
[Frontiers in Bioscience 13, 6406-6420, May 1, 2008] 

6406 

PDX-1 functions as a master factor in the pancreas 
 
Hideaki Kaneto, Taka-aki Matsuoka, Takeshi Miyatsuka, Dan Kawamori, Naoto Katakami, Yoshimitsu Yamasaki, 
Munehide Matsuhisa 
 
Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 
Osaka 565-0871, Japan  
 
TABLE OF CONTENTS 
 
1. Abstract 
2. Introduction 
3. PDX-1 plays a crucial role in pancreas development and β-cell differentiation 
4. Area I-II-III in PDX-1 enhancer region plays a crucial role in pancreas development and maintenance of β-cell function 
5. Programmed downregulation of PDX-1 is required for exocrine formation and persistent expression of PDX-1 causes 
acinar-to-ductal metaplasia 
6. PDX-1 induces insulin-producing cells from non-β-cells 
7. PDX-1-VP16 efficiently induces insulin-producing cells from non-β-cells 
8. MafA functions as a potent activator of insulin gene and is a novel therapeutic target for diabetes 
9. PDX-1 possesses protein transduction domain in its structure and thereby can permeate cell membrane 
10. Chronic hyperglycemia deteriorates b-cell function by provoking oxidative stress, accompanied by reduction of PDX-1 and 
MafA DNA binding activities 
11. Oxidative stress and subsequent activation of the JNK pathway induce nucleo-cytoplasmic translocation of PDX-1, which leads 
to reduction of its DNA binding activity and suppression of insulin biosynthesis 
12. Summary and perspectives 
13. References 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. ABSTRACT 
 

Various pancreatic transcription factors are 
involved in pancreas development and β-cell differentiation. 
Among them, pancreatic and duodenal homeobox factor-1 
(PDX-1) plays a crucial role in pancreas development and 
β-cell differentiation, and maintaining mature β-cell 
function. MafA is a recently isolated β-cell-specific 
transcription factor and functions as a potent activator of 
insulin gene transcription. These pancreatic transcription 
factors also play a crucial role in inducing surrogate β-cells 
from non-β-cells and thus could be therapeutic targets for 
diabetes. On the other hand, under diabetic conditions, 
expression and/or activities of PDX-1 and MafA in β-cells 
are reduced, which leads to suppression of insulin 
biosynthesis and secretion. Thus, it is likely that alteration of 
such transcription factors explains, at least in part, the 
molecular mechanism for β-cell glucose toxicity found in 
diabetes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The number of diabetic patients is dramatically 
increasing all over the world, and recently diabetes has been 
recognized as the most prevalent and serious metabolic 
disease. Although pancreas and islet transplantation have 
exerted beneficial effects for diabetic patients, available 
insulin-producing cells are limited and life-long 
immunosuppressive therapy is required. Therefore, it is very 
important to search for alternative sources to induce 
insulin-producing cells. It has been reported that various 
cells and tissues such as embryonic stem cells, liver, 
pancreas, intestine, and bone marrow can induce 
insulin-producing cells after specific treatments.  

 
 On the other hand, chronic hyperglycemia is a 
cause of impairment of insulin biosynthesis and secretion. 
Once hyperglycemia becomes apparent, β-cell function
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Table 1. Pancreas-related phenotype in knockout mice of each pancreatic transcription factor 
Transcription Factor Family Expression in mature islets Pancreas-related phenotype in knockout mice 
PDX-1 HD β- and δ-cells absence of pancreas 
Hb9 HD β-cells absence of dorsal pancreas 
Isl-1 HD all islet cells absence of islet cells 

and dorsal mesenchyme 
Pax4 HD not detected absence of β-cells 

decrease of δ-cells 
increase of α- and  ε-cells 

Pax6 HD all islet cells absence of α-cells 
decrease of  β-, δ-, and PP-cells 
increase of ε-cells 

Nkx2.2 HD α-, β- and PP-cells absence of β-cells 
decrease of  α- and PP-cells 

Nkx6.1 HD β-cells decrease of β-cells 
Ngn3 bHLH not detected absence of endocrine cells 
NeuroD bHLH all islet cells decrease of endocrine cells 
MafA bLZ β-cells decrease of insulin 

biosynthesis and secretion 
 
gradually deteriorates. This process is called β-cell glucose 
toxicity and clinically often observed in diabetic subjects (1, 
2). Therefore, it is very important to examine the molecular 
mechanism for β-cell glucose toxicity and to explore the 
therapy to protect β-cells from the glucose toxicity. 
 
