, as noted in (20), is that this objective is invariant 
to arbitrary permutations on the cluster index set {1,2,…, 
M} given a particular value K = k, i.e., the solution lacks 
global coordination across different conditioning values, K 
= k. (20) addresses this by imposing the additional 
constraint I(C;X) < Imin, which favors solutions with global 
coordination of cluster labeling (i.e., same meaning for 
cluster label values for each value K = k). (20) 
demonstrated results on clustering face images by gender 
and on document clustering. The authors in (20) also 
developed an alternative nonredundant scheme based on 
ensemble clustering, e.g., (57),(53). Here, they first 
partitioned the data into L groups, with group l consisting 
of the samples with confounding value K = l. They then 
performed clustering within each group, yielding L 
different (local) clustering solutions, each with J clusters. 
Each of these (local) solutions was then extended to define 
a partition of the entire data set. Thus, at this stage, there 
are L different partitions of the whole data set, each with J 
clusters. Finally, they applied ensemble clustering 
techniques to form a consensus clustering from the L 
different partitions. The key idea here is that the initial 
division of the data set by confounding value removes the 
influence of the confounding/redundant variable.  
 

While the above described methods do represent 
advances for a very challenging learning problem, there are 
some limitations to these approaches. By conditioning on 
K, the method in (20) requires estimation of the “third 
order” probabilities P[Yi|C = c,K = k]. For bioscience 
applications with limited data samples there may be 
insufficient data to accurately estimate these probabilities. 
Consider in particular the case where data is pooled from 
multiple institutions in order to increase statistical power. 
Conditioning as in (20) effectively undoes this data 
pooling. Similarly, the method in (21) divides the data into 
separate sets based on the confounding value K = k and 
separately clusters each such set. However, if the data with 
some value K = k is very limited, this data set may be 
insufficient for learning a reasonable clustering solution 
and the extension of this (local) solution to a partition for 
the entire data set may be unreliable. Also, some clustering 
algorithm solutions cannot be easily extended to give 
partitions on new data (in this case, the whole data set), in 
particular agglomerative hierarchical clusterings.  
 

Another limitation of the previous approaches 
concerns application to microarray data. As dicussed 
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earlier, one is often not only interested in the underlying 
phenotypical groups but also in the dominant genes 
(biomarkers) associated with each such group. The methods 
in (13),(20),(21) do not perform any feature selection. If 
such selection were coupled to these methods, it should be 
done in such a way as to account for confounding 
influences and for the fact that confounding variables may 
have much greater influence on some features than others. 
A given feature Yi could be conditionally independent of K 
given C, independent of C given K, independent of both, or 
dependent on both but to varying degrees. Moreover, as 
discussed in section 3.2 for the method in (23), there could 
be various tied parameter structures e.g. with a customized 
model only given particular values of C or K, i.e. P[Yi|C = 
c~ ]. One way to account for unequal confounding 
influences on particular features is via a (soft) feature 
partitioning (joint with the sample partitioning), with 
individual features probabilistically associated to 
(essentially, given probabilistic membership with) both the 
class variable and to the confounding variable(s). In this 
case, rather than maximizing I(Y;C), one would try to 
maximize the sum ( ) ( ) ( )( )∑ =

−+
n

i iiii YKIPYCIP
1

;1; , 

with respect to both the soft data partition and the 
probabilistic memberships {Pi ∈ [0,1]}, which amount to 
soft feature partitions. A feature j much more strongly 
influenced by the confounding variable should have Pj ~ 0. 
This approach would be quite analogous to (23) which 
involves joint unsupervised clustering and feature selection. 
However, in this case, the feature selection is guided by 
“supervision" from the known confounding value. While 
these ideas are conjectural, they may give a way to extend 
(13) and (20) so as to embed feature selection.  
 
