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1. ABSTRACT 
 

It is now clear that a detailed picture of cell 
regulation requires a comprehensive understanding of the 
abundant short protein motifs through which signaling is 
channeled. The current body of knowledge has slowly 
accumulated through piecemeal experimental investigation 
of individual motifs in signaling. Computational methods 
contributed little to this process. A new generation of 
bioinformatics tools will aid the future investigation of 
motifs in regulatory proteins, and the disordered 
polypeptide regions in which they frequently reside. Allied 
to high throughput methods such as phosphoproteomics, 
signaling networks are becoming amenable to experimental 
deconstruction. In this review, we summarise the current 
state of linear motif biology, which uses low affinity 
interactions to create cooperative, combinatorial and highly 
dynamic regulatory protein complexes. The discrete 
deterministic properties implicit to these assemblies suggest 
that models for cell regulatory networks in systems biology 
should neither be overly dependent on stochastic nor on 
smooth deterministic approximations. 

 
 
 
 
 
 
2. INTRODUCTION 
 

The paradigm of "Structure Determines 
Function" has offered useful guidance in protein research, 
at least since it has been known that these molecules can 
form stable folded structures. Challenges to this dogma are 
likely to prove futile. Nevertheless, the idealised reader that 
we have in mind for this review is someone who will look 
upon the emerging trends in cellular signaling and may like 
to ask themselves what these terms - structure and function 
- actually embody in the context of cell regulatory proteins 
and whether the traditional biochemical text book view is 
no longer adequate. 

 
Proteins are the primary effectors of the cell - the 

cellular components responsible for mediating the vast 
majority of different functions/activities that are needed for 
the cell to function. An inspection of the Gene Ontology 
(GO) (1) gives a sense of the huge range of different 
functions that proteins are involved in. 

 
Many proteins have a modular architecture in the 

sense that they contain a variety of globular domains, 
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which contribute to different molecular functions such as 
catalysis and ligand binding. Over the last 20 years, it has 
gradually been established that sequences of many 
regulatory proteins also contain abundant short, conserved 
motifs constituting a second class of module that contribute 
to molecular functions of the proteins. This is illustrated by 
the well-known example of c-Src, a protein composed of 
three globular domains interspersed with short segments of 
flexible peptide, where it is shown that the roles of the 
domains and linear motifs are neatly linked: the kinase 
domain acts on linear motifs containing a phosphorylatable 
tyrosine, the SH3 domain binds to proline-rich peptides, 
and the SH2 domain binds to phosphotyrosines. The SH3 
and SH2 domains switch between cis and trans peptide 
interactions to regulate the activity of the kinase domain in 
the open and closed conformations (2). 

 
Src demonstrates common aspects of signaling 

activity since many protein molecules are regulated by 
post-translational modifications (PTM) that may mediate 
allosteric effects but, more often, create binding sites 
important for protein-protein interactions where ligand 
domains can bind to phosphorylated, methylated or 
ubiquitylated sites. Some of the earliest peptide motifs to be 
defined function in cell cycle regulation, hence the original 
definition of linear motif was provided by Tim Hunt (3). 

 
“These motifs are linear, in the sense that three-

dimensional organization is not required to bring distant 
segments of the molecule together to make the recognizable 
unit. The conservation of these motifs varies: some are 
highly conserved while others allow substitutions that 
retain only a certain pattern of charge across the motif.” 

 
Then - there were few; now - there are many. 

And yet, we may still only know a tiny fraction of the true 
number and how they promote cross-talk between the 
signaling networks. 

 
The sequence of amino acids determines the 

structure and the folding of a protein. Until recently, 
structural biology focused its attention mainly on the well-
ordered regions (globular domains) of proteins that are 
typically less difficult to crystallize. The functions of 
globular domains have also been studied using a range of 
molecular and biochemical techniques (4, 5). Many 
bioinformatics tools are also available for studies of 
globular domains, including SMART, Pfam, CDD, SCOP 
and CATH (6-10). As a consequence there has been a 
tendency to avoid the unstructured proteins and regions 
(e.g. by removing them in expression constructs). Since 
linear motifs are predominantly found in regions of protein 
sequence that are obviously natively disordered (11), the 
lack of resources to study this type of protein module has 
hampered our understanding of their function. An 
important recent development has been the establishment 
of DisProt, a database of protein disorder (12). 

 
While it is fairly easy to develop good detection 

models for globular domains based on high-quality 
multiple alignments, this is far more difficult for linear 
functional sites. The primary reason is their short length 

(typically 3 to 10 amino acids long) and often poorly 
conserved sequences. The short length of the motifs also 
makes them much more likely to arise/disappear 
spontaneously via mutations, making them evolutionarily more 
labile. Natural selection can thus operate, by point mutation, to 
fine-tune cell regulatory processes including those affecting 
development. The experimental verification of short functional 
sites is also often difficult for several reasons. Some sites are 
only transiently used, and thus difficult to capture by molecular 
methods. Even when captured, it can be difficult to determine 
which protein has used the site (e.g. it is often difficult to 
determine which kinase has phosphorylated a particular 
residue). It is also important to underline that the roles that 
linear motifs and domains play in the cellular interaction 
networks are quite different, not least because of the affinity 
with which they bind to their interacting partners. While 
domains can bind to each other with relatively strong affinities 
(in the order of nanomolar (11)), linear motifs bind with lower 
affinity, usually between 1.0 and 150 micromolar e.g. (13, 14). 

 
This review will focus on the role of the linear 

motifs in cell regulation, protein complex formation, their 
classification and the new bioinformatics methods available 
to predict hitherto undiscovered motifs. A glossary is 
provided for key terms that readers may be unfamiliar with 
(Table 1). 
 
3. COMPLEX AND COOPERATIVE – SIGNAL 
INTEGRATION AND DETERMINISTIC 
SIGNALING 
 
3.1. Interactions as descriptors of protein function 

The characteristics of linear motif interactions 
make them well suited for use in the integration of cellular 
signals (15). To perform their functions proteins need to 
interact with each other and with other components of the 
cell and they do this in many different ways. For example, 
enzymes interact with small molecules and macromolecules 
that are the reactants in the reactions they catalyse. Structural 
proteins, such as tubulin polymerise to form large structural 
assemblies (16). Targeting of ER resident proteins, that are 
retained in the ER compartment or are recycled via retrograde 
transport, is regulated through the interaction of their C-
terminal KDEL motif with the KDEL receptor (17). 

 
The protein-protein interactions and hence 

functions that arise via interactions between proteins can be 
categorised into several classes as summarized in Figure 1. 

 
Domain-domain interactions typically involve 

large interfaces between protein domains. Many examples 
of this binding mode can be found in the literature and in 
on-line resources e.g. the DIMA database (18). 

 
Mutual fit interactions also tend to involve 

relatively large interfaces. The defining property of these 
interactions is that the individual components can only 
form a stable structure in the presence of the other 
components. One example is the p53 tetramerisation 
domain (19), another is the synaptic SNARE complex, 
which assembles into a parallel four-stranded helical 
bundle (20). 
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Table 1. Glossary 
Term Definition 
Complex epitope Most antibodies recognize a three-dimensional 

surface feature that is determined by the folded 
structure of a protein antigen. 

Deterministic 
engine 

A deterministic engine will always produce the 
same results on the same input. 
 

Discrete 
deterministic 
process 

A predictable system, in which chance does not 
play a role, but with discontinuous elements that 
cannot be described by the smooth models. 

Globular Domain A region of a protein sequence that folds 
autonomously and possesses its own function. 
Sometimes used synonymously with ''structural 
domains'' or ''folded domains''. 

Hub Protein A term coming from interaction networks for 
proteins that make large numbers of interactions. 
These usually have substantial native disorder 
(known or predicted). 

Induced Fit A binding mode in which one molecule adopts a 
shape that fits to the template provided by the other 
molecule during the binding step. The term 
originally comes from enzyme theory. 

Interaction 
networks 

Protein-protein interaction maps have become 
useful aids for understanding the biological 
complexity of the proteome. Interaction network 
resources like STRING are ensembles of widely 
varying experimental evidence, ranging from low 
throughput biochemistry to large-scale yeast 2-
hybrid. Not to be confused with models of 
signaling networks. 

Intrinsically 
Unstructured 
Polypeptide 

Alternative to Native Disorder. Intrinsically 
disordered has also been used. Common 
abbreviations are IUP and IUR. 

Linear Epitope Antibody recognition site determined by the linear 
sequence of amino acids independent of tertiary 
structure. Required for Western blots and other 
immunodetection methods. 

Linear Motif Short regions of proteins (typically peptides 
between 3 and 8 amino acid residues long) that 
embody a distinct molecular function independent 
of the larger sequence/structure context. Nearly 
always involved in regulation. The function is 
almost always mediated by interactions with one or 
more globular domain classes. Acronyms include 
LM, ELM and SLiM. 

Modular Protein A protein with multiple structural components, 
each providing separate functionality. The overall 
function is the aggregate of the subfunctions. 

Mutual Induced Fit 
(or Mutual Fit) 

A binding interaction mode in which neither 
partner provides a rigid template. Instead, the 
flexible partners adapt to each other during binding 
in the creation of a stable folded structure. When 
the interacting partners are natively disordered 
proteins, they are frequently homologous. 
Examples are the tetramerisation domain of p53, 
collagen triple-helices and coiled coils. Mutual fit 
is also reported for e.g. protein-RNA interactions. 

Natively 
Disordered 
Polypeptide 

Used interchangeably with Intrinsically 
Unstructured Polypeptide (IUP). Natively unfolded 
has also been commonly used. Terminology and 
definitions lack standardisation. In the widest sense 
it can be taken to mean all peptide regions that do 
not form an autonomous, stable 3D structure in the 
native solvent, thus including regions such as 
single trans-membrane helices, coiled coils, and 
collagen helices. 