3. PDX-1 PLAYS A CRUCIAL ROLE IN PANCREAS 
DEVELOPMENT AND β-CELL DIFFERENTIATION 
 

It has been shown that various pancreatic 
transcription factors are involved in pancreas development 
and β-cell differentiation. Among them, members of the 
large family of homeodomain (HD)-containing proteins are 
likely to play a crucial role in the pancreas. The pancreatic 
duodenal homeobox factor-1 (PDX-1) (also known as 
IDX-1/STF-1/IPF1) (3-5) and the Hb9 factor are essential 
for the early stage of pancreas development. While PDX-1 
affects the development of the entire pancreas (6-15), Hb9 
plays an important role for the development of the dorsal 
pancreas (16, 17) (Table 1). It is noted here that PDX-1 is 
not detected in the dorsal pancreas in Hb9 (-/-) mice. Other 
subclasses of homeodomain (HD) proteins such as the LIM 
domain protein Isl-1, the paired domain proteins Pax4 and 
Pax6, and the Nkx class proteins Nkx6.1 and Nkx2.2 also 
play an important role in the development of pancreas 
(18-29). Pancreas-related phenotype in knockout mice of 
each homeodomain protein is as follows. Isl-1 (-/-), absence 
of islet cells and dosal pancreatic mesoderm (18); Pax4 (-/-), 
absence of β-cells, decrease of δ-cells, and increase of α- 
and ε-cells (ghrelin-producing cells) (19, 20); Pax6 (-/-), 
absence of α-cells, decrease of β-, δ- and PP-cells (21, 22), 
increase of ε-cells (27); Nkx6.1 (-/-), decrease of β-cells; 
Nkx2.2 (-/-), absence of β-cells, decrease of α- and PP-cells 
(22, 23), and increase of ε-cells (26) (Table 1).  

 
Among such various homeodomain-containing 

transcription factors identified as essential for proper 
pancreas development, PDX-1 is both expressed in 
precursors of the endocrine and exocrine compartments of 
the pancreas, and is essential for pancreas development 
(6-14), β-cell differentiation (30-40), and maintaining 
mature β-cell function by regulating several β-cell-related 
genes (41-50). At early stage of embryonic development, 
PDX-1 is initially expressed in the gut region when the

 
foregut endoderm becomes committed to common 
pancreatic precursor cells. During pancreas development, 
PDX-1 expression is maintained in precursor cells that 
coexpress several hormones, and later it becomes restricted 
to β-cells (Figure 1). Mice homozygous for a targeted 
mutation in the PDX-1 gene are apancreatic and develop 
fatal perinatal hyperglycemia (6), indicating that PDX-1 
plays a crucial role for the development of endocrine and 
exocrine cell types. It is noted here that PDX-1 expression is 
not required for pancreatic determination of the endoderm 
because the initial bud formation was observed in PDX-1 
(-/-) mice. Loss of PDX-1 function also results in pancreatic 
agenesis in humans (11). Differentiation and maintenance of 
the β-cell phenotype also requires PDX-1. In mature β-cells, 
PDX-1 transactivates the insulin gene and other genes 
involved in glucose sensing and metabolism, such as 
GLUT2 and glucokinase (44, 45). It was also reported that 
PDX-1 (+/-) mice were glucose intolerant, with increased 
islet apoptosis, a decreased islet mass, and abnormal islet 
architecture, indicating that gene dosage for PDX-1 is 
crucial for normal glucose homeostasis (12, 45, 47). These 
findings are concordant with the report that humans 
heterozygous for an inactivating mutation of PDX-1 cause 
to maturity-onset diabetes of the young (MODY 4) (51). The 
other well-represented class of transcription factors is that of 
the basic helix loop helix (bHLH) proteins, which include 
NeuroD and neurogenin3 (Ngn3). NeuroD, a member of the 
bHLH transcription factor family, also known as BETA2, is 
expressed in pancreatic and intestinal endocrine cells and 
neural tissue. NeuroD plays an important role in pancreas 
development and in regulating insulin gene transcription 
(52-55). Mice homozygous for the null mutation in NeuroD 
have a striking reduction in the number of β-cells, develop 
severe diabetes and die perinatally (53) (Figure 1). 
Clinically, mutations in NeuroD cause maturity-onset 
diabetes of the young (MODY 6) (56). Furthermore, it has 
been reported that the insulin enhancer elements, E-box and 
A-box, are very important for insulin gene transcription (57, 
58). Neurogenin3 (Ngn3), a member of the basic 
helix-loop-helix (bHLH) transcription factor family, is 
involved in pancreas development and endocrine 
differentiation (59-65). After bud formation, Ngn3 is 
transiently expressed in endocrine precursor cells, and 
functions as a potential initiator of endocrine differentiation. 
Transgenic mice overexpressing Ngn3 show a marked
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Figure 1. Pancreatic transcription factor hierarchy in pancreas development. It is well known that many transcription factors are 
involved in pancreas development and β-cell differentiation. Among them, PDX-1 plays a crucial role in pancreas development and 
β-cell differentiation, and functions as an activator of insulin gene transcription. MafA expression is induced in the final stage of 
β-cell differentiation and functions as a potent activator of insulin gene transcription.  
 
increase in endocrine cell formation, indicating that Ngn3 
induces islet cell precursors to differentiate (60, 61). In 
contrast, mice with targeted disruption of Ngn3 have no 
endocrine cells (62) (Table 1).  
 
4. AREA I-II-III IN PDX-1 ENHANCER REGION 
PLAYS A CRUCIAL ROLE IN PANCREAS 
DEVELOPMENT AND MAINTENANCE OF β-CELL 
FUNCTION 
 