5.3. Supervised feature selection  

While feature selection is an extremely 
challenging problem in the unsupervised case (where the 
classes are a priori unknown and need to be estimated 
jointly with their primary features), it is also well-known to 
be a difficult combinatorial optimization problem even in 
the supervised case (17), with a number of proposed 
methods, of varied computational complexity, ranging from 
greedy search methods to annealing and genetic algorithms. 
The selection has been done on the basis of supervised 
criteria, e.g. class separation measures such as Fisher 
distance and mutual information. More complex techniques 
build classifiers and then evaluate classification accuracy 
(e.g. error rates) for numerous candidate subsets of the full 
feature space, e.g. (32),(42). To our knowledge, though, 
there is little prior work which accounts for confounding 
variables (with known values on the training set examples) 
in choosing the features. This problem is discussed in (65). 
One possibility, borrowing from (20) is to apply standard 
supervised criteria, but modified to condition on the known 
confounding values. For example, mutual information is 
often used, selecting the features Yi with maximum 
information about the class variable C, i.e., I(C;Yi). This 
can be altered, to select the features with maximum 
I(C;Yi|K). However, as we noted in the last section, 
conditioning entails estimating third order probabilities, 
whose accuracy may be poor for small microarray training 
sets. Other criteria such as Fisher distance can likewise be 

modified by conditioning on K but may suffer from similar 
problems. The approach proposed in (65), considering the 
case of multiple patient sites as the confounding influence, 
is to perform feature selection separately on the data from 
each site, compare the chosen features across sites, and 
then definitively select the features that are chosen at more 
than one site (e.g. pick the features deemed informative at 
least at two out of three sites). This approach should be 
reliable if there is a sufficient number of samples at each 
site. However, statistical power is lost by dividing the data 
into site-specific groups. An alternative scheme proposed 
here, which does not divide the pooled data, is based on 
treating the confounding variable (e.g. the patient site) as 
an additional variable to be predicted. In other words, we 
suggest to form an objective function Pce+λPke, with Pce the 
empirical count of errors on the training set in predicting 
the class variable (alternative measures of predictive 
performance could also be used) and with Pke the count of 
errors in predicting the confounding value. We impose the 
constraint that a feature can only be used in one of the 
prediction tasks (this can potentially be relaxed to allow 
soft memberships in both prediction tasks). We then learn 
classifiers (e.g. SVMs or multilayer perceptrons) for both 
prediction tasks and jointly optimize the partitioning of 
features between the two tasks, with these optimizations 
performed to minimize Pce+λPke,. The feature partitioning 
may be performed e.g. via a locally switching optimization. 
Here, one first chooses an initial feature partition. One then 
considers switching a single feature from one task to the 
other, with the switch retained if it reduces the “sum of task 
errors" objective function (the predictors will need to be 
trial-retuned for each trial-switch, to gauge the effect of 
switching a feature from one prediction task to the other.). 
One can trial-switch features, cycling through all the 
features, until there are no further changes. This thus yields 
a locally optimal feature partition. Features that are more 
predictive of K than C should be removed by this process. 
The advantage of this proposed scheme over previously 
mentioned methods is that it does not compromise 
statistical power by conditioning on K or by dividing the 
data into groups for different K= k – i.e., all the data will be 
used. A potential disadvantage, at least as this procedure is 
defined above, is that it requires hard-partitioning features 
to the two prediction tasks – in doing so, some residual 
predictive power associated with rejected features may be 
lost. 

 
6. STABILITY OF CLUSTERING SOLUTIONS   
 
6.1. Introduction 

Clustering techniques have a long history in the 
life sciences, with early work including e.g. hierarchical 
clustering methods applied to numerical taxonomy of 
species/cladistics (52) and recent work on clustering gene 
expression data e.g. to identify underlying disease groups 
(28), to hierarchically organize disease groups (47),(19), to 
find groups of co-expressed genes (indicative of co-
regulation), and to identify patient subgroups with different 
response to drug treatment. Since clustering results help 
drive formation of scientific hypotheses, it is extremely 
important that they be reproducible/robust. In particular, 
hypotheses should not strongly depend on the particular 
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realization of measurement noise, on a reasonable level of 
sample population variability, nor on the particular 
parameter initialization for the clustering algorithm. 
Solutions that are robust in this sense are often referred to 
as “stable” solutions. Unfortunately, many clustering 
algorithms are sensitive to these factors. Partitional 
clustering methods such as K-means and Expectation-
Maximization (EM) for learning Gaussian mixture models 
converge only to locally optimal solutions, and ones 
“nearest” to the initial clustering solutions. A poor 
initialization may yield a poor final clustering result. 
Moreover, there are in general many local optima and thus, 
potentially, high solution variance, depending on the 
scheme used for clustering initialization. Moreover, the 
degrees of freedom in the solution (and the difficulty in 
finding good solutions) may increase with increasing data 
dimensionality and the number of sought clusters. Thus, 
finding robust, accurate solutions for high-dimensional 
microarray data is a challenging prospect. 