Scaffold Protein A term coming from biochemical studies for a 
protein that is thought to have a major role in 
assembling a signaling protein complex. For 
example, scaffold proteins are reported for a 
number of kinases and their regulators. Sometimes 
used synonymously with ''Docking protein''. 

Smooth 
deterministic 
process 

A predictable system, in which chance does not 
play a role, which can be described by differential 
equations, e.g. the rate laws of chemistry. 

Stochastic Process A process in which chance plays a role. Probability 
distributions are required to simulate future 
evolution of the system. 

Induced fit interactions can also occur between 
structural domains and relatively large natively 
unstructured regions of other proteins. The natively 
unstructured region is then induced to form a stable 
structure, but only in the presence of the interacting 
structural domain. An example of a large segment of 
induced fit is seen in the binding of a segment of SARA to 
SMAD transcription factors (21). 
 

Linear motif-domain interactions are a subset of 
induced fit interactions, where the templated structure is 
induced in a short peptide of only a few residues. As a 
consequence of the small number of residues involved, 
such interactions tend to be transient and have low binding 
affinities. Therefore, they are well suited for mediating 
functions that require a fast response to changing stimuli. A 
classical example is the dynamic interaction between a 
kinase and its phosphorylation site: the kinase domain 
needs to bind to the peptide, attach the phosphate, and then 
dissociate again, potentially to then go on to interact in a 
similar way with other substrates. An additional feature is 
the richness, within a given length of sequence, of potential 
motif-domain interactions, which is higher than the 
domain-domain potential for a given length of sequence. 
Remarkable numbers of interactions have been ascribed to 
motif-rich regulatory proteins such as p53 and CBP/P300 
(e.g. see their interaction sets presented in the STRING 
server at http://string.embl.de/). The term “hub protein” is 
increasingly being used to describe such proteins that are 
located in central positions in regulatory networks. 
 
3.2. Cooperative binding of linear motifs 

While in some cases a single linear motif 
interaction seems sufficient to mediate a given function, 
e.g. peroxisomal targeting via PTS1 (22), more often 
cooperativity among several motifs is required. For 
example, the interaction between T-cell antigen receptor 
(TCR) and the ZAP-70 protein-tyrosine kinase requires the 
cooperative interaction of immunoreceptor tyrosine-based 
activation motif (ITAM) in the TCR with two SH2 domains 
in ZAP-70 (23, 24). Cooperativity does not require direct 
contact between the linear motifs themselves: two (or 
more) independent, moderate affinity interactions combine 
to give a higher effective affinity in the aggregate. 

 
Multiple linear-motif interactions can also be 

used to increase the specificity with which two peptides 
bind to each other. An example of this is in the binding of 
the SH3 domain of C-terminal Src kinase (CSK) to proline-
enriched tyrosine phosphatase (PEP). The two proteins 
interact via both a conventional proline-rich SH3 
recognition linear motif and an additional short 
hydrophobic linear motif in PEP. This additional 
interaction is mediated by a second binding pocket of the 
CSK SH3 domain different to the one used to interact with 
the proline-rich motif (25). 

 
There are other ways linear motifs can enable 

interaction between different cellular signals. For example, 
a protein may contain different modification linear motifs 
that target the same amino acid residue for different PTMs 
(considering the modifier enzymes associated with the 
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Figure 1. Structural components of regulatory proteins. Globular domains play many roles in signaling. Interactions between 
globular domains require large complementary surfaces. The autonomously folded domains are expected to be outnumbered by 
the number of functional peptide elements in the natively disordered regions. These have two main ways of binding to other 
modules - induced fit when a flexible peptide binds to a well structured template and mutual fit when two flexible peptide 
elements together fold into a stable structure. While the distinctions are clear, in practice a given interaction might employ 
varying amounts of the three interaction types: For example, an interface between two globular domains might have several local 
regions where mutual and induced fits occur. The estimate of ~25% native disorder in the human proteome was obtained using 
IUPred prediction (provided by Chad Davis, EMBL). 

 
different PTMs as inputs from different cellular signals). 
This could lead to competition (i.e. an interaction) between 
the two signals, with different enzymes competing to 
modify the same residue. The different PTM states of the 
motif resulting from this interaction would then presumably 
bind to different interacting domains (via different ligand 
linear motifs) - thus leading to different output signals from 
the interaction. Additionally, once a particular PTM is 
attached to the protein, the globular domain that recognises 
this PTM can form an interaction with the modified motif. 
This interaction may help sterically hinder interactions 
between modifier enzymes responsible for different PTMs 
that can target the same residue. 

 
An example of such overlapping motifs is lysine 

9 of histone H3 in mammalian cells. This residue may be 
either acetylated or methylated (26): methylation is linked 
to transcriptional silencing while acetylation is involved in 
transcriptional regulation. Overlapping linear motifs of this 
kind are abundant in histone tails; the catalogue of these 
has been called the “histone code” (27). Figure 2 shows a 
peptide from the N-terminus of Histone H3, tri-methylated 
at lysine-4, in complex with the PHD finger of BPTF (28). 
Methylation of this residue has been shown to be 

significantly more abundant in actively expressed 
chromatin regions, compared to other regions (29). A 
further example is found in the transcriptional co-activator 
p300. Two lysine residues within the cell-cycle regulatory 
region 1 of p300 (1020 and 1024) are both acetylated and 
sumoylated. Recent data suggests that competition between 
acetylation and sumoylation at these sites may be involved 
in regulating the activation of p300 (30). (Additional 
examples involving sumoylation sites can be found in 
reference (31)). 

 
Another example of this kind of signal 

combination is the sumoylation of lysine 21 of 
IkappaBalpha. If this residue is not sumoylated, it is 
available for ubiquitylation by E3 ubiquitin ligases, 
targeting the protein for degradation via the proteasome 
pathway (32). Degradation of IkappaBalpha leads to 
activation of NF-kappaB signaling, an important step in the 
immune response to infection, along with many other 
external stimuli. 

 
3.3. Protein complexes and linear motifs 

Given the low affinity of linear motif 
interactions, they tend not to be involved in forming large, 
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stable protein complexes (such as an RNA polymerase 
holoenzyme), although they often regulate the function of 
such complexes (as with the motif-rich CTD element of 
RNA Pol II). However, in a few cases, regulatory 
multiprotein complexes, mediated solely using linear motif 
interactions, have been described. A good example of this 
is the signaling complex assembled during TCR-induced 
signaling that involves the transmembrane receptor LAT, 
the SH2/SH3 adapter GRB2 and several other components 
(33). A combination of phosphotyrosine peptide ligands in 
LAT interacts with the SH2 domain in GRB2, while SH3 
domains in GRB2 interact with proline-rich peptide ligands 
in SOS1 and CBL2, along with several other linear motif-
domain interactions. The SH3 domain-peptide interactions 
cannot form a stable complex alone but must cooperate 
with the phosphotyrosine interactions. 

 
In some cases, quite long-lived protein 

complexes contain all components of a PTM cycle; e.g. an 
amino acid residue is phosphorylated, the modification 
creates a binding motif for a target protein, then finally the 
phosphate is removed to stop the signaling: kinase, 
substrate, ligand, phosphatase can all be present in the 
complex for the duration of the cycle. A complex of this 
kind is formed between NimA-related kinase (Nek2), 
protein phosphatase 1 alpha, and Nek2-associated protein 
(C-Nap1), a substrate for both Nek2 and PP1 (34). 

 
Another example, is the complex formed in 

human neurons between protein kinase A (PKA), protein 
phosphatase 2B (PP2B), and the A kinase anchoring 
protein, (AKAP79) (35). The two enzymes are known to 
cooperate to regulate the phosphorylation state of substrates 
such as AMPA receptor glutamate receptor 1 (GluR1) (36, 
37). 

 
In a third example, both mammalian and yeast 

MAP kinase cascades employ scaffold proteins to ensure 
signaling specificity and efficiency. Studies on the yeast 
mating pheromone pathway showed that the Ste5p scaffold 
protein selectively binds the MAP3K Ste11p, MAPKK 
Ste7p, and MAPK Fus3p complex and connects it to 
upstream activators (38). Furthermore, when activated, 
Fus3p and other yeast Map kinases have been shown by 
ChIP-Chip analyses to physically occupy the genes they 
regulate (39). 

 
Do these kinases represent the exception or the 

rule? Will most protein kinases prove to have analogous 
scaffolded substrate interactions? Will other non-
phosphorylation-based motifs also promote such 
organization? 
 
3.4. Stochastic versus deterministic nature of linear 
motifs 

Once a persistent regulatory complex has been 
assembled, the phosphorylation state of the bound substrate 
protein is not strongly influenced by the affinity of kinase 
and phosphatase for the substrate peptide. Instead other 
factors are much more important regulators, e.g. other 
protein-protein interactions, such as allosteric regulation of 
the enzymatic components, interactions with competitive 

inhibitors of the reaction, cellular localization of the 
complex or concentration of the small-molecule reactants 
(in this case ATP and ADP). The collective affinity of 
interactions that hold the PTM complex together is much 
higher than those of the individual interactions between 
each linear motif and its interacting partner. Thus, the low 
affinity stochastic behavior of the individual linear motif 
interactions could be considered overwhelmed by the high 
affinity of the collective interactions holding the complex 
together. If the effect of the collective interactions is 
sufficiently robust, then the system has become 
deterministic: the regulatory protein complex is now a 
deterministic engine. 