Normal endocrine pancreas development and 
function depends on a highly integrated transcription factor 
network, and subtle abnormalities in islets caused by 
heterozygosity or reduced gene dosage of MODY 
susceptibility genes lead to diabetes in human (66). Recent 
promoter analyses of genes involved in β-cell differentiation 
and function suggest complex genetic interactions among 
these factors (67, 68). Indeed, alignment of the mouse and 
human PDX-1 gene sequences revealed three conserved 

regions referred to collectively as Area I-II-III (69). The 
Area I-II-III region harbors binding sites for MODY 
transcription factors such as HNF-1α� (Foxa1) and PDX-1 
itself (70, 71) as well as other transcriptional regulators such 
as HNF-3β (Foxa2), Pax6, MafA, and HNF-6 (OC-1) (69, 
72-75) . It has been reported that islet-specific and 
β-cell-specific cis-regulatory regions overlap with Area 
I-II-III, suggesting that Area I-II-III functions specifically in 
differentiation and maintenance of pancreatic islets (69, 71, 
73, 76, 77) . It has also been reported recently that deletion 
of Area I-II-III results in a decreased level and abnormal 

spatiotemporal expression of PDX-1 protein and that lineage 
labeling in homozygous Area I-II-III deletion mutant mice 
reveals lack of ventral pancreatic bud specification and 
early-onset hypoplasia in the dorsal bud (78). In the mice, 
acinar tissue formed in the hypoplastic dorsal bud, but 
endocrine maturation was greatly impaired. Furthermore, 
heterozygous Area I-II-III deletion mutant mice had 

abnormal islets and showed more severe glucose intolerance 
compared to PDX-1 (+/-) mice (78).  
 
5. PROGRAMMED DOWNREGULATION OF PDX-1 
IS REQUIRED FOR EXOCRINE FORMATION AND 
PERSISTENT EXPRESSION OF PDX-1 CAUSES 
ACINAR-TO-DUCTAL METAPLASIA 
 

While PDX-1 is expressed in pancreatic progenitor 
cells and plays a crucial role in pancreas development and 
β-cell differentiation, PDX-1 expression is downregulated 
in exocrine and ductal cells after late embryonic 
development. On the other hand, re-upregulation of PDX-1 
has been reported in human patients and several mouse 
models with pancreatic cancer and pancreatitis (79-81) . We 
have recently reported that programmed downregulation of 
PDX-1 is required for exocrine formation during pancreas 
differentiation and that persistent expression of PDX-1 
causes acinar-to-ductal metaplasia (82). To determine 
whether sustained expression of PDX-1 affects pancreas 
development, PDX-1 was constitutively expressed in all 
pancreatic lineages by transgenic approaches. Previously we 
generated CAG-CAT-PDX1 mice, a transgenic line which 
constitutively express the PDX-1 gene under the control of 
the chicken β-actin gene (CAG) promoter after the removal 
of floxed stuffer sequence (CAT) by Cre-mediated 
recombination (37). When the mice were crossed with 
Ptf1a-Cre mice, which express the Cre recombinase driven 
by the Ptf1a (PTF1-p48) gene promoter (83), PDX-1 was 
expressed in precursors of all three pancreatic cell types: 
islets, acini, and ducts. Two weeks after birth, the whole 
pancreas of the Ptf1a-Cre; CAG-CAT-PDX1 mouse was 
much smaller compared to the non-transgenic pancreas, and 
marked abnormality of the exocrine tissue was observed in 
the transgenic pancreas. While acinar areas with normal 
morphology substantially disappeared in the transgenic 
pancreas, a large number of cells with duct-like morphology 
were observed (82). Severe atrophic cells and abnormal 
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Figure 2. Induction of insulin-producing cells by expression of key pancreatic transcription factors.Overexpression of key 
pancreatic transcription factors such as PDX-1 and MafA in non-β-cells (tissues) (e.g. pancreatic non-β-cells, liver, intestine, bone 
marrow cells) induces the expression of various β-cell-related genes including insulin. Also, there are various methods to 
overexpress such transcription factors such as Cre-loxP system, adenoviral overexpression, and protein transduction system. 

 
duct-like morphology were observed exclusively in the cells 
expressing exogenous PDX-1, suggesting that the 
phenotypes in the transgenic pancreas are caused by the 
cell-autonomous effect of PDX-1.  

 
Furthermore, in metaplastic duct-like cells, signal 

transducer and activator of transcription 3 (Stat3) proteins 
were activated. To address the pathophysiological 
significance of Stat3 activation in inducing metaplastic 
duct-like cells, Ptf1a-Cre; CAG-CAT-PDX1 mice were 
crossed with floxed-Stat3 mice. Surprisingly, in the 
pancreata of Ptf1a-Cre; CAG-CAT-PDX1; Stat3 flox/ flox 
mice, metaplastic duct-like cells were rarely observed all 
over the acinar area (82). Pancreatic hypoplasia seen in 
PDX-1 overexpressing pancreata was also substantially 
restored in the pancreata of Ptf1a-Cre; CAG-CAT-PDX1; 
Stat3 flox/ flox mice. Taken together, it is likely that 
programmed downregulation of PDX-1 is required for 
exocrine formation and that persistent upregulation of 
PDX-1 is sufficient to induce acinar-to-ductal metaplasia in 
the exocrine lineage through Stat3 activation. 
 
6. PDX-1 INDUCES INSULIN-PRODUCING CELLS 
FROM NON-β-CELLS 
 

The pancreas is composed of exocrine (acini and 
ducts) and endocrine compartments (α-,β-,δ-, and PP-cells). 
During pancreas development, differentiation of endocrine 
and exocrine compartments from pancreatic buds requires 
the coordinated regulation of specific genes. This process 
can be envisioned as a hierarchy of transcription factors that 
initiate and maintain various gene expression program, 
leading to the determination of various pancreatic cell types 
(Figure 1). For the induction of insulin-producing cells from 
various cells and tissues, it would be useful to mimic and 

