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1. ABSTRACT 
 

The endothelium can elicit relaxations and 
contractions of the underlying smooth muscle cells. It does 
so by releasing vasodilator (EDRF) and vasoconstrictor 
(EDCF) mediators. Among the diffusible endothelial 
factors nitric oxide (NO) plays a key role, particularly in 
large blood vessels. This chapter briefly reviews the 
interactions between NO and the other vasomotor signals 
released by the endothelial cells. 
 
INTRODUCTION 
 

Following the discovery of the endothelium-
dependent character of the vasodilator responses to 
acetylcholine (1,2), it became obvious that such 
endothelium-dependency could not be explained by a 
single mechanism. Thus, we concluded in 1982 (3) that 
there were at least three pathways contributing to it, a 
proposal that withstood the test of time. Indeed, 
endothelium-dependent relaxations can be due to 
endothelium-derived relaxing factor (EDRF or nitric oxide 
(NO)), prostacyclin and/or endothelium-dependent 
hyperpolarization (EDHF-mediated relaxations) (see 4-9). 
Furthermore, when comparing the endothelium-dependent

 
 
 
 

responsiveness of arteries and veins (10) we soon were 
confronted with the fact that endothelial cells not only 
release relaxing factors, but also can initiate endothelium-
dependent contractions of the underlying vascular smooth 
muscle cells. Over the years, we have identified superoxide 
anions (11), thromboxane A2 (12), endoperoxides (13) and 
prostacyclin (14) as cyclooxygenase-derived, endothelium-
derived contracting factors (EDCF) (see 5, 15). Others 
discovered and identified the powerful vasoconstrictor 
peptide endothelin-1 (ET) that can be produced by 
endothelial cells (16,17). 
 

As one became more and more confronted with 
the complexity of the endothelial control of local 
vasomotor tone, the concept emerged that several 
endothelium-derived vasoactive factors are produced 
concomitantly and that the resulting change in vascular 
diameter is not simply the addition of effects, but that one 
endothelial factor can influence the release or the 
bioactivity of the others that of the other (18-20). This brief 
review focuses on the central role of NO as a modulator of 
the release and/or the action of the other endothelium-
derived vasoactive mediators. 
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3. NO AND ENDOTHELIUM-DEPENDENT 
HYPERPOLARIZATIONS 
 
3.1. EDHF-mediated, endothelium-dependent 
relaxations 

Hyperpolarization of the smooth muscle cells is a 
powerful way to produce its relaxation. It decreases not 
only Ca2+ influx by reducing the open probability of 
voltage-dependent Ca2+ channels (CaV) but also the release 
of Ca2+ from intracellular stores by decreasing the turnover 
of intracellular phosphatidylinositol and the CaV-dependent 
activation of the sarcoplasmic reticulum (8,21,22). 
 

Numerous endothelium-derived factors, including 
not only NO itself but also carbon monoxide, reactive 
oxygen species, peptides and metabolites of arachidonic 
acid (derived from cyclooxygenases, lipoxygenases and 
cytochrome P450 monooxygenases), can hyperpolarize the 
underlying vascular smooth muscle cells by activating 
different families of K+ channels. Another pathway, which 
does not involve the release of these factors but is 
associated with the hyperpolarization of both the 
endothelial and the vascular smooth muscle cells, 
contributes to endothelium-dependent relaxations. It 
involves an increase in endothelial intracellular calcium 
concentration, the opening of calcium-activated potassium 
channels of small and intermediate conductance (SKCa and 
IKCa) and the hyperpolarization of the endothelial cells. The 
hyperpolarization of the endothelial cell can be transmitted 
directly to the vascular smooth muscle by means of 
myoendothelial gap-junctions communication. 
Alternatively or concomitantly, the accumulation in the 
intercellular cleft of K+ ions, released from the endothelial 
cells through the opening of SKCa and IKCa, hyperpolarizes 
the smooth muscle cells by activating inward rectifying 
potassium channels (KIR2.1) and/or Na+/K+-ATPase (8, 9). 
 
3.2. NO and EDHF-mediated responses 
3.2.1. NO and potassium channels 

NO activates BKCa (23, 24) via a PKG-dependent 
phosphorylation of the channel (25) or by a direct, cyclic-
GMP-independent manner (26,27) as well as KV (28,29) 
and KATP (30,31). Besides affecting K+ conductances, NO 
also interacts with other ionic channels such as chloride and 
cationic channels and can thereby further influence the 
membrane potential of the smooth muscle cells (8). 