 
A deterministic system is one that behaves 

predictably, i.e. given a particular input, it will always 
produce the same output. The rate laws of chemistry are 
deterministic because of the large numbers of molecules 
involved, so that chemical reactions become predictable to 
high accuracy. In a cell biological context it might be 
unclear whether deterministic or stochastic models should 
be favoured, since regulatory proteins may be present in 
only a few thousand molecules per cell, or sometimes just a 
few hundred. Biochemical pathway modeling tools 
therefore often offer both possibilities (40, 41). 

 
Because of a reliance on chance events, a 

stochastic signaling system might be less efficient than a 
deterministic one. A deterministic cell signaling system 
requires that regulatory complexes be assembled; otherwise 
it will be difficult to avoid stochastic features such as 
Brownian motion from predominating. Then, under the 
normal cellular operating conditions, the set of regulatory 
signals input into the complex are guaranteed to produce 
the same result every time. If this is indeed the case, 
determinism is simply an emergent property of a system 
based on stochastic but highly cooperative signaling 
elements dynamically creating large protein complexes that 
function as deterministic signaling engines. The creation, 
disassembly and fusion of these complexes implies that cell 
signaling models should be discretely deterministic and that 
the smooth deterministic differential equations used to 
model metabolic fluxes (40, 42) may be inappropriate. 

 
It should be obvious why cell regulation is likely 

to have evolved to include deterministic signaling 
structures: failsafe behaviors will help to guarantee cell 
survival. Tyrosine kinases (TKs) illustrate that random 
diffusion of substrate molecules can be irrelevant to 
regulatory function. Well studied TKs such as Src, EGFR 
and Abl appear to have very weak sequence specificity 
(43), being capable of phosphorylating any accessible 
tyrosine (though rates may vary for different peptide 
substrates in vitro). Yet Src and the insulin receptor do not 
phosphorylate the same substrate proteins: diffusion is 
ruled out and substrate specificity can only be achieved by 
complex-mediated substrate delivery. 

 
That diffusion may play a subordinate role in cell 

signaling is highlighted by a recent FRET-based 
intracellular study of a protein tyrosine phosphatase. The 
PTP1B tyrosine phosphatase activity revealed remarkably
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Table 2. Classification of linear motifs according to the ELM database. 
Functional type Description Regular expression ELM link 
PTM Sumoylation [VILMAFP]K.E MOD_SUMO 
 N-Myristoylation (^MG|^G)[^EDRKHPFYW]..[STAGCN][^P] MOD_NMyristoyl 
 N-glycosylation. .(N)[^P][ST].. MOD_N-GLC_1 
Localization/Targeting KDEL/ER retrieving [KRHQSAP][DENQT]EL$ TRG_ER_KDEL_1 
 Nuclear export signal [DEQ].{0,1}[LIM].{2,3}[LIVMF].{2,3}[LMVF].[LMIV].{0,3}[DE] TRG_NES_CRM1_1 
 ER retention/retrieving ^M[DAL][VNI]R[RK]|^M[HL]RR TRG_ER_diArg_1 
Binding/ligand Mapk docking site [KR]{0,2}[KR].{0,2}[KR].{2,4}[ILVM].[ILVF] LIG_MAPK_1 
 PDZ binding motif .[ST].[VIL]$ LIG_PDZ_1 
 SH3 binding motif [RKY]..P..P LIG_SH3_1 
Cleavage Furin R.[RK]R. CLV_PCSK_FUR_1 
 Proprotein convertase 7  [R]…[KR]R. CLV_PCSK_PC7_1 
 Taspase 1 Q[MLVI]DG..[DE] CLV_TASPASE1 

 
discrete spatial regulation for this soluble cytosolic protein 
(44). It was found to be most active at the endoplasmic 
reticulum but moderately active at the plasma membrane. 
The authors were not able to fit the observed PTP1B 
activity gradient to a smooth reaction diffusion model 
because the discrete spatial activity was robust to a wide 
range of parameterisation (enzyme concentration, substrate 
concentration, cell shape, etc.). 

 
Current models of cell regulatory systems often 

don’t include information about the non-catalytic 
interactions that maintain complexes between components 
of the system. For example, a recent report modeling the 
phosphorylation states of the dopamine and cAMP-
regulated phosphoprotein of 32 kDa (DARPP-32) (45), 
which is a substrate of both PKA and PP2B, does not 
include models of the interaction of these enzymes with the 
scaffold protein AKAP79 mentioned above. System models 
of this kind might be improved by incorporating the non-
catalytic interactions that establish complexes of the system 
components. 
 
4. CLASSIFICATION AND EXAMPLES OF LINEAR 
MOTIFS 
 

As described for the ELM server (46) it is 
convenient to classify linear motifs into four types of 
functional sites: ligand sites (LIG), PTM sites (MOD), 
proteolytic cleavage and processing sites (CLV), and sites 
for subcellular targeting (TRG) (for examples see Table 2). 
These functional assignments are useful, in that they 
encompass the range of peptide motif activity, but are 
somewhat arbitrary. For example, modification sites 
usually also act as ligands, while cell compartment 
targeting motifs are a full subset of the ligand motifs. 

 
Other classifications are no doubt possible, for 

example a structural classification. About one third of 
liganded motifs in the ELM resource adopt a helical 
conformation in the bound state (even if lacking stable 
structure when unbound). Many of these seem to use 
mainly hydrophobic interactions in the binding interface. 
Beta augmentation of motifs accounts for another third. 
This is the formation of an extra strand to an already 
existing beta sheet in the ligand domain, as shown in Figure 
2 depicting the PHD finger/H3K4 interaction. Beta 
augmentation is much more common than had been 
anticipated and sometimes involves fascinating cis-trans 

 
rearrangements. Since there is an excellent recent review of 
this interaction mode (47) it is not treated more here, but 
researchers interested in linear motif biology should be well 
informed on beta augmentation. The remaining third of 
linear motifs have irregular interaction topologies. 
 
4.1. Phosphopeptide motifs and their phosphopeptide-
binding domains 

Phosphorylation is the most abundant PTM of 
eukaryotic proteins. It has gradually become clear that only 
a small subset of phosphosites lead to allosteric regulation 
of globular domain function, as exemplified by the Tyr416 
of the Src kinase (48). The recent system-wide attempt to 
mine the proteome for phosphotyrosine motifs has revealed 
that two-third of known phosphotyrosine sites are involved 
in mediating the interaction with phosphotyrosine binding 
domains, e.g. SH2, whereas the remaining sites regulate 
processes like enzyme activity or nucleic acid binding (49). 
Thirteen phosphopeptide-binding domains are listed in 
Table 3 and there is every reason to suppose that the list 
will become much larger. Figure 3 shows the interaction of 
a phosphopeptide with the 14-3-3 domain. Of the large 
domain families, SH2 and PTB are currently best 
understood (50). WD40 is a huge domain family of central 
importance in linear motif biology throughout the cell. 
Some bind to phosphopeptides, while others bind 
unmodified motifs e.g. the clathrin box (51). However, 
there are other domain families such as BRCT and FHA 
that are clearly generic phosphopeptide binders. Yet, so far, 
only a few of their members have been investigated. 

 
The BRCT domain of the nuclear protein BRCA1 

has an important role in tumor suppression (52) and DNA 
damage response (53). In the human proteome, there are 
about 40 BRCT domains in ~20 proteins with varied 
domain architectures (http://smart.embl-heidelberg.de 
entry: SM00292); a few of these proteins have a single 
copy of BRCT, but mostly the domains occur as pairs or 
higher copy number repeats. BRCT domain pairs from 
BRCA1 and MDC1 preferentially recognize phosphoserine 
peptides (54). Many of the BRCT ligands are likely to be at 
pSQ motifs phosphorylated by the checkpoint kinases, 
ATM, ATR, DNA-PK (55). The known BRCA1-binding 
motifs are pS..F.K (high affinity) or pS..F (lower affinity) 
(54). The structure of the latter complex is shown in Figure 
4. Paired BRCT domains are bound together at a 
hydrophobic interface and present a phosphopeptide 
binding surface spanning both domains. 
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Table 3. Protein domain families with one or more 
members that bind phosphopeptides. 

Protein 
Domain 

Modified 
Amino 
Acid 

PDB 
Entry 

Human 
proteins 
with 
domain1 

Reference 

SH2 pY 1I3Z 111/100 (50) 
PTB pY 1IRS 31/25 (50) 
C2 
(PKCdelta) 

pY 1YRK 129/134 (145) 

BRCT pS 1TI5 21/22 (146) 
FF pS 1H40 6/4 (147) 
MH2 pS 1U7F n.a.2/8 (148) 
SRI pS 2C5Z n.a./n.a. (149) 
14-3-3 pS/pT 1QJA 12/9 (150) 
WW pS/pT 1I8H 45/37 (151) 
WD40 pS/pT 1NEX 264/207 (152) 
Polo-box pS/pT 1UMW n.a./5 (153) 
FHA pT 1GXC 24/23 (154) 
Cks pT 2ASS n.a./2 (155) 

1 The data numbers obtained from two sources: SMART_genomic_mode 
http://smart.embl-heidelberg.de/browse.shtml and from a domain search in 
the DR field of the human Uniprot/SwissProt entries (18,054 entries when 
surveyed). 2 n.a. = not available 
 

 
 
Figure 2. Reading the “histone code”. The PHD Finger of 
human BPTF (solid surface) bound with the histone H3 (1-
15)K4me3 peptide (sticks). This motif includes a di- or tri-
methylated lysine, which is a marker for active promoters. 
Sidechains are shown for the pattern "RTKQ" where the 
four sidechains make very specific interactions: in 
particular the trimethylated K resides in a long hydrophobic 
pocket that cannot accept the unmethylated lysine. Dotted 
lines indicate hydrogen bonds. The histone tail is known to 
be disordered when unbound but adopts a short local beta 
conformation in the binding site of human BPTF. Binding 
as an extra strand to an existing beta sheet is termed “beta 
augmentation”. See ref (28) and entry pdb:2F6J for the 
crystal structure. Key to structural figures. Binding domain 
surface (white) with oxygen (red) and nitrogen (blue); ELM 
peptide (gold sticks) with N- (blue) and C- (red) termini; 
sidechains with oxygen (red), nitrogen (blue), phosphorous 
(orange), and methyl groups (dark-green). Putative 
hydrogen bonds indicated by yellow dotted bands. Images 
produced using PyMOL (http://pymol.sourceforge.net/). 
 