reproduce the alteration in expression of various pancreatic 
transcription factors observed during normal pancreas 
development. In addition, it would be useful to induce 
pancreatic key transcription factor in some source cells and 
tissues which have the potency to induce various 
β-cell-related genes including insulin (Figure 2). It has been 
reported that various cells and tissues such as embryonic 
stem cells, liver, pancreas, intestine, and bone marrow can 
be transdifferentiated into insulin-producing cells. It was 
shown that embryonic stem cells have the potential to 
differentiate into insulin-producing cells (84-87) , but the 
use of these cells for the treatment of diabetes may not be 
appropriate from an ethical point of view. Therefore, adult 
tissue-derived progenitor cells have also been used to induce 
insulin-producing cells. Pancreatic ducts, acini, and 
non-β-cells in islets have also been shown to have the 
potential to differentiate into insulin-producing cells (31, 34, 
36, 88-91) . Also, since the pancreas and liver arise from 
adjacent regions of the endoderm in embryonic development, 
the liver has been thought to be a potential source for the 
induction of insulin-producing cells (30, 37-40, 55, 91-93). 
Intestinal epithelium-derived cells and some populations of 
bone marrow cells were also shown to have the potential to 
differentiate into insulin-producing cells (32, 33, 36, 94, 95) 
. In such studies, several pancreatic transcription factors 
have been used to induce insulin-producing cells from 
various cells and tissues. Indeed, it was reported that 
adenoviral PDX-1 expression in the liver of mice induced 
expression of the endogenous insulin mRNA. Also, hepatic 
immunoreactive insulin induced by PDX-1 was processed to 
mature insulin which was biologically active (30). These 
data indicate the capacity of PDX-1 to reprogram 
extrapancreatic tissue towards a β-cell phenotype, which 
may provide a valuable approach for generating surrogate 
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Figure 3. Tissue-specific overexpression of PDX-1 using the Cre/loxP-mediated approach. We previously generated 
CAG-CAT-PDX1 mice, a transgenic line which constitutively expresses the PDX-1 gene under the control of the chicken β-actin 
gene (CAG) promoter after the removal of floxed stuffer sequence (CAT) by Cre-mediated recombination. When the mice are 
crossed with Ptf1a-Cre mice, which express the Cre recombinase driven by the Ptf1a (PTF1-p48) gene promoter, PDX-1 is 
expressed in precursors of all three pancreatic cell types: islets, acini, and ducts. Also, when the mice are crossed with Alb-Cre mice, 
which express the Cre recombinase driven by the rat albumin gene promoter, PDX-1 is expressed in hepatocytes and 
cholangiocytes. 

 
β-cells, suitable for replacing impaired β-cell function found 
in diabetes. These results also suggest that it is useful to 
induce pancreatic key transcription factor in various cells 
and tissues which have the potential to induce various 
β-cell-related genes including insulin. 

 
 Next, to carry out efficient screening of somatic 
tissues and cells that can transdifferentiate into β-cell-like 
cells in response to PDX-1, we previously generated 
CAG-CAT-PDX1 mice, a transgenic line which 
constitutively express the PDX-1 gene under the control of 
the chicken β-actin gene (CAG)  promoter after the removal 
of floxed stuffer sequence (CAT) by Cre-mediated 
recombination (37) (Figure 3). When the mice were crossed 
with Alb-Cre mice, which express the Cre recombinase 
driven by the rat albumin gene promoter, PDX-1 was 
expressed in hepatocytes and cholangiocytes. The 
PDX-1-producing liver expressed a variety of endocrine 
hormone genes such as insulin, glucagon, somatostatin, and 
pancreatic polypeptide and exocrine genes such as 
elastase-1 and chymotrypsinogen 1B (39). The mice, 
however, exhibited marked jaundice due to conjugated 
hyperbilirubinemia, and the liver tissue displayed abnormal 
lobe structures and multiple cystic lesions. Thus, the in vivo 
ectopic expression of PDX-1 in albumin-producing cells 
was able to initiate, although not complete, the 
differentiation of liver cells into insulin-producing cells. We 
think that this conditional PDX-1 transgenic mouse system 
would be useful for efficient screening of PDX-1 responsive 
somatic tissues and cells. Considering the fact that the 
expression of PDX-1 continues throughout pancreas 
development, i.e., from the embryonic pancreatic buds to 

adult islets, this Cre/loxP-mediated approach would provide 
a suitable system for evaluation of the transdifferentiation 
potential of PDX-1 in vivo.  
 
7. PDX-1-VP16 EFFICIENTLY INDUCES 
INSULIN-PRODUCING CELLS FROM 
NON-β-CELLS 
 
 Since the pancreas and liver arise from adjacent 
regions of the endoderm in embryonic development, the 
liver has been thought to be a potential target for diabetes 
gene therapy (30, 37-40, 54, 92, 93). In addition, it has been 
shown recently that a modified form of XlHbox8, the 
Xenopus homolog of PDX-1, carrying the VP16 
transcriptional activation domain from Herpes simplex 
virus, efficiently induces insulin gene expression in the liver 
of the tadpole (96). In this study, transgenic Xenopus 
tadpoles carrying the Xlhbox8-VP16 gene under the control 
of the transthyretin promoter were prepared. Xlhbox8-VP16 
was expressed only in the liver of the tadpoles. In the 
transgenic tadpoles, the liver was converted into a pancreas, 
containing both exocrine and endocrine cells, while 
characteristics as a liver were lost from the regions 
converted to the pancreas (96). In contrast, conversion of 
the liver to a pancreas was not observed by expression of 
Xlhbox8 alone (without VP16).  
 