 
While partitional clustering methods are often 

used, the most popular approach in life science applications 
is hierarchical clustering (26). This is the approach of 
choice for inferring hierarchical relationships between 
classes/groups in forming scientific hypotheses about 
species similarity, species evolution, and related 
applications. Yet, ironically, hierarchical clustering 
methods are well-known to yield results that are highly 
unstable in the presence of sample variability. The wide use 
of this inherently unstable approach underscores the need 
(and the recent impetus in the research literature) for 
evaluating clustering algorithms and solutions with respect 
to criteria that capture some notion of stability. There is 
also clear motivation for incorporating design objectives 
and algorithmic steps which encourage the formation of 
stable solutions. In the sequel, we will review stability 
analysis methods for clustering evalution and design and 
also discuss some other promising approaches.  
 
6.2. Review of recent methods  

A stability criterion gives a measure of solution 
reproducibility that can be used to compare (and hence to 
favor) one clustering algorithm/solution with respect to 
another. One application for such a criterion is in 
addressing the vexing, longstanding problem of estimating 
the number of clusters present in a given data set (the 
model order) (27). Here, the stability measure is used to 
evaluate solutions with varying order. Several such 
approaches have been proposed in the literature 
(55),(6),(33). (55) considers a 2-fold cross validation 
setting, with one fold as “training” and the other as “test”. 
Solutions at the same order are generated for both the 
training and the test sets. One then evaluates the “prediction 
strength” of the training solution – for each test cluster, one 
measures the proportion of data pairs that are also assigned 
to the same cluster when the training set cluster centers are 
used to form a solution on the test set. The “prediction 
strength” at this model order is the minimum such 
proportion, over all test set clusters. The chosen cluster 
number is the highest model order with prediction strength 
above a specified threshold. In (55), it was recognized that 
there is an analogy to the bias-variance dilemma in the 

prediction strength measure as the model order is increased. 
(6) developed a similar method, the primary differences 
lying in the following aspects: 1) in (6), the authors 
proposed to measure partition similarity based on the sum 
of i) the number of data pairs in the same cluster in the two 
partitions and ii) the number of data pairs in different 
clusters in the two partitions; 2) (6) generated numerous 
pairs of data sub-samplings, with cluster stability evaluated 
(at each order) based on the cumulative distribution 
function (cdf) of the paired similarities. The largest model 
order below which there is a significant transition in the cdf 
is selected as the chosen order. (6) noted that, unlike 
penalty function methods, e.g. Bayesian Information 
Criterion (45), their approach does not require an 
underlying statistical model for the data. Both (55) and (6) 
recognized the significance of their approaches for and 
considered application to hierarchical clustering. The 
method in (33) is related to (55) and differs from (6) in that 
the pair of data subsamples is non-overlapping. 
Overlapping subsamples are required in (6) since the 
similarity measure is evaluated over the overlap subset. 
However, (33) argues that this may introduce bias in the 
stability measure since overlapping samples will inherently 
lead to similar data partitions, at every model order. (33) 
achieves similarity evaluation with nonoverlapping subsets 
by effectively building a classifier on one data subsample, 
to predict the clustering on the second subsample. At each 
model order, the average prediction accuracy, over 
numerous data splits, defines the stability measure. 

  
In addition to estimating the number of clusters, 

other solution parameters can also be optimized via 
stability criteria. In (7), it was proposed to estimate the 
feature dimensionality, via the number of principal 
components, by optimizing a stability criterion. For a small 
number of clusters, the most stable partitions were achieved 
by retaining only a few principal components, whereas a 
larger number of clusters required more features to achieve 
best stability. In general, some dimension reduction 
(relative to the full feature dimensionality) always gave the 
most stable clustering results. Although it has not been 
experimentally validated, this is suggestive that methods 
such as (23), which embeds feature (and cluster number) 
selection within clustering in high dimensions, should yield 
stable clustering solutions, relative to alternative schemes.  
 