Perhaps the single copy BRCT domains must also dimerise: 
it is worth considering that their dimerisation might be 
aided by scaffolding proteins, which are important for 
many aspects of phosphorylation, and which might then 

add an additional regulatory interaction to BRCT 
phosphopeptide binding. It remains possible that some 
BRCT domains bind phosphopeptide as monomers. Since 
consensus phosphopeptide motifs have so far been defined 
for just a few BRCT domains, the range of different 
binding motif patterns could be quite large in the BRCT 
family, comparable to SH2 in variation. 

 
The BRCT domain is sometimes found in 

association with a second phosphopeptide-binding domain, 
FHA. The “Forkhead associated” domain was first 
identified in Forkhead transcription factors but is not 
limited to the nucleus, being found in a wide range of 
signaling proteins and in several kinesins. FHA occurs in 
more than 20 proteins in the human proteome 
(http://smart.embl-heidelberg.de entry: SM00240). In 
contrast to BRCT, FHA is usually found as a single copy. 

 
Most of the work on FHA domain function 

involves proteins with major roles in cell cycle and DNA 
damage response. FHA has been shown to be a 
phosphothreonine-binding module (56, 57). The yeast 
Rad53 checkpoint protein is unusual in containing two 
FHA domains. These have differential but interconnecting 
function in Rad9 activation (58) and have different 
sequence specificities. Rad53 FHA1 shows a preference for 
a large aliphatic amino acid at the pT+3 position while the 
FHA2 has a preference for an acidic amino acid (D or E) at 
this position (see Figure 5). Although weak in vitro binding 
of phosphoserine and phosphotyrosine peptides has been 
observed, all higher affinity FHA interactions utilize 
phosphothreonine, which may be an essential requirement 
for biological FHA ligands. The Ki67 FHA binds a larger 
triply-phosphorylated peptide, where one of the 
phosphorylations is in the sequence specific location, a 
second makes non-specific backbone contacts and a third 
makes no direct contact – yet is able to increase binding 
affinity by stabilizing the bound conformation of the 
phosphopeptide (59). This complex illustrates the point that 
clusters of phosphorylation sites can have a cooperative 
regulatory function. 
 
4.2. Destruction motifs 

The "destruction motifs" are a prime example of 
sequence motifs known to participate in particular 
biological pathways. Many proteins acting at crucial steps 
of the cell cycle must be rapidly degraded as soon as their 
task has been performed. Such proteins often contain 
destruction motifs that act as signals facilitating their rapid 
degradation at the required moment. The best characterised 
destruction motifs are the KEN-box (consensus KEN) (60) 
and the D-box (reported consensus R..L but the motif 
conservation may actually be R..L..[ILV]) (61). Both 
motifs allow the timely recruitment of the anaphase-
promoting ubiquitin ligase complex APC/C, which in turn 
initiates ubiquitination and subsequent proteasome-
mediated degradation of the protein (62, 63). Recognition 
of destruction boxes is performed by two proteins, Cdh1 
and Cdc20, which act as co-activators of the APC/C at 
distinct steps of the cycle. Cdc20 joins the APC/C in early 
mitosis. During anaphase it is replaced by Cdh1. The D-
box is recognised by both Cdc20 and Cdh1, whereas the 
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Figure 3. Phosphopeptide (pS/pT) recognition by 14-3-3 
protein. 14-3-3 proteins interact with phosphoserine or 
phosphothreonine containing motifs. Here human 14-3-3 is 
shown bound to a phosphoserine containing peptide 
matching the consensus phosphopeptide RS.pS.P lying 
within, and only partially occupying, a deep groove in the 
protein. See ref (162) and pdb:1QJB for the crystal 
structure. 
 

 
 
Figure 4. Phosphoserine recognition by a BRCT domain 
pair. The BRCA1 BRCT domains (solid surface) are bound 
to a phosphopeptide motif (stick representation) from the 
Bach1 helicase. The phosphate group of phosphoserine 
makes 3 strong charged interactions while the Phe nests in 
a hydrophobic depression. Since none of the adjacent 
residues make high affinity interactions, the motif is 
summarized as pS..F. This phospho-protein mediated 
interaction of the BRCT domain has a central role in cell-
cycle check point and DNA repair functions. See ref (54) 
and entry pdb:1T15 for the complex structure. 
 
KEN-box is preferentially recognized by Cdh1. Cdc20 
itself contains a KEN box, which is recognized by Cdh1, 
ensuring the temporal degradation of Cdc20 and its 
replacement by Cdh1 as a cofactor of the APC/C (60). 
Some APC/C-target proteins contain only the D-box, others 
contain only the KEN-box, a few may contain both (62). 
Therefore, the D-box and KEN can act, both independently 
and as co-ordinated signals, for protein degradation. 

Instances of proteins containing active D-box and/or KEN-
box can be found in the corresponding entries for these 
motifs, recently annotated in the ELM database 
(http://elm.eu.org/browse.html). 

 
Destruction motifs are exemplary of problematic 

issues related to short motifs in general. Their statistical 
occurrence in proteins is very high and only a fraction of them 
will prove to be biologically active. The discrimination of 
"true" and "false" destruction motifs is not obvious, even on 
the basis of apparently straightforward experimental 
procedures. For instance, a protein in which a potential 
destruction motif has been mutated may become resistant to 
proteasome-mediated degradation due to serious misfolding 
and aggregation, and not because of losing a specific 
APC/C-targeting site. This stresses the requirement for 
discriminative criteria, which can assist or supplement the 
experimental approach for identification of truly active motifs. 
First, one can use criteria related to the particular pathway 
involved. Putative destruction motifs are more likely to be 
active if they are found in proteins related to cell cycle 
processes. Second, one can use criteria related to functional 
motifs in general. For instance, putative destruction motifs are 
more likely to be active when they are found in annotated 
cell cycle proteins, natively disordered polypeptide, and if 
they are conserved in the orthologous proteins. These criteria 
have been applied in a survey of KEN box candidates (64). 
 
4.3. Nuclear export signal 

The dynamics of protein localization between 
cytosol and nucleus is mainly controlled by the activity of 
soluble transport receptors, importins and exportins that 
regulate proteins shuttling into and out of the nucleus, 
respectively. 
 

In the nucleus, cargoes for export form a 
complex with their exportin receptors and RanGTP. This 
trimeric complex is subsequently translocated through the 
nuclear pore complex (NPC). After translocation, the 
complex dissociates on the cytoplasmic side of the NPC 
through the conversion of RanGTP to the GDP-bound 
form. The best studied exportin is CRM1 (also designated 
exportin 1), which binds to proteins that have the nuclear 
export signal (NES), a short hydrophobic linear motif. The 
NES motif was first identified in the viral HIV-1 Rev 
protein (65) and in the cellular protein A phosphorylation 
inhibitor (PKI) (66). The drug leptomycin B inhibits this 
pathway by covalently binding to CRM1 (67). Therefore, 
this drug has been very useful for the identification of 
proteins that are exported in a CRM1-dependent manner. 

 
A wide variety of functional NES sequences 

have been identified. The NES consensus sequence is 
reported to be #.{2,3}#.{2,3}#.# where the hydrophobic 
amino acids (#) are usually leucine or isoleucine (68). 
Upstream or downstream of the hydrophobic motif, 
negatively charged amino acids are common and may be 
required (see the ELM entry TRG_NES_CRM1_1). 
Paraskeva et al. (69) have shown that isolated HIV-1 Rev 
NES binds more weakly to CRM1 than the full length Rev 
protein. This implies that NES might require an appropriate 
sequence context to adopt the conformation needed to bind
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Figure 5. Phosphothreonine recognition by an FHA 
domain. FHA domain is a signal transduction module, 
which recognizes phosphothreonine containing peptides on 
the ligand proteins. Here the yeast Rad53 FHA1 domain 
(surface) is bound to a Rad9 peptide (stick) corresponding 
to a pT..[DE]. The surface pocket accepting the pThr 
samples not just the phosphate but also the gamma-methyl 
group, hence pSer is not a good fit. The only other strong 
interaction is charge complementarity with the Asp residue 
at position +3. See ref (163) and entry pdb:1K3N for the 
complex structure. 

 
CRM1, and that the flanking regions might contribute to 
the binding affinity. Currently, there are no available 
NES/CRM1 complex structures that might explain what 
determines the strength of this interaction. 

 
Another interesting feature of the NES motif is 

that, whereas other exportins such as CAS, Exp-t and Exp4 
bind to their substrates with affinities in the nanomolar 
range, CRM1 binds to most NES cargoes with 100-500 fold 
lower affinity (69). A possible explanation of this 
difference is suggested to be that the NESes have evolved 
to maintain low affinity binding in order to avoid defects in 
export-complex disassembly (70). However, a complicating 
factor is undoubtedly the fact that the hydrophobic NES is 
frequently misidentified deep inside globular domains (71, 
72). Of course, if just this peptide motif is taken out of the 
domain context and cloned into a reporter construct, it is 
hardly surprising that it gives a positive result. The 
requirement for linear motifs to be accessible is absolute 
and domain context must be carefully evaluated. 