 Based on these findings in tadpoles (96), the 
effects of the PDX-1-VP16 fusion protein (PDX-1-VP16) on 
differentiation of cells into insulin-producing cells have been 
examined in mice. Indeed, it was reported recently that 
PDX-1-VP16 rather than wild type PDX-1 efficiently 
induced insulin-producing cells in the liver and ameliorated 
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glucose tolerance in diabetic mice (38-40). In addition, it 
was shown that PDX-1-VP16 efficiently induced insulin 
gene expression in the liver especially in the presence of 
pancreatic transcription factors NeuroD or Ngn3 (38). 
Although PDX-1-VP16 exerted only a slightly greater effect 
on the insulin promoter compared to wild type PDX-1, 
PDX-1-VP16, together with NeuroD or Ngn3, dramatically 
increased insulin promoter activity in HepG2 cells. 
Furthermore, when adenovirus expressing the PDX-1-VP16 
fusion protein (Ad-PDX-1-VP16), both insulin 1 and 2 
mRNA was detected in the liver, although insulin 1 was not 
detected by the expression of wild type PDX-1 (without 
VP-16) (38). Ad-PDX-1-VP16 treatment, together with 
Ad-NeuroD or Ad-Ngn3, induced larger amounts of insulin 
gene expression. After treatment with Ad-PDX-1-VP16 plus 
Ad-NeuroD (or Ad-Ngn3), insulin-positive cells and insulin 
secretory granules were observed in the liver upon 
immunostaining and electron microscopy, respectively (38). 
Furthermore, various endocrine pancreas-related factors 
such as islet-type glucokinase, glucagon and somatostatin 
were induced after treatment with Ad-PDX-1-VP16 plus 
Ad-NeuroD (or Ad-Ngn3). Consequently, in STZ-induced 
diabetic mice, blood glucose levels were decreased by 
PDX-1-VP16 alone, which was more pronounced compared 
to the effects of wild type PDX-1, and were further 
decreased by overexpression of PDX-1-VP16 plus NeuroD 
(or Ngn3) (38). The marked effects of PDX-1-VP16 
expression, together with NeuroD or Ngn3, on insulin 
production and glucose tolerance indicate that the 
combination is useful and efficient for replacing the reduced 
insulin biosynthesis found in diabetes, and that PDX-1 
requires the recruitment of coordinately functioning 
transcription factors or cofactors in order to fully exert its 
function (Figure 3). In addition, these results suggest that the 
synergistic activation of insulin promoter by PDX-1 and 
bHLH transcription factors such as NeuroD or Ngn3 is 
important for the induction of insulin-producing cells from 
non-β-cells for the achievement of β-cell regeneration 
therapy in the future.  
 
 It was also shown recently that PDX-1-VP16 
expressing hepatic cells converted into functional 
insulin-producing cells in the presence of high glucose (39). 
In this study, the authors generated a stably transfected rat 
hepatic cell line named WB-1 that expresses PDX-1-VP16. 
Expression of several genes related to endocrine pancreas 
development and islet function was induced by 
PDX-1-VP16 in the liver cells, although some pancreatic 
transcription factors were missing. In addition, these cells 
failed to secrete insulin upon glucose challenge. However, 
when WB-1 cells were transplanted into diabetic NOD-scid 
mice, they possessed similar properties as seen in β-cells. 
Almost all β-cell-related transcription factors were induced 
and hyperglycemia was normalized (39). In addition, in 
vitro culturing in high glucose medium was sufficient to 
induce the complete maturation of WB-1 cells into 
functional insulin-producing cells (39). These results 
suggest that PDX-1-VP16 is very efficient and useful for 
replacing reduced insulin biosynthesis and for amelioration 
of glucose tolerance but that PDX-1-VP16 alone is not 
enough to induce complete transdifferentiation of various 
cells to functional insulin-producing cells.  

8. MafA FUNCTIONS AS A POTENT ACTIVATOR 
OF INSULIN GENE AND IS A NOVEL 
THERAPEUTIC TARGET FOR DIABETES 
 

It was previously shown that an unidentified 
β-cell-specific nuclear factor binds to a conserved 
cis-regulatory element called RIPE3b1 in the insulin gene 
enhancer region and is likely to function as an important 
transactivator for the insulin gene (97, 98). Recently, this 
important transactivator was identified as MafA, a 
basic-leucine zipper (bLZ) transcription factor (99-101) 
(Table 1). The C1/RIPE3b1 activator from mouse βTC-3 
cell nuclear extracts was purified by DNA affinity 
chromatography and two-dimensional gel electrophoresis 
(101). C1/RIPE3b1 binding activity was found in the 
46-kDa fraction at pH 7.0 and pH 4.5. MafA was detected in 
the C1/RIPE3b1 binding complex by using MafA 
peptide-specific antisera. In addition, MafA was shown to 
bind within the enhancer region of the endogenous insulin 
gene in βTC-3 cells in the chromatin immunoprecipitation 
assay (101). These results strongly suggest that MafA is the 
β-cell-enriched component of the RIPE3b1 activator. MafA 
controls β-cell-specific expression of the insulin gene 
through a cis-regulatory element called RIPE3b1 and 
functions as a potent transactivator for the insulin gene 
(99-104). During pancreas development, MafA expression 
is first detected at the beginning of the principal phase of 
insulin-producing cell production (102), while other 
important transcription factors such as PDX-1 and NeuroD 
are expressed from the early stage of pancreas development 
(Figure 1). In addition, while both PDX-1 and NeuroD are 
expressed in various cell types in islets, MafA is expressed 
only in β-cells and functions as a potent activator of insulin 
gene transcription. Thus, the potency of MafA as an insulin 
gene activator, together with its unique expression in 
β-cells, raises the likelihood that MafA is the principal 
factor required for β-cell formation and function. Therefore, 
it is likely that MafA is a useful factor for generating 
insulin-producing cells from non-β-cells. Furthermore, it 
was recently reported that MafA knockout mice displayed 
glucose intolerance and developed diabetes mellitus (105). 
In MafA (-/-) mice, expression of insulin 1, insulin 2, 
PDX-1, NeuroD, and GLUT2 was decreased, and glucose-, 
arginine-, and KCl-stimulated insulin secretion was severely 
impaired (Table 1). The MafA (-/-) mice also displayed 
age-dependent pancreatic islet abnormalities (104). These 
results strengthen the importance of MafA in maintaining 
mature β-cell function. 