While feature selection can help to “stabilize” 
clustering in high dimensions, this may be insufficient for 
algorithms that are inherently unstable such as 
agglomerative (bottom-up) methods, which start by 
merging individual data samples. Intuitively, this type of 
method should be highly sensitive to variations in the data 
set. Top-down (splitting) algorithms (12), (26),(59) for 
growing the hierarchy are expected to be more stable since 
the initial splits involve large subsets of the data and thus 
should be less dependent on the particular data realization. 
However, top-down methods are typically greedy 
algorithms, with no mechanism for “undoing” poor splits at 
the top of the tree, which may be caused by (poor) cluster 
initialization. This is a source of instability for top-down 
hierarchical clustering. There are, however, methods which 
are top-down and, at the same time, non-greedy – in fact, 
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these methods are essentially insensitive to parameter 
initialization and seek to find the globally optimal solution. 
Deterministic annealing for clustering (44) grows a 
partitional clustering solution, with the number of clusters 
increasing in a nongreedy fashion via phase transitions in 
an annealing process, which directly occur so as to 
minimize a free energy objective function. The cluster 
bifurcations specify a natural hierarchy of clustering 
solutions. Deterministic annealing has been demonstrated 
to give some ability to avoid local minima of the clustering 
distortion (44). A related approach, but one which 
additionally enforces a tree-structured partition on the set of 
learned clusters, was developed in (39). It is expected that 
these “top-down” annealing methods should be inherently 
more stable than traditional (both bottom-up and top-down) 
hierarchical schemes.  
 

Rather than attempting to choose a hierarchical 
learning algorithm that is inherently stable, an alternative 
for forming reliable clusterings is to generate a population 
of unstable solutions and choose, as a stable one, the most 
“representative” one from this population, such as the 
population mode. For example, in (19), one of the 
objectives, in addition to building a classifier for fourteen 
distinct cancer diseases, is to learn a taxonomic hierarchy 
of these disease classes. Toward this end, the authors 
applied their (top-down) tree learning algorithm to 
numerous data subsamples and then generated a histogram 
of tree structures. The mode of the histogram is a quite 
reasonable choice as the most stable tree structure. (19) 
addressed the (supervised) case where the class labels are 
known and where the hierarchy consists of a hierarchy of 
classes. In this context, the number of distinct tree 
structures learned from the different subsamples is in 
practice fairly limited and a distinct mode of the 
histogram is expected to be found. An interesting 
question is how to appropriately extend this approach to 
the case of purely unsupervised hierarchical learning. In 
this context, clustering solutions obtained for two 
different data subsamples will not be identical – at best, 
the solutions may be fairly similar. Thus, rather than 
finding the mode of the solution population, the most 
representative solution should amount to something like 
a solution “centroid”. Finding a stable representative 
from a family of hierarchical solutions may be 
investigated in future work. 

 
7. CONCLUSIONS  
 

In this paper, we have identified several 
emergent, fundamental problems in unsupervised 
learning/clustering that are highly relevant to applications 
in bioinformatics and to life sciences in general. We have 
reviewed recent machine learning approaches for 
addressing these non-standard problems. To date, there has 
been only limited investigation of some of these approaches 
on biosciences data and experimental investigation has not 
been the focus here. This paper is primarily a review and a 
“position paper”, arguing for increased investigation of 
these topics. We have also proposed several new ideas, in 
particular for addressing the confounding variables 
problem, which we will pursue in future work.  