 
The unfeasible NES-like motifs deeply buried in 

globular domains can be contrasted with the well 
understood NES in MapKapK2 which conditionally folds 
back onto the adjacent kinase domain, thereby becoming 
unavailable for export signaling, depending on the nearby 
phosphorylation state (73). Another well defined NES lies 
within the p53 tetramerization domain and is only 
accessible in the p53 monomer (74). Thus, it is not the case 
that an already folded NES motif is automatically false but 
its structural state must be conditionally regulated. More 
generally, it might be very common for linear motifs 
adjacent in sequence to a well defined globular domain to 
have open and closed states that are regulated by 

phosphorylation and we would encourage researchers to 
think in these terms. 
 
4.4. Sumoylation 

The Small Ubiquitin-related MOdifiers (SUMO) 
are proteins that become attached to numerous substrate 
proteins within the nuclear compartment (75, 76). They are 
synthesised as inactive precursors which, after maturation 
and activation, are covalently linked onto the lysine residue 
of the linear motif #K.E found in the target proteins. This 
process, evolutionarily conserved in all eukaryotes, is termed 
sumoylation and is a reversible regulatory event (77). 

 
Sumoylation has been shown to have a role in 

transcriptional regulation (78). Unlike ubiquitination, 
SUMO regulation does not result in protein degradation but 
rather localization of proteins to specific subnuclear 
complexes, e.g. the promyelocytic leukemia protein PML 
nuclear bodies where intense transcriptional activity occurs 
(79). In these macromolecular complexes, proteins that are 
covalently linked to SUMO co-exist with proteins that 
recognise SUMO through a second class of linear motif, 
called SIM (SUMO-Interacting Motif) defined by a short 
hydrophobic stretch such as [IV].[IV][IV]. It has become 
clear that SIMs are central to the understanding of 
sumoylation, since they can dynamically interact with the 
covalently linked SUMOs (80). Protein recruitment into 
nuclear bodies is not the only way through which 
sumoylation affects transcription. In fact, it was recently 
reported that SUMO can directly influence higher order 
chromatin structure (81). Furthermore, SUMO also appears 
to be involved in maintaining genomic integrity, e.g. 
preventing the accumulation of recombinogenic structures 
at damaged replication forks (82). 

 
Invertebrates have a single SUMO gene, whereas 

vertebrates have three: SUMO-1 and two paralogues, 
SUMO-2 and SUMO-3, the latter pair showing 96% 
similarity between themselves but only 45% with SUMO-1 
(83). These three genes share some common properties, but 
also show different localisation and functions. RanGAP1 is 
preferentially modified with SUMO-1 (84), the 
topoisomerase II with SUMO-2 and -3 (85). Moreover, 
SUMO-2 and -3 themselves contain a #K.E site and can 
therefore form polymeric chains (86). 

 
Nevertheless, the way paralogous-specific 

interactions arise is still not understood. The #K.E motif is 
common to all, as is the usage of only one E2 conjugating 
enzyme (Ubc9) for all three SUMOs. It has been suggested 
that variant SIMs play a role in determining the binding 
specificity of the SUMO paralogues (87). SUMO-specific 
proteases (SENPs) have also been related to the differential 
localisation of the three SUMOs (88). Nevertheless, the 
regulatory picture is far from being complete as indeed is 
the overall understanding of Sumoylation: so similar and 
yet so different from ubiquitination. 
 
5. BEHAVIOUR OF LINEAR MOTIF SEQUENCES 
 

Short protein motifs share the problem of 
overprediction with transcription factor (TF) binding sites, 
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Figure 6. A missing phosphorylation site in one of the alternatively spliced isoforms of the human telomerase. Observe that the 
boxed site phosphorylated by the protein kinase PKB (regular expression R.R..([ST])…) is not present in the fourth sequence. 
The multiple sequence alignment of the known alternative transcripts was produced with ClustalW. 

 
partly because, like linear protein motifs, TF binding sites 
are also short subsequences and are degenerate in the sense 
that the same TF can bind a set of similar but not identical 
sites (89). In that field, the best results have been achieved 
by predictive schemes that combine statistical models to 
represent the site (90) with phylogenetic footprinting (91). 

 
The prediction of linear motifs has also benefited 

from considering evolutionary information. This has been 
implemented in two ways (i) focusing on the conservation 
of certain instances during the process of sequence 
divergence (92), and (ii) identifying convergently evolved 
patterns in a set of sequences that share a functional trait, 
like a common interacting partner (93, 94). 

 
Multiple sequence alignments of related protein 

sequences can provide insights into the evolutionary 
dynamics and characteristics of linear motifs. Examining 
regions of these alignments known to contain functional 
instances of linear motifs reveals that individual instances 
are rarely conserved in all related sequences. Focusing on 
amino acid positions within conserved motifs, it is often the 
case that some positions within the motif show no variation 
in amino acid residue. Other positions vary, but only 
between a limited set of amino acids (typically those with 
similar physico-chemical properties). A final class of 
positions appears to accept any possible amino acid. This 
pattern of conservation, is a result of the fact that only some 
positions are important for linear motif function. Some of 
the side chains of residues are important for the interaction, 
these are the positions where no, or only limited, variation 
of amino acid residues is observed. Other residues function 
as spacers, or by providing main-chain interactions, and 
they are found to accept a wide range of amino acid 
residues. The molecular role of linear motifs, in a 
regulatory context, is determined by the inherent flexibility 
of the surrounding residues and the disordered and 
evolutionarily variable context in which the motif is 
situated actually enables recognition with low affinity 
(11). 

 
Gain or loss of a linear motif is likely to happen 

by single point mutation. This evolutionary plasticity 
makes linear motifs into small modular units that can tune 
the evolution of protein function once the globular domain 
architectures have been established. This would explain the 
convergent appearance of the same linear motif in unrelated 
proteins with similar function. There is a limit to this 
plasticity since linear motifs contain a functional value that 
cannot be gained or lost purely by chance as linear motifs 
are subject to selection. 

There are some situations that make proteins less 
sensitive to linear motif loss. Paralogous proteins tend to 
lose motifs quite easily relative to orthologous sequences 
(95). Recurrent motifs can present different numbers of 
copies in different species (e.g. the DPW and NPF motifs in 
Epsins). Additionally, the splicing process adds even more 
complexity to linear motif evolution, since isoforms of a 
protein can differ in whether or not they contain a motif. 
There are a few known examples of motifs that are present 
in some, but not all the alternative transcripts. This is the 
case of the phosphorylation site MOD_PKB_1 in the 
catalytic subunit of the human telomerase shown in Figure  
6. 
 

The ELM database contains experimentally 
validated motifs, the majority of annotations being drawn 
from human, mouse and other vertebrates. The majority of 
these (66%) are conserved only within vertebrates. 
However, a significant proportion (22%) is conserved 
across vertebrates, plants and yeast (Chica et al., in press). 
In a signaling system multiple signals may act in concert to 
regulate the behavior/output of the system. In a cell, this 
could be the regulation by modification of multiple linear 
motifs simultaneously. The strong conservation of some 
motifs across such a wide range of phyla suggests that they 
may be involved in core pathways. In contrast, where 
motifs are conserved only in a clade such as the vertebrates 
this is likely to be a result of the combinatorial composition 
of the network, and how regulation has been tuned during 
evolution. This can act both to release evolutionary 
pressure on existing motifs and select for new ones. 
Overall, the evolutionary stability of a linear motif is a 
function of its importance in the cellular network, and how 
that network has been evolving. 

 
The evolutionary behavior of linear motifs becomes 

an issue when designing computational tools to predict them. 
This is illustrated when using multiple sequence alignments 
(MSAs) to assess the extent of conservation of motifs within 
equivalent positions in a set of related proteins. In general, 
MSA software is not trained with alignment of linear motif like 
regions in mind – focusing instead on accurate alignment of 
globular regions. This results in sub-optimal performance of 
MSA algorithms in disordered protein regions (Thompson, 
personal communication). Multiple sequence alignment 
algorithms give different results in some extreme cases, like 
repetitive and C-terminal motifs. Figure 7 compares the 
alignment of these kinds of motifs, calculated with MAFFT 
and ClustalW. For these cases, the former manages to use 
the motifs as small anchors inside the disordered regions 
more often than the latter. 
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6. METHODS TO PREDICT LINEAR MOTIFS 
 

Until very recently, few tools were available for 
bioinformatical analysis of short functional sites; only in 
the last few years has there been some progress in the 
development of computational approaches to identify linear 
motifs. The main problem is the difficulty of discriminating 
between true and false positives, as a consequence of the 
complex pattern of evolutionary conservation and the lack 
of statistical significance due to the short length of the 
linear motif. The linear motif predictors can be divided in 
two categories: firstly, methods aimed at identifying new 
instances of already known linear motifs on protein 
sequences; secondly, methods focused on discovering new / 
de novo linear motifs. Table 4 lists a range of different 
methods of both categories of predictor. 

 
Early attempts to predict short motifs in protein 

sequences involved describing a ‘consensus’ sequence that 
capture the signature of highly conserved residues in the 
motif. PROSITE (http://www.expasy.ch/prosite/) (96) 
made the first systematic attempt to catalogue known 
motifs. The PROSITE database has collected a number of 
linear protein motifs, representing them as regular 
expression patterns. PROSITE patterns have been very 
useful, but also suffer from severe over prediction problems 
and more recently the database has focused on protein 
signature and domain annotation. 

 
Nevill-Manning et al. (97) implemented a 

method based on automatically constructing consensus 
sequences in order to identify motifs from families of 
aligned protein sequences. Software based on their 
methods, eMOTIF (98), has been implemented although it 
is currently unavailable. 