 
 It was shown recently that MafA, together with 
some other pancreatic transcription factors, efficiently 
induced insulin gene expression in the liver (103). Basal 
insulin promoter activity was increased by MafA alone in 
HepG2 cells, which was much more significant compared to 
the effect of PDX-1 or NeuroD. Furthermore, MafA, 
together with PDX-1 plus NeuroD, drastically increased 
insulin promoter activity (103). These results clearly show 
that MafA, PDX-1, and NeuroD exert strong synergistic 
effect on insulin promoter activity. Neither insulin 1 nor 
insulin 2 mRNA was induced in the liver by Ad-MafA 
alone, but both insulin 1 and 2 were induced by Ad-MafA 
plus Ad-PDX-1 (or Ad-NeuroD). Larger amounts of insulin 
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1 and 2 mRNA were clearly observed in the liver after the 
triple infection (Ad-MafA, Ad-PDX-1, plus Ad-NeuroD). 
Substantial production of insulin protein was also detected 
in the triple infected liver. In addition, upon immunostaining 
for insulin, many insulin-producing cells were clearly 
observed in the liver after the triple infection (103). 
Consequently, in STZ-induced diabetic mice, and blood 
glucose levels were dramatically decreased by the triple 
infection (Ad-MafA, Ad-PDX-1, and Ad-NeuroD). These 
results suggest a crucial role for MafA as a novel therapeutic 
target for diabetes and imply that expression of such a 
combination of transcription factors is very efficient and 
useful for replacing the reduced insulin biosynthesis found 
in diabetes (Figure 2).  
 
9. PDX-1 POSSESSES PROTEIN TRANSDUCTION 
DOMAIN IN ITS STRUCTURE AND THEREBY CAN 
PERMEATE CELL MEMBRANE 
  
 Many studies have been performed to 
overexpress pancreatic transcription factors using various 
virus-mediated approaches, but it would be difficult to 
apply the virus-mediated approach to clinical medicine.  
Therefore, new strategies are necessary to safely deliver 
such transcription factors. Protein transduction domains 
(PTDs) such as the small PTD from the TAT protein of 
human immunodeficiency virus (HIV-1), the VP22 protein 
of Herpes simplex virus, and the third α-helix of the 
homeodomain of Antennapedia, a Drosophila transcription 
factor, are known to allow various proteins and peptides to 
be efficiently delivered into cells through the plasma 
membrane, and thus there has been increasing interest in 
their potential usefulness for the delivery of bioactive 
proteins and peptides into cells (34, 55, 65). Therefore, 
regarding the validity of pancreatic transcription factors as 
therapeutic targets, the protein delivery system is very 
promising at this point, because it is practically difficult to 
apply the virus-mediated approach to clinical medicine 
without side effects. In order to induce surrogate β-cells and 
apply to clinical medicine, it would be promising to deliver 
pancreatic key transcription factors into pancreatic source 
cells and tissues using this protein delivery system (Figure 
2). Furthermore, it was shown recently that PDX-1 protein 
can permeate several cells due to an Antennapedia-like 
protein transduction domain sequence in its structure and 
that transduced PDX-1 functions similarly to endogenous 
PDX-1; it binds to the insulin promoter and activates its 
expression. Transduced PDX-1 protein induced insulin gene 
expression in isolated pancreatic ducts (34). These data 
clearly suggest that PDX-1 protein transduction could be a 
safe and valuable strategy for inducing surrogate β-cells 
from non-β-cells without requiring gene transfer 
technology. 
 
10. CHRONIC HYPERGLYCEMIA DETERIORATES 
β-CELL FUNCTION BY PROVOKING OXIDATIVE 
STRESS, ACCOMPANIED BY REDUCTION OF 
PDX-1 AND MafA DNA BINDING ACTIVITIES 
 
 Under diabetic conditions, chronic 
hyperglycemia gradually deteriorates pancreatic β-cell 
function. This process is often observed in diabetic subjects 

and is clinically well known as β-cell glucose toxicity (97, 
98, 105, 106). It has been shown that in the diabetic state, 
hyperglycemia per se and subsequent production of 
oxidative stress decrease insulin gene expression and 
secretion (107-119). It has also been shown that the loss of 
insulin gene expression is accompanied by decreased 
expression and/or DNA binding activities of PDX-1 (98, 106, 
109, 111-113) and RIPE3b1 (which was recently identified 
as MafA) (97, 98, 105). After chronic exposure to a high 
glucose concentration, expression and/or DNA binding 
activities of such transcription factors are reduced. In 
addition, abnormalities in lipid metabolism have been 
proposed as contributing factors to deterioration of 
pancreatic β-cell function. Prolonged exposure to excessive 
concentrations of fatty acids inhibits insulin gene expression 
and secretion (2, 120, 121). Furthermore, it has been shown 
recently that prolonged exposure of islets to palmitate 
inhibits insulin gene transcription by impairing nuclear 
localization of PDX-1 and cellular expression of MafA 
(122). 
 