8. REFERENCES  
 
1. O. Alter, P.O. Brown, and D. Botstein: Singular value 
decomposition for genome-wide expression data processing 
and modeling. Proc. National Academy of Sciences, vol. 
97, 10101-10106 (2000)  
2. M. Bakay, Z. Wang, G. Melcon, L. Schilta, J. Xuan, P. 
Zhao, V. Sartorelli, J. Seo, E. Pegoraro, C. Angelini, B. 
Shneiderman, D. Escolar, Y-W Chen, S.T. Winokur, L.M. 
Pachman, C. Fan, R. Mandler, Y. Nevo, E. Gordon, Y. 
Zhu, Y. Dong, Y. Wang, and E.P. Hoffman: Nuclear 
envelope dystrophies show a transcriptional fingerprint 
suggesting disruption of Rb-MyoD pathways in muscle 
regeneration. Brain, vol. 129, 996-1013 (2006) 
3. J. D. Banfield and A. E. Raftery: Model-based Gaussian 
and non-Gaussian clustering. Biometrics, 803-821 (1993) 
4. S. Basu, A. Banerjee, and R. Mooney: Active semi-
supervision for pairwise constrained clustering. In SIAM 
Intl. Conf. on Data Mining, 333-344 (2004) 
5. Z. Ghahramani and J. M. Beal: Variational inference for 
Bayesian mixtures of factor analyzers. In Neural Info. 
Proc. Systems, 449-455 (2000) 
6. A. Ben-Hur, A. Elisseeff, and I. Guyon: A stability based 
method for discovering structure in clustered data. In Proc. 
Pacific Symposium on Biocomputing, 6-17 (2002)  
7. A. Ben-Hur and I. Guyon: Detecting stable clusters using 
principal component analysis. Methods in molecular 
biology, 159-182 (2003) 
8. M. Benito, J. Parker, Q. Du, J. Wu, D. Xiang, C.M. 
Perou, and J.S. Marron: Adjustment of systematic 
microarray data biases. Bioinformatics, vol. 20, no. 1, 105-
114 (2004)  
9.A. Demiriz and K. P. Bennett: Optimization approaches 
to semi-supervised learning. In Applications and 
Algorithms of Complementarity, Kluwer Academic 
Publishers, Boston (2000)  
10. R.E. Blahut: Principles and practice of information 
theory, Addison-Wesley, Reading, Mass. (1991)  
11. A. Blum and T. Mitchell: Combined labeled and 
unlabeled data with co-training. In Proc. of Comp. 
Learning Theory (1998)  
12. A. Buzo, A. H. Gray, R. M. Gray, and J. D. Markel: 
Speech coding based on vector quantization. IEEE 
Transactions on Acoustics., Speech, and Signal Processing, 
562-574 (1980)  
13. G. Chechik and N. Tishby: Extracting relevant 
structures with side information. In Neural Info. Proc. 
Systems (2002).  
14. F. G. Cozman and I. Cohen: Unlabeled data can 
degrade classification performance of generative classifiers. 
In Intl. Florida AI Society Conf., (2002)  
15. N. Cristianini and J. Shawe-Taylor: An Introduction to 
Support Vector Machines. Cambridge University Press, 
Cambridge (2000) 
16. A.P. Dempster, N.M. Laird, and D.B. Rubin: 
Maximum-likelihood from incomplete data via the EM 
algorithm. Journal of the Royal Stat. Society, 39(1):1-38, 
(1977)  
17. R. O. Duda and P. E. Hart: Pattern Classification and 
Scene Analysis. Wiley-Interscience, New York, NY (1974)  
18. J. G. Dy and C. E. Brodley: Feature selection for 
unsupervised learning. Journal of Machine Learning 



Emergent unsupervised clustering paradigms   

689 

Research (2004)  
19. Y. J. Feng, Z. Wang, Y. Zhu, J. Xuan, D. J. Miller, R. 
Clarke, E. P. Hoffman, and Y. Wang: Learning the tree of 
phenotype using genomic data and VISDA. In Proceedings 
of IEEE Workshop on Bioinformatics and Bioengineering 
(2006) 
20. D. Gondek and T. Hofmann: Non-redundant data 
clustering. In IEEE Intl. Conf. on Data Mining (2004) 
21. D. Gondek and T. Hofmann: Non-redundant clustering 
with conditional ensembles. In Proc. Knowledge, 
Discovery and Data Mining (2005)  
22. M. Graham and D. J. Miller: Unsupervised learning of 
mixtures on huge spaces with integrated feature and 
component selection. In Proc. ANNIE (2004) 
23. M. Graham and D. J. Miller: Unsupervised learning of 
parsimonious mixtures on large spaces with integrated 
feature and component selection. IEEE Trans. on Signal 
Processing, 1289-1303 (2006)  
24. J. Grim: Multivariate statistical pattern recognition with 
non-reduced dimensionality. Kybernetika, vol. 22, no.2, 
142-157 (1986) 
25. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik: Gene 
selection for cancer classification using support vector 
machines. Machine Learning, 46:389-422 (2001)  
26. J. A. Hartigan: Clustering algorithms. John Wiley, New 
York (1975)  
27. A. K. Jain and R. C. Dubes: Algorithms for clustering 
data. Prentice Hall, Englewood Cliffs, NJ (1988)  
28. D. Jiang, C. Tang, and A. Zhang: Cluster analysis for 
gene expression data: a survey. IEEE Trans. on Knowledge 
and Data Engineering, 1370-1386 (2004) 
29. W. E. Johnson, C. Li, and A. Rabinovic: Adjusting 
batch effects in microarray expression data using empirical 
Bayes methods. Biostatistics, vol. 8, no. 1, 118-127 (2007)  
30. J. Kittler: Feature set search algorithms. In Proc. 
Pattern Recognition and Signal Processing, 41-60 (1978)  
31. D. Klein, S. D. Kamvar, and C. D. Manning: From 
instance-level constraints to space-level constraints: 
making the most of prior knowledge in data clustering. In 
Intl. Conf. on Machine Learning, 307-314 (2002) 
32. R. Kohavi and G. H. John: Wrappers for feature subset 
selection. Artificial Intelligence, 273-324 (1997)  
33. T. Lange, V. Roth, and J. M. Buhmann: Stability-based 
validation of clustering solutions. Neural Computation, 
1299-1323 (2004) 
34. M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain: 
Simultaneous feature selection and clustering using mixture 
models. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 1154-1166 (2004)  
35. X. Liu, Y. Gong, W. Xu, and S. Zhu: Document 
clustering with cluster refinement and model selection 
capabilities. In ACM Conf. on Res. and Dev. in Info. 
Retrieval, 191-198 (2002) 
36. S. C. Madeira and A. L. Oliveira: Biclustering 
algorithms for biological data analysis: a survey. IEEE 
Transactions on Computational Biology and 
Bioinformatics, 24-45 (2004) 
37. G. McLachlan and D. Peel: Finite mixture models. John 
Wiley and Sons, New York (2000)  
38. D. J. Miller and J. Browning: A mixture model and 
EM-based algorithm for class discovery, robust 
classification, and outlier rejection in mixed 