 
SCANSITE (http://scansite.mit.edu/) (99) is a 

web-accessible tool that predicts motifs important in 
cellular signaling such as phosphorylation motifs or 
peptides binding to SH2 domains, 14-3-3 domains or PDZ 
domains. Each sequence motif is represented as a position-
specific scoring matrix (PSSM) based on results from 
oriented peptide library and phage display experiments. 

 
The Eukaryotic Linear Motif (ELM) resource 

(http://elm.eu.org/) (46) stores manually curated 
information about known linear motifs: it combines the use 
of regular expressions with logical filters (or rules), based 
on contextual information, to discriminate between likely 
true and false positives in order to improve the predictive 
value of ELM. The currently implemented context filters 
are a) taxonomic range filter, b) cell compartment filter, c) 
globular domain filter. In addition known ELM instances 
and predictions in sequences similar to ELM instance 
sequences, where the motif is positionally conserved, are 
identified and displayed. 

 
A similar resource has been subsequently 

developed by Balla et al. (100). The Minimotif (MnM) 
database (http://sms.engr.uconn.edu) contains 312 
minimotifs extracted from the literature and other online 
resources and a web-based simple motif search (SMS) 

system for identifying linear motifs in proteins. Homology 
analysis, surface prediction and frequency scores in 
complete proteomes are used to estimate the probability 
that the identified minimotifs are biologically functional. 

 
The identification of signature-like putative 

functional sites has been recently implemented by Ben-Tal 
and his group (92). This novel method implemented in the 
QuasiMotiFinder program, uses motifs and signatures as 
defined by PROSITE. Each putative motif is assigned 
scores that depend a) on its physico-chemical similarity 
with respect to the original motif; b) on the degree of 
evolutionary conservation within homologous sequences. 
The total score is used to calculate the statistical 
significance of the putative motif. 
 

The AutoMotif Server (AMS) 
(http://ams2.bioinfo.pl/) (101) predicts PTM sites in 
proteins based only on sequence information. The PTMs 
are taken from the Swiss-Prot and ELM databases and 
sequence models for all types of PTMs are trained by 
support vector machine. 

 
In addition there are increasing numbers of 

specific predictors for individual PTMs and protein sorting 
motifs. In Table 5 we have collected some representative 
sites. The ExPasy proteomics tools page 
(http://www.expasy.ch/tools/) is a good place to start 
looking for these resources. 

 
As sequence database annotation becomes more 

extensive it has become clear that motifs can be enriched 
with certain keywords with good statistical significance. 
Copley used transcriptional keywords to detect new 
examples of the EH1 transcriptional repressor motif (102). 
Researchers can undertake equivalent motif/keyword 
explorations interactively using SIRW 
(http://sirw.embl.de/index.html) (103). This resource was 
used to demonstrate that KEN motifs are significantly 
enriched with cell cycle keywords and GO terms. The 
candidate list was further refined using native disorder 
prediction and phylogenetic conservation scoring (64). We 
anticipate that this pipeline - keyword enrichment, disorder 
prediction and conservation scoring - will become widely 
applicable in motif discovery. 

 
A more difficult task is de novo linear motif 

discovery: their short length, high flexibility and low-
binding affinities make them awkward, both for 
experimental and in silico analysis. In addition, the 
available training data sets are far from comprehensive and 
make it hard to develop fully automated discovery 
algorithms. Our current knowledge in the linear motif field 
is still poor: somewhat more than a hundred classes of 
linear motif are known in eukaryotes but it has been 
estimated (14) that hundreds of motif classes mediating 
protein interaction have still to be discovered. However, in 
the last few years many proteome-scale interaction data sets 
have became available and this has allowed the 
implementation of a new generation of bioinformatics tools 
to discover de novo linear motifs involved in protein 
interactions. 
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Figure 7. (A) Multiple sequence alignment of Catalase C-termini. The peroxisomal targeting motif PTS-1 is often misaligned by 
ClustalW (top) but not by MAFFT (below). (B) Misalignment of repetitive DPW motifs in Epsin. On the top, the multiple 
sequence alignment was calculated with ClustalW (164), where several motifs are unaligned. Below, the same sequences as 
aligned by MAFFT (165), where more instances are correctly aligned. 
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Table 4. List of methods to predict new instances and de novo motifs. 

 Server Method Advantage Disadvantage url or reference 
PROSITE Regular expression matching First attempt to catalogue 

LM 
Stopped adding motifs 
due to high number of 
false positive matches. 
Currently the main focus 
is on globular domains 

http://www.expasy.ch/prosite 

SCANSITE Profile-based methods that uses 
data coming from oriented peptide 
library technique 

>60 motifs. Quantitative 
representation of patterns 
is suitable for measuring 
features like motif 
specificity 

Restricted to 
phosphorylation sites and 
motifs involved in 
signaling 

http://scansite.mit.edu/ 

ELM Regular expression matching plus 
contextual filtering 

Context-based rules and 
logical filters reduce the 
amount of false positives. 
>130 motifs are manually 
curated 

Incomplete coverage of 
known motifs 

http://elm.eu.org/ 

Minimotif Miner Regular expression matching plus 
contextual filtering 

Large number of regular 
expressions 

Motifs have little extra 
annotation 

http://sms.engr.uconn.edu 

QuasiMotiFinder Matching of patterns similar to 
PROSITE signatures plus 
evolutionary filtering 

Evolutionary filtering 
reduces number of false 
predictions 

Restricted to the set of 
motifs in PROSITE 

(92) 

AutoMotifServer Prediction of motifs based on 
trained support vector machine 
(SVM). Each type of PTM trained 
separately 

The server predicts a 
good number of PTMs 
not present in other 
resources 

The score assigned to the 
predicted instances is not 
biologically significant 

http://ams2.bioinfo.pl/ 
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SIRW Combine Regular expression with 
keyword search 

Very intuitive method for 
prediction of new 
instances. Enrichment 
with GO terms can 
provide significant 
support 

Low throughput 
interactive method 

http://sirw.embl.de/ 
 

DILIMOT Identification of over-represented 
motifs in a set of proteins 
interacting with a target protein 

First attempt at de novo 
motif prediction. Authors 
themselves found and 
tested new motifs 

Only applicable to 
proteins present in 
interaction datasets. Only 
returns identities at motif 
conserved positions 

http://dilimot.embl.de/ 

SLiMFinder Identification of over represented 
motifs in set of proteins, typically 
the set is an interaction dataset 

Is able to retrieve motif 
matches with semi-
conserved positions 

Mainly applicable to 
proteins present in 
interaction datasets 

http://bioinformatics.ucd.ie/shiel
ds/software/slimfinder/ 
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D-MOTIF/D-STAR 
algorithm 

Detection of correlated (co-
occurring) short sequence motifs 

Improve detection from 
sparse and noisy 
interaction data 

Rather stringent (105) 

 
DILIMOT (DIscovery of LInear MOTif) 

(http://dilimot.embl.de/) (93) is a method for de novo 
discovery of linear motifs within a set of proteins. The method 
detects over-represented short sequences in a set of sequences 
that share a common functional characteristic (e.g. interaction 
partners). Since most linear motif sequences are found in 
unstructured regions, parts of the sequences of the set of 
protein (e.g. coiled coil regions, globular domain) are 
discarded before starting the motif search. Finally the 
conservation of the motif in the orthologous protein is 
calculated and the statistical significance is assessed. 

 
SLiMFinder 

(http://bioinformatics.ucd.ie/shields/software/slimfinder/) 
(104) is a method for finding potential shared motifs in 
unrelated proteins using a model of convergent evolution 
and, for the first time, assign a significance value to each 
motif. SlimFinder is comprised of two algorithms: a) 
SLiMBuild that identifies convergently evolved LM in a 

dataset of unrelated proteins b) SLiMChance that calculates 
a significance value associated with such motif predictions. 

 
Both programs can find statistically over-

represented motifs in non-homologous sequences; the main 
difference between the two methods is that DILIMOT 
masks all but one arbitrarily selected homologous protein 
prior to motif discovery, whereas SLiMFinder searches for 
motifs in all proteins and then weights results according to 
the evolutionary relationship of the proteins containing the 
motif. Moreover SLiMFinder is able to predict patterns 
with semiconserved positions. 

 
Tan et al. (105) proposed a novel approach of 

mining correlated de-novo motifs from interaction data 
based on a MTM (many to many) comparison. This 
approach aims overcome some of the problems of the 
sparse and noisy nature of the interaction data sets within 
which only a limited number of interactions are observed 
for many proteins. Their model implies that interactions are 
mediated by pairs of motifs co-occuring in separate 
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Table 5. Example of some specialized predictors 
Predictor PTM Link Reference 
NetPhos Generic phosphorylation sites in eukaryotic proteins http://www.cbs.dtu.dk/services/NetPhos/ (156) 
NetCGlyc C-mannosylation sites in mammalian proteins http://www.cbs.dtu.dk/services/NetCGlyc/ (157) 
ChloroP Chloroplast transit peptides and their cleavage sites in plant proteins http://www.cbs.dtu.dk/services/ChloroP/ (158) 
SulfoSite Predicts tyrosine sulfation sites in protein sequences http://sulfosite.mbc.nctu.edu.tw/ (159) 
Sulfinator Predicts tyrosine sulfation sites in protein sequences http://expasy.org/tools/sulfinator/ (160) 
Myristoylator Predicts N-terminal myristoylation of proteins http://expasy.org/tools/myristoylator/ (161) 

 
interacting proteins. The use of a correlated (co-occurrence) 
motif pairs approach has the advantage of increasing the 
number of motifs that can be detected of being more 
stringent compared to the other approaches and in addition 
not requiring any prior knowledge of protein grouping. 
 