 Under diabetic conditions, hyperglycemia 
induces oxidative stress through various pathways such as 
the non-enzymatic glycosylation reaction and the electron 
transport chain in mitochondria (Figure 4), which is 
involved in the β-cell glucose toxicity found in diabetes 
(108-119, 123-126). β-Cells express GLUT2, a high-Km 
glucose transporter, and thereby display highly efficient 
glucose uptake when exposed to a high glucose 
concentration. In addition, β-cells are rather vulnerable to 
oxidative stress due to the relatively low expression of 
antioxidant enzymes such as catalase, and glutathione 
peroxidase (127, 128). Indeed, it was shown that expression 
of oxidative stress markers 8-hydroxy-2'-deoxyguanosine 
(8-OHdG) and 4-hydroxy-2, 3-nonenal (4-HNE) were 
increased in islets under diabetic conditions (110, 117). 
 
 It was shown that when β-cell-derived cell lines or 
rat isolated islets were exposed to oxidative stress, insulin 
gene promoter activity and mRNA expression were 
suppressed (111, 112, 115, 116). In addition, when 
β-cell-derived cell lines or rat isolated islets were exposed to 
oxidative stress, binding of PDX-1 to the insulin gene 
promoter was markedly reduced. Furthermore, it was shown 
that the decrease of insulin gene expression after chronic 
exposure to a high glucose concentration was prevented by 
treatment with antioxidants (112, 113, 116, 126). Reduction 
of expression and/or DNA binding activities of PDX-1 and 
MafA by chronic exposure to a high glucose concentration 
was also prevented by an antioxidant treatment. These 
results suggest that chronic hyperglycemia suppresses 
insulin biosynthesis and secretion by provoking oxidative 
stress, accompanied by reduction of expression and/or DNA 
binding activities of two important pancreatic transcription 
factors PDX-1 and MafA. Therefore, it is likely that the 
alteration of such transcription factors explains, at least in 
part, the suppression of insulin biosynthesis and secretion, 
and thus are involved in β-cell glucose toxicity (Figure 5).  
 
 Next, to evaluate a role of oxidative stress in 
vivo, obese diabetic C57BL/KsJ-db/db mice were treated 
with antioxidants (N-acetyl-L-cysteine plus vitamin C and 
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Figure 4. Induction of oxidative stress under diabetic conditions.Under diabetic conditions hyperglycemia induces oxidative stress 
through various pathways such as the non-enzymatic glycosylation reaction and the electron transport chain in mitochondria. 
 
 
 
 
 
 

 
 
Figure 5. Role of PDX-1 and MafA in pancreatic β-cell glucose toxicity. Chronic hyperglycemia deteriorates β-cell function by 
provoking oxidative stress, accompanied by reduction of PDX-1 and MafA DNA binding activities. This process is often observed 
under diabetic conditions and is called β-cell glucose toxicity. 
 
E) (112). The antioxidant treatment retained 
glucose-stimulated insulin secretion and moderately 
ameliorated glucose tolerance. β-Cell mass was 
significantly larger in the mice treated with the antioxidants. 
Insulin content and insulin mRNA levels were also 
preserved by the antioxidant treatment. Furthermore, PDX-1 
expression was more clearly visible in the nuclei of islet 
cells after the antioxidant treatment (112). Similar effects 
were observed with Zucker diabetic fatty rats, another 
model animal for type 2 diabetes (113). Taken together, 
these data indicate that antioxidant treatment can protect 
β-cells against glucose toxicity. In addition, we examined 
the possible anti-diabetic effects of probucol, an antioxidant 

widely used as an anti-hyperlipidemic agent, on 
preservation of β-cell function in diabetic C57BL/KsJ-db/db 
mice (117). Immunostaining for oxidative stress markers 
such as 4-hydroxy-2-nonenal (HNE)-modified proteins and 
heme oxygenase-1 revealed that probucol treatment 
decreased ROS in β-cells of diabetic mice. Probucol 
treatment also preserved β-cell mass, insulin content, and 
glucose-stimulated insulin secretion, leading to 
improvement of glucose tolerance (117). These data suggest 
potential usefulness of antioxidants for diabetes and provide 
further support for the implication of oxidative stress in 
β-cell glucose toxicity found in diabetes.
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Figure 6. Nucleo-cytoplasmic translocation of PDX-1 by oxidative stress and subsequent activation of the JNK pathway. Oxidative 
stress and subsequent activation of the JNK pathway induce nucleo-cytoplasmic translocation of PDX-1, which leads to reduction 
of its DNA binding activity and suppression of insulin biosynthesis 
 
11. OXIDATIVE STRESS AND SUBSEQUENT 
ACTIVATION OF THE JNK PATHWAY INDUCE 
NUCLEO-CYTOPLASMIC TRANSLOCATION OF 
PDX-1, WHICH LEADS TO REDUCTION OF ITS 
DNA BINDING ACTIVITY AND SUPPRESSION OF 
INSULIN BIOSYNTHESIS 
 
