IMR Press / FBL / Volume 13 / Issue 15 / DOI: 10.2741/3112

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Article

In vitro assays of molecular motors – impact of motor-surface interactions

Show Less
1 School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden

*Author to whom correspondence should be addressed.

 

Front. Biosci. (Landmark Ed) 2008, 13(15), 5732–5754; https://doi.org/10.2741/3112
Published: 1 May 2008
Abstract

In many types of biophysical studies of both single molecules and ensembles of molecular motors the motors are adsorbed to artificial surfaces. Some of the most important assay systems of this type (in vitro motility assays and related single molecule techniques) will be briefly described together with an account of breakthroughs in the understanding of actomyosin function that have resulted from their use. A poorly characterized, but potentially important, entity in these studies is the mechanism of motor adsorption to surfaces and the effects of motor surface interactions on experimental results. A better understanding of these phenomena is also important for the development of commercially viable nanotechnological applications powered by molecular motors. Here, we will consider several aspects of motor surface interactions with a particular focus on heavy meromyosin (HMM) from skeletal muscle. These aspects will be related to heavy meromyosin structure and relevant parts of the vast literature on protein-surface interactions for non-motor proteins. An overview of methods for studying motor-surface interactions will also be given. The information is used as a basis for further development of a model for HMM-surface interactions and is discussed in relation to experiments where nanopatterning has been employed for in vitro reconstruction of actomyosin order. The challenges and potentials of this approach in biophysical studies, compared to the use of self-assembly of biological components into supramolecular protein aggregates (e.g. myosin filaments) will be considered. Finally, this review will consider the implications for further developments of motor-powered lab-on-a-chip devices.

Share
Back to top