7. NATIVELY DISORDERED PROTEIN AND 
PREDICTION METHODS 
 

Until recently the dominant paradigm in protein 
function prediction has been relating the 3-dimensional 
structure to the protein's function (106). The realisation that 
intrinsically unstructured polypeptide (IUP) regions could 
have a functional role has lead to the development of 
disorder prediction methods. In contrast to the well 
established field of protein structure prediction, prediction 
methods for intrinsic disorder are less well developed. 
However, many of the strategies applied to protein 
structure prediction have been retooled for disorder 
prediction. Echoing the first secondary structure prediction 
methods, the simplest disorder prediction methods use 
statistical prediction methods like propensity (107) or some 
measure of the physico-chemical properties of the amino 
acids (108). More sophisticated disorder prediction 
methods use artificial intelligence methods like neural 
networks in the same way as the most successful of the 
protein structure prediction algorithms (109). In general, 
the most recent programs outperform the earlier methods: a 
key factor has been the establishment of the DisProt IUP 
database (12), which was not available to the earlier 
generation of predictors. 
 
7.1. Definition-based predictions 

GlobPlot defines a propensity for a particular 
amino acid to be in either an ordered or a disordered region 
of a protein (107). This is plotted as a running sum (with a 
smoothing window) such that the slope of the graph 
indicates order or disorder (Figure 8A). The propensity to 
be in an ordered or disordered state is based on data from 
SCOP. In SCOP, amino acids are characterised as being 
part of structured regions or random coils. Therefore, the 
default GlobPlot propensity scale measures the difference 
in the propensity for an amino acid to be in the ordered set 
(i.e. defined secondary structure part of SCOP) versus 
being in the disordered set (i.e. in the random coil part of 
SCOP). In addition to the default definition (known as the 
Russell/Linding definition) GlobPlot provides other 
propensity scales based on other data sets. These scales are 
all available on the GlobPlot site for the user to explore. All 
of them are attempting to capture the propensity for a given 
amino acid to be in an ordered or a disordered region. In 
general, they correlate well with physico-chemical 
properties of the amino acids, for example, in Figure 2 of

 
reference (107) the propensities are shown against 
hydropathy. 
 
7.2. Physico-chemical predictions 

One way or another, most prediction methods 
attempt to encapsulate the physico-chemical properties of 
the amino acids and use this to predict the likelihood of a 
particular residue to be in an ordered or a disordered 
region. One of the first, by Uversky et al. is simply a 
measure of the hydrophobicity of the protein (108). This 
method successfully manages to distinguish between 
ordered and disordered sequences by averaging the 
hydrophobicity over the length of the protein and plotting 
this against the net charge of the protein. The result is a 
function that often distinguishes between primarily ordered 
and disordered proteins. For a clear example see Figure 3 in 
reference (108) where the plot of the net charge of the 
protein as a function of the hydrophobicity of the protein 
produces a clear separation between ordered and disordered 
proteins. More recently, this method has been updated and 
implemented as FoldIndex (110). The use of a sliding window 
then allows the prediction of disorder for segments of protein 
sequence. FoldIndex takes the original equation of Uversky et 
al. and adds constants to the linear equation used to distinguish 
between ordered and disordered proteins in the net charge 
versus hydrophobicity plot. The addition of these constants to 
the equation transforms the scale from 1 to 0 to a score where 
positive indicates ordered and negative indicates disordered. 
 

IUPred intrinsically captures physico-chemical 
information in its algorithm (111). The assumption 
underlying the method in IUPred is that amino acids in 
disordered regions tend to be those that do not have the 
capacity to form many interactions with other residues 
(112). Inter-residue interactions are responsible for forming 
stable 3-dimensional structures. The sliding window 
approach is used in IUPred to generate a potential for the 
residues in the window to form stabilising interactions. The 
potential is based on a statistical method for calculating the 
potential for the interactions. The sum of the interaction 
energies in the window is a function of the amino acid 
composition. This function embodies the chemical type of 
the amino acids and crucially, the potential for them to 
form interactions (112). The order-disorder tendency of the 
p53 sequence plotted by IUPred is shown in Figure 8B. 
 
7.3. Artificial Learning prediction 

The data from the DisProt resource has been 
used to analyse the frequency of different amino acids in 
the disordered polypeptide segments and used to make 
predictions about the likelihood that a sequence will be 
found in ordered or disordered conformations. A wide 
range of properties of amino acids has been applied to
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Figure 8. Output of two popular disorder predictors for the sequence of protein p53. Both plots were taken using the default 
parameters of GlobPlot (A) and IUpred (B). For (A) an upward slope indicates disorder. For (B) a positive score indicates 
disordered regions. The hashed regions in (A) indicate Pfam entry annotations of which only the central DNA binding domain is 
a true globular domain. Numerous studies have revealed that the N- and C-termini are natively disordered, though short segments 
are known to make induced fit interactions while the tretramerisation module self-associates by mutual fit (166-169). 
 
classify the amino acids as order promoting or disorder 
promoting. As an example, one of the best predictors was a 
residue contact scale (113). Other high performers included 
hydrophobicity scales. DISOPRED also uses artificial 
learning techniques to classify protein sequences into 
ordered and disordered regions (114). The data set at the 
heart of this method is a set of non-redundant protein 
sequences with high resolution X-ray structures. 
Disordered residues are indicated by the lack of coordinates 
in the structure - similar to some of the scoring schemes in 
GlobPlot. However, rather than relying on statistical 
differences in the propensity of different amino acids to be 
in ordered or non-ordered regions, the DISOPRED server 
defines a Support Vector Machine using a window of 15 
residues to predict the likelihood of order. 

There are many other native disorder predictors 
that perform well, such as RONN, DisProt and FoldUnfold  
(115-118). A useful list is maintained at the DisProt site 
(http://www.disprot.org/predictors.php). The general 
recommendation is to build up an idea of a protein’s 
structure by using several of the disorder predictors and 
cross-compare to domain databases. 

 
There are now more than 500 publications on 

natively disordered proteins (119). Protein disorder 
prediction has come of age and should now be used 
routinely in any bioinformatics analysis of protein 
sequence, whether on the small or large scale. It is an 
essential adjunct to linear motif biology and researchers in 
transcription, cell signaling and other aspects of cell 
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regulation need to be aware of the role of protein disorder 
in cell regulation. As well as the primary literature, there 
are a number of recent reviews that go into the topic in 
more depth than is covered here and are excellent points of 
entry e.g. Romero et al. (120; 121). These reviews can also 
help to bring the concept of native disorder into undergraduate 
teaching courses since the topic is neglected in text books (with 
the honorable exception of Garrett (122)). 
 
8. ANTIBODIES AS TOOLS FOR THE 
EXPERIMENTAL INVESTIGATION OF MOTIFS 
 

The success of the computational methods for 
the discovery of linear motifs depends on good 
experimental data used to derive the data sets that these 
methods use as their basis. The experimental determination 
of linear motifs has been greatly aided by the use of 
antibodies. In particular, antibodies have successfully been 
applied to the detection of phosphorylated residues and 
phosphorylation motifs in proteins (95). They are used 
primarily because they can detect the surface exposed 
motifs. Typically this involves raising an antibody to a 
peptide that expresses the motif and then using this 
antibody to test the surface exposure or accessibility of the 
motif (for an example of this technique see (123)). The 
precise structure, or lack thereof, of bound peptides and 
motifs to domains or antibodies is not known in the 
majority of cases. Whilst linear motifs are found in 
Intrinsically Disordered Regions (IDR) it has been 
suggested by many authors, that motifs may form induced 
fit structures (for a good review see (124)). The P..P motif 
structure, for example, is found in an IDR however upon 
binding it forms a left handed helix (125). It is clear that 
there exists a range of states, from stable structures through 
to stable unstructured proteins, encompassing induced fit 
and transient structures. Linear motifs tend to occur 
towards the unstructured end of this scale. 

 
In one example of such a strategy, Kikuchi et al. 

developed an antibody that recognises an N-glycosylation 
site (126). The antibody is capable of recognising the native 
motif but not the denatured protein. Phage display was used 
to isolate the trimer motif specifically recognised by the 
antibody (126). Alternatively, degenerate peptide libraries 
can be used to isolate the motif. For example, raising an 
antibody to recognise the phosphorylated form of the PKA 
substrate consensus sequence RR.T* requires a library 
containing the sequence CxxxxxRRxT*xxxx; where x is 
any amino acid (127). The antibody is exposed to the 
peptide library, and specifically binding antibodies are 
purified. These purified antibodies are expected to 
selectively bind to the phosphorylated T with R at positions 
-2 and -3. They do not bind to the non-phosphorylated form 
or to peptides without the R at positions -2 and -3. The 
motif can be validated by constructing conjugates of the 
motif and another protein – typically Bovine Serum 
Albumin. The antibody is exposed to both the conjugate 
and the protein without the motif. The antibody should 
specifically bind to the conjugate but not to the protein 
without the motif. The antibody can then be used in assays 
to see if the motif is present in other proteins, perhaps when 
the sequence of the other proteins in a sample is not known. 

Critically in this example, the motif recognition is context 
dependent - i.e. the antibody only recognises the modified 
motif. Once these antibodies have been raised they can be 
used, for example, to detect substrates of particular families 
of kinases. 