 It has been suggested that activation of the c-Jun 
N-terminal kinase (JNK) pathway is involved in pancreatic 
β-cell dysfunction found in diabetes. It was reported that 
activation of the JNK pathway is involved in reduction of 
insulin gene expression by oxidative stress and that 
suppression of the JNK pathway can protect β-cells from 
oxidative stress (129). When isolated rat islets were exposed 
to oxidative stress, the JNK pathway was activated, 
preceding the decrease of insulin gene expression. 
Adenoviral overexpression of dominant-negative type JNK1 
(DN-JNK) protected insulin gene expression and secretion 
from oxidative stress. Moreover, wild type JNK1 (WT-JNK) 
overexpression suppressed both insulin gene expression and 
secretion (129). These results were correlated with change in 
the binding of the important transcription factor PDX-1 to 
the insulin promoter. Adenoviral overexpression of DN-JNK 
preserved PDX-1 DNA binding activity in the face of 
oxidative stress, while WT-JNK overexpression decreased 
PDX-1 DNA binding activity (129). Thus, it is likely that 
JNK-mediated suppression of PDX-1 DNA binding activity 
accounts for some of the suppression of insulin gene 
transcription. Taken together, it is likely that activation of 

the JNK pathway leads to decreased PDX-1 activity and 
consequent suppression of insulin gene transcription found 
in the diabetic state (Figure 6).  
 
 Also, as a potential mechanism for JNK-mediated 
PDX-1 inactivation, it was recently reported that PDX-1 is 
translocated from the nuclei to the cytoplasm in response to 
oxidative stress. When oxidative stress was charged upon 
β-cell-derived HIT cells, PDX-1 moved from the nuclei to 
the cytoplasm (130). Addition of DN-JNK inhibited the 
oxidative stress-induced PDX-1 translocation, suggesting an 
essential role of the JNK pathway in mediating the 
phenomenon. Whereas the nuclear localization signal (NLS) 
in PDX-1 was not affected by oxidative stress, leptomycin B, 
a specific inhibitor of the classical, leucine-rich nuclear 
export signal (NES), inhibited nucleo-cytoplasmic 
translocation of PDX-1 induced by oxidative stress. Indeed, 
we identified an NES at position 82-94 of the mouse PDX-1 
protein (130). Taken together, it is likely that oxidative 
stress induces nucleo-cytoplasmic translocation of PDX-1 
through activation of the JNK pathway, which leads to 
reduction of its DNA binding activity and suppression of 
insulin biosynthesis (Figure 6). 
 
 Furthermore, we have recently reported that the 
forkhead transcription factor Foxo1 plays a role as a 
mediator between the JNK pathway and PDX-1 (131). In 
β-cell-derived HIT-T15 cells, Foxo1 changed its 
intracellular localization from the cytoplasm to the nucleus 
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Figure 7.  Involvement of Foxo1 in nucleo-cytoplasmic translocation of PDX-1 induced by oxidative stress and subsequent 
activation of the JNK pathway. Oxidative stress and subsequent activation of the JNK pathway induce nuclear translocation of 
Foxo1 through the modification of the insulin signaling in β-cells, which leads to the nucleo-cytoplasmic translocation of PDX-1 
and reduction of its DNA binding activity. 
 
under oxidative stress conditions. In contrast to Foxo1, the 
nuclear expression of PDX-1 was decreased and its 
cytoplasmic distribution was increased by oxidative stress. 
JNK overexpression also induced the nuclear localization of 
Foxo1, but in contrast, suppression of the JNK pathway 
reduced the oxidative stress-induced nuclear localization of 
Foxo1, suggesting an involvement of the JNK pathway in 
Foxo1 translocation (131). In addition, oxidative stress or 
activation of the JNK pathway decreased the activity of Akt 
in HIT cells, leading to the decreased phosphorylation of 
Foxo1 following nuclear localization. Furthermore, 
adenoviral Foxo1 overexpression reduced the nuclear 
expression of PDX-1, whereas repression of Foxo1 by 
Foxo1-specific small interfering RNA retained the nuclear 
expression of PDX-1 under oxidative stress conditions (131). 
Taken together, oxidative stress and subsequent activation of 
the JNK pathway induce nuclear translocation of Foxo1 
through the modification of the insulin signaling in β-cells, 
which leads to the nucleo-cytoplasmic translocation of 
PDX-1 and reduction of its DNA binding activity (Figure 7). 
 
12. SUMMARY AND PERSPECTIVES 
 
 Decrease of functioning pancreatic β-cell 
number and insufficient insulin biosynthesis and/or 
secretion are often observed in various diabetic animal 
models. Pancreas and islet transplantation have exerted 
beneficial effects for diabetic patients, but the limitation of 
available insulin-producing cells and requirement of 
life-long immunosuppressive therapy are major problems. 

Therefore, it is very important to search for alternative 
sources to induce insulin-producing cells. It is likely that 
PDX-1 and MafA play crucial roles in inducing 
insulin-producing cells from non-β-cells and thus could be 
therapeutic targets for diabetes. On the other hand, chronic 
hyperglycemia is a cause of impairment of insulin 
biosynthesis and secretion. Once hyperglycemia becomes 
apparent, β-cell function gradually deteriorates. Under 
diabetic conditions, expression and/or activities of PDX-1 
and MafA in β-cells are reduced, which leads to suppression 
of insulin biosynthesis and secretion. Therefore, it is likely 
that reduction of PDX-1 and MafA function explains, at 
least in part, the molecular mechanism for β-cell glucose 
toxicity and that PDX-1 and MafA could be therapeutic 
targets for diabetes. 
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