labeled/unlabeled data sets. IEEE Trans. on Pattern Anal. 
and Machine Intell., 1468-1483 (2003)  
39. D. Miller and K. Rose: Hierarchical, unsupervised 
learning with growing via phase transitions. Neural 
Computation, 8(2):425-450 (1996) 
40. D. J. Miller and H. Uyar: A mixture of experts classifier 
with learning based on both labelled and unlabelled data. In 
Neural Information Processing Systems, vol. 9, pp. 571-
577 (1997)  
41. W. Pan: Incorporating gene functions as priors in 
model-based clustering of microarray gene expression data. 
Bioinformatics, 795-801 (2006) 
42. P. Pudil, F. J. Ferri, J. Novovicova, and J. Kittler: 
Floating search methods for feature selection with 
nonmonotonic criterion functions. IAPR International 
Conference on Pattern Recognition, 279-283 (1994)  
43. J. Rissanen: Modelling by shortest data description. 
Automatica, vol. 14, 465-471 (1978)  
44. K. Rose, E. Gurewitz, and G. C. Fox: Vector 
quantization by deterministic annealing. IEEE Trans. 
Inform. Theory, 38:1249-1257 (1992) 
45. G. Schwarz: Estimating the dimension of a model: The 
Annals of Stats., vol. 6, no. 2, pp. 461-464 (1978)  
46. B. Shashahani and D. Landgrebe: The effect of 
unlabeled samples in reducing the small sample size 
problem and mitigating the Hughes phenomenon. IEEE 
Trans. on Geoscience and Remote Sensing, vol. 32, pp. 
1087-1095 (1994) 
47. K. Shedden at al.: Accurate molecular classification of 
human cancers based on gene expression using a simple 
classifier with a pathological tree-based framework. 
American Journal of Pathology, 1985-1995 (2003) 
48. N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall: 
Computing Gaussian mixture models with EM using 
equivalence constraints. In Neural Information Processing 
Systems (2003) 
49. S. Yu and J. Si: Segmentation given partial grouping 
constraints. IEEE Trans. Patt. Anal. and Mach. Intell., 173-
183 (2004)  
50. A. Sierra and F. Corbacho: Reclassification as 
supervised clustering. Neural Computation, 2537-2546 
(2000) 
51. N. Slonim and N. Tishby: Document clustering using 
word clusters via the information bottleneck method. In 
ACM Conf. on Res. and Devel. in Info. Retr., 208-215 
(2000) 
52. R. Sokal and P. Sneath: Principles of numerical 
taxonomy. W. H. Freenabm San Francisco (1963)  
53. A. Strehl and J. Ghosh: A knowledge reuse framework 
for combining partitionings. J. of Machine Learning 
Research, 583-617 (2002)  
54. C. Tang, L. Zhang, A. Zhang, and M. Ramanathan: 
Interrelated two-way clustering: an unsupervised appraoch 
for gene expression data analysis. In IEEE Intl. Symp. on 
Bioinformatics and Bioengineering (2001)  
55. R. Tibshirani, G. Walther, and T. Hastie: Cluster 
validation by prediction strength. Stanford Statistics Dept. 
Technical Report (2001) 
56. N. Tishby, F. C. Pereira, and W. Bilek: The information 
bottleneck method. In Allerton Conf. on Comm., Control, 
and Computing, 368-377 (1999) 
57. A. Topchy, M. Law, and A. K. Jain: Combining 