 
The study of signaling pathways, and in 

particular the role of phosphorylation can be carried out 
using antibodies that recognise particular motifs, for 
example the motif recognized by PKB and PKC kinases in 
reference (128). Antibodies specific to different 
phosphorylation motifs are used to trace signaling 
pathways by identifying substrates of specific kinases 
(128). Kinases are a major drug target and therefore the 
development of any tools that are likely to increase the 
range of targets for kinase inhibitors is likely to be of 
interest to the drug development industry. Antibodies can 
be raised against known substrates of a particular enzyme 
and then used to identify unknown substrates (127), 
assuming that the substrates all share the same recognition 
motif. Peptide arrays can also be used to determine the 
motif that the antibody recognises and the specificity of the 
recognition. Once an antibody has been raised for a 
particular motif, this antibody can be exposed to the 
substrate protein to see if they react. Different antibodies 
can be raised to the phosphorylated and unphosphorylated 
substrate. For example, antibodies against phosphotyrosine 
that can discriminate between phosphorylated and non-
phosphorylated tyrosine and are broadly reactive against 
any phosphotyrosine containing proteins have been very 
successful in studying intracellular signaling mechanisms 
(127). Phospho-specific antibodies have dramatically 
increased the rate at which phosphorylation events can be 
studied in the cell (129). Antibodies can be raised using 
degenerate peptide libraries of the substrate motif. The 
motif can then be worked out using the kinase substrate 
antibody matrix which is based on the relative frequency of 
amino acids at each position (128), in a method similar to 
oriented peptide libraries (130). A range of motif discovery 
tools such as ScanSite, DILIMOT and SlimFinder, as well 
as motif databases such as Phospho.ELM (131) and ELM 
(46) can then be used to help reveal the antigenic or 
phosphorylated sites in the protein. Linear motif detection 
experiments can be parallelised by the use of Flow Assisted 
Cell Sorters (FACS) and fluorescent labeling of the 
antibodies (129). To investigate cell signaling in cancer, 
Irish et al. used FACS and a set of labeled antibodies raised 
against phosphorylated motifs using a library of synthetic 
peptides (132). This process forms the basis of a number of 
patents that describe the process of raising antibodies to 
motifs important for the regulation of kinase substrates 
(127). 

 
Much work has been done on the experimental 

validation of linear motifs. The most common approach is 
to use deletional analysis to attempt to alter the phenotype. 
The Cryptochrome (CRY) protein has been studied in a 
number of species, notably by Hemsley et al. in Drosophila 
Melanogaster (133). The CRY protein contains a large 
domain similar to other photolyases. In Drosophila there is 
a second C-terminal putatively disordered domain unique 
to Drosophila. This second region has previously been
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Figure 9. Toxin and drug interactions. A 14-3-3 protein 
from tobacco (Nicotiana tabacum) is shown with a 
phosphopeptide from H(+)-ATPase and a fungal 
phytotoxin (fusicoccin) bound in the deep groove of the 
protein. The toxin stabilizes the interaction between the 
ATPase and the 14-3-3 protein. This causes permanent 
activation of the proton pump in the guard cells of the leaf, 
so that the stomata open and the plant wilts. The 
phosphopeptide (sticks) and the toxin (space-filling, green 
carbons/red oxygens) are both accommodated in the deep 
groove of 14-3-3 and make hydrophobic interactions with 
each other. Compare with Figure 3, which shows just a 
phosphopeptide interaction with a human 14-3-3 protein. 
See (139) and pdb:1O9F for the crystal structure. 

 
shown to be important for signal transduction and 
regulation. The same region in the human protein, although 
not similar on the sequence level, is known to be 
disordered. Hemsley et al. test the hypothesis that the 
disordered C-terminal region, despite no conservation at the 
sequence level, could have conserved functional activity, 
mediated by short linear motifs. Motif prediction 
algorithms and searches of the ELM database indicate the 
presence of a number of linear motifs, some of which are 
shared with mammalian versions of CRY (133). 
Deletional/mutational analysis of dCRY was able to 
delineate the position of the linear motif, by noting loss of 
function (i.e. ability to interact with partner proteins) when 
sections of the protein were removed. Site directed 
mutagenesis together with the yeast two-hybrid 
experiments provided further evidence for the motif being 
responsible for the interaction of dCRY and its partners. 
Immunoprecipitation experiments using CRY conjugated to 
Hemagglutinin were also used to provide further evidence 
for the importance of the motif and to identify residues that 
determine specificity. Work by Losi in humans was able to 
identify key residues for determining interactions between 
CRY and other partner proteins in the pathway (134). In 
both cases, the experimental validation was unable to 
unambiguously delineate the motifs responsible. In the case 
of the work by Partch et al. (135), this is due to limiting the 
mutational analysis to proteolysis.  The bioinformatics 
approach described here is new and further refinement will 
no doubt lead to more successful results. 

 
Antibodies and the linear epitopes that they 

recognise have been used to define targets for antibody-
based therapeutics against HIV. In this case, the antibodies 
are raised using the peptide arrays to linear epitopes on 
surface accessible regions of key HIV proteins. The aim is 
the application of antibodies to disrupt the action of HIV, 
for an example see Huang et al. (136). The power of 
antibodies to recognise and specifically bind protein motifs 
has had an enormous impact on the study of protein-protein 
interactions. This is likely to continue as the demand for 
more and more information about the type and specificity 
of protein interactions increases. Particular motifs of 
interest, perhaps identified using tools such as those shown 
in Table 4, can be investigated using antibodies. An 
example of such work is Friedman (137). They present an 
investigation of MAPK substrates using phospho-specific 
antibodies. Antibodies have successfully been used to study 
other systems such as the 14-3-3 kinases in Arabidopsis 
(138). 

 
To conclude this section, antibodies are very 

important tools for linear motif biology. With such simple 
targets, there is obviously a risk of cross-reaction and we 
end with a word of warning: design experiments such that a 
second independent method is used to ensure that the 
protein itself can be verified. 

 
9. LINEAR MOTIF INTERACTIONS AND DRUG 
DISCOVERY 
 

In the search for new drugs, pharmaceutical 
companies have been notoriously leery of targeting almost 
anything except cellular enzymes. In the context of cell 
signaling through linear motifs, classical targets are 
therefore kinases, phosphatases, methylases, acetylases and 
other enzymes of PTM. The efficacy of the tyrosine kinase 
inhibitor Gleevec (imatinib) in treating cancers, e.g. CML 
and GIST, had such an impact that some 30% of 
pharmaceutical research became devoted to kinases. While 
there will no doubt be some useful new treatments arising 
from this focus, the redundancy in kinase site specificities 
is one of the important reasons why many of them will 
never be precisely targeted. 

 
We consider that the conservatism of 

pharmaceutical companies in avoiding protein-protein 
interaction targets is overblown and that at least some 
linear motif interactions will themselves prove to be 
excellent targets, namely those motifs that bind in grooves 
of ligand domains. It is often said that drugs are merely 
poisons administered at lower doses. The fungal phytotoxin 
fusicoccin shows the way: 14-3-3 proteins have a large and 
deep groove in which to accept the phosphopeptide ligand 
(Figure 9) and this is a potent target for fusicoccin (139). 
One of the first domain-peptide interactions to be selected 
for inhibition studies was SH2 (140, 141). There has been 
good progress, at least in the case of the Grb2 SH2, where a 
macrocyclic phosphopeptide mimetic has been obtained 
with nanomolar affinity and for which antiproliferative 
effects have been demonstrated (142). 

 
The most striking examples of the potential for 

linear motif disruptors are the nutlins that block ubiquitin
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Figure 10. Candidate drug molecule binding a human 
protein target. The synthetic inhibitor nutlin (sticks) is 
shown bound to human MDM2. Two hydrophobic pockets 
in the protein, one of them very deep, accommodate a pair 
of bromophenyl rings from the inhibitor. Disruption of 
MDM2/p53 interaction can lead to apoptosis and tumour 
suppression. See (170) and pdb:1RV1 for the crystal 
structure. 
 
mediated destruction of p53. Nutlins achieve their effect by 
binding in the P53 peptide-binding cavity of the MDM2 
group of E3 ubiquitin ligases, (Figure 10), stabilizing 
cellular P53 protein. The potential for combination therapy 
is illustrated by the effect of DNA Topoisomerase inhibitor 
in combination with nutlin on retinoblastoma cells: i.e. 
dramatic restoration of apoptosis in apparently death-
resistant cells (143). 

 
10. CONCLUSION 
 

The last few years have at last begun to see 
development of the computational tools that are needed to 
aid and complement the experimental investigation of 
motif-rich regulatory proteins. The prediction of natively 
disordered protein segments has progressed very rapidly 
and is good enough that it can already be considered a 
mature field (which should not be taken to mean that future 
improvements are in any way undesired). Useful 
computational resources focused on linear motifs, such as 
the ELM resource, can now be used as aids to regulatory 
motif biology, with an important educational role. The first 
wave of tools to predict novel motifs have been developed, 
but need to be improved to reach their full potential as aids 
to experimental research. A vast amount of data is being 
unleashed by the high throughput proteomics techniques 
and will be avidly mined by bioinformaticians. However, 
our present knowledge of cellular signaling processes is 
still poor and the present understanding of cell regulation 
represents only a tiny glimpse at the true quantity of protein 
interactions and regulatory processes in eukaryotic cells. It 
is essential to introduce context dependence into motif 
analysis. In this respect, Linding et al. have laid down a 
marker by developing NetworKIN, an integrative 
computational approach that combines sequence motifs and 
protein association networks, to predict which protein 
kinases target experimentally identified phosphorylation 

sites in vivo (144). Looking forward, we can expect a 3-
pronged attack: One prong is represented by the improved 
computational methods for identifying regulatory motifs. 
These will be allied to high throughput methods such as 
phosphoproteomics and systematic cell complex identification 
for revealing regulatory components in bulk. But, it would be a 
fallacy to suppose that these massive data generating schemes 
will provide intimate understanding of cell regulation. The 
third prong will be, as ever, targeted experimental 
investigation into the nooks and crannies (the nodes and 
the feedback loops) of the signaling networks. 
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