 
NO can also activate smooth muscle KIR (32), 

which are involved in EDHF-mediated responses, and 
activation of endothelial KIR increases the release of NO 
(33,34). Although, NO and NO-donors activate SKCa and 
IKCa in non-vascular smooth muscle cells (35-38), little 
information is available on the potential role of NO in 
regulating the activity of these channels in endothelial cells. 
In the middle cerebral artery of the rat, NO enables 
endothelial SKCa activity in an indirect manner by 
preventing the synthesis of thromboxane A2 and the 
subsequent activation of TP receptors (39,40). Long-term 
administration of nitroglycerine inhibits acetylcholine-
induced endothelial hyperpolarization and the activation of 
IKCa by a mechanism involving the production of reactive 
oxygen species (41), as in the generation of nitrate 

tolerance (42) and in the decrease of prostacyclin 
production (43). In murine mesenteric arteries, the gene 
expression of either SKCa or IKCa is unaffected by the 
deletion of the eNOS gene (44).  

 
On the other hand, the activation of endothelial 

SKCa or IKCa is pivotal for an increase in NO synthesis (45-
49, Figure 1). However, it remains uncertain whether or not 
endothelial KCa-dependent NO synthesis depends on the 
influx of extracellular calcium (48,50-54) or on other 
variables affecting the membrane potential (e.g. superoxide 
anion production (55) or L-arginine uptake (56)). 

 
3.2.2. NO and connexins 

The connexins (Cx) 37, 40 and 43 are the 
predominant isoforms of gap-junction proteins expressed in 
the vascular wall (57-59) and blockers of gap junctions 
abolish or partially inhibit EDHF-like responses in many 
arteries in vitro (57,60-66) and in vivo (67). Furthermore, in 
the rat mesenteric artery, antibodies directed against Cx40, 
when loaded selectively in the endothelial cells block 
EDHF-mediated responses (68).  
 
 NO can influence gap junction communications 
in cyclic GMP-dependent and independent ways or by 
direct nitrosylation of the connexins. NO is also involved in 
a positive and negative regulation of the expression of 
various connexins (69-73). However, EDHF-mediated 
responses of rabbit iliac arteries and of rat pial arterioles, 
the mechanism of which involves gap junctions composed 
of Cx37-Cx40 and Cx37-Cx-43, respectively, are not 
affected by either inhibition of NO-synthase or 
administration of NO donors (74,75). 
 
 In cultured human umbilical vein endothelial 
cells (HUVEC) stimulated with NO-donors and in 
transgenic mice overexpressing eNOS, the expression of 
Cx40 is increased (69,76), while eNOS inhibition does not 
affect the expression of Cx43 (77), and deletion of eNOS 
does not altered the vascular expression of Cx37, Cx40 and 
Cx43 (44,77). However, in L-NAME-induced 
hypertension, the aortic expression of Cx43 is reduced 
while, in other rat models, hypertension is associated with 
an increased Cx43 expression (78). 
 
 Mice with specific deletion of the vascular 
endothelial Cx43 gene are hypotensive and have an 
increased production of NO; the connection between the 
two events has not been established (79). 
 Therefore, although connexins are a target of NO, 
there is no evidence to date that NO influences EDHF-
mediated responses by regulating gap-junctions 
communications (Figure 1). 
 
3.2.3 NO and TRP channels 
 The major mechanism that sustains the opening 
of endothelial KCa channels, following stimulation, is the 
capacitive calcium entry elicited by the depletion of 
calcium stores (50,80) and which is associated with TRP 
channels activation (81-83). NO activates TRP channels of 
the TPRC and TPRV families by cysteine S-nitrosylation, 
and elicits calcium entry (84). The latter mechanism could 
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Figure 1. NO and endothelium-dependent hyperpolarizations. Interactions between nitric oxide (NO) and EDHF-mediated 
responses (associated with opening of small and intermediate conductance calcium-activated potassium channels) as well as 
between NO and cytochrome P450 metabolites (P450). R: receptor; ACh: acetylcholine; BK: bradykinin; SP: substance P; eNOS: 
endothelial nitric oxide synthase; EETs: epoxyeicosatrienoic acids; 20-HETE: 20- hydroxyeicosatetraenoic acid; O2.-: superoxide 
anion; ONOO-: peroxynitrite; PLC: phospholipase C; TRP: Transient Receptor Potential Channel; cAMP: cyclic-AMP; SK3: 
small conductance calcium-activated potassium channel formed by SK3 α-subunits; IK1: intermediate conductance calcium-
activated potassium channel formed by IK1 α-subunits; Kir2.1: Inward rectifying potassium channel constituted of Kir2.1 α-
subunits; KV: voltage-gated potassium channels; BKCa: large conductance calcium-activated potassium channels; KATP: ATP-
sensitive potassium channels. 
 
constitute a positive and autocrine feedback loop by which 
NO enhances its own release and triggers EDHF-dependent 
vasodilatation (82,84; Figure 1). 
 
3.2.4. NO and Na+-K+-ATPase 
 NO stimulates the Na+-K+-ATPase of vascular 
smooth muscle in a cyclic GMP-independent way, and the 
activation of the pump contributes to the relaxation (85-87). 
By contrast, it produces a cyclic GMP-dependent inhibition 
of the endothelial Na+-K+-ATPase (88,89). The inhibition 
of the endothelial Na+-K+-ATPase is associated with an 
increase in eNOS activity and NO production (90,91; 
Figure 1