Emergent unsupervised clustering paradigms   

690 

multiple weak clusterings. In Proc. of IEEE International 
Conference on Data Mining, 331-338 (2003) 
58. K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl: 
Constrained K-means clustering with background 
knowledge. In Intl. Conf. on Machine Learning, 577-584 
(2001)  
59. Z. Wang, Y. Wang, J. Lu, S-Y Kung, J. Zhang, R. Lee, 
J. Xuan, J. Khan, and R. Clarke: Discriminatory mining of 
gene expression microarray data. J. VLSI Signal 
Processing, 255-272 (2003) 
60. caBIG,  http://caBIG.nci.nih.gov  
61. Y. Wang, L. Luo, M.T. Freedman, and S.Y. Kung: 
Probabilistic principal component subspaces: a hierarchical 
finite mixture model for data visualization. IEEE Trans. on 
Neural Networks, vol. 11, 625-636 (2000) 
62. E. P. Xing and R. M. Karp: CLIFF: clustering of high-
dimensional microarray data via iterative feature filtering 
using normalized cuts. Bioinformatics, 306-315 (2001) 
63. E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell: 
Distance metric learning, with application to clustering 
with side-information. In Neural Information Processing 
Systems (2002)  
64. R. Xu and D. Wunsch II: Survey of clustering 
algorithms. IEEE Trans. on Neural Networks, 645-677 
(2005)  
65. Z. Zhang and D. W. Chan: Cancer proteomics: in 
pursuit of “true” biomarker discovery. Cancer 
Epidemiological Biomarkers, 2283-2286 (2005) 
66. P. Zhao, J. Seo, Z. Wang, Y. Wang, B. Shneiderman, 
and E.P. Hoffman: In vivo filtering of in vitro expression 
data reveals MyoD targets. Comptes Rendus Biologies, vol. 
326, 1049-1065 (2003)  
67. Q. Zhao and D. J. Miller: Mixture modeling with 
pairwise, instance-level class constraints. Neural 
Computation, 2482-2507 (2005) 
68. Y. Zhu, Z. Wang, Y. Feng, J. Xuan, D.J. Miller, E.P. 
Hoffman, and Y. Wang: Phenotypic-specific gene 
clustering using diagnostic tree and VISDA. In IEEE Intl. 
Conf. Eng. Med. Biol., New York (2006) 
  
Footnotes: 1 A multinomial component model was used for 
text, instead of a Gaussian model, in (23). The multinomial 
has one free parameter for each word, per component. 2 
Careful study design can minimize confounding influences 
and sample biases. However, some confounding influences 
– from patient age, gender, institution, and other factors – 
may be unavoidable in the measured data.  
  
Abbreviations: BIC: Bayesian Information Criterion, CL: 
cannot-link, DNA: deoxyribonucleic acid, DWD: distance-
weighted discrimination, EB: empirical Bayes, EM: 
expectation-maximization, IB: information bottleneck, ML: 
must-link, PCA: principal components analysis, PMF: 
probability mass function, SVD: singular value 
decomposition, SVM: support vector machine, VISDA: 
visual and statistical data analyzer  
  
Key Words: Clustering, Feature Selection, Model Order 
Selection, Semisupervised Learning, Confounding Effects, 
Data Fusion, Information Bottleneck, Stability Criteria, 
Hierarchical Clustering, Review 
  

Send correspondence to: Professor. D.J. Miller, Elec. Engr. 
Dept, Penn State, University Park, PA, 16802, USA, Tel: 814-
865-6510, Fax: 814-865-7065, E-mail: djmiller@engr.psu.edu 
 
http://www.bioscience.org/current/vol13.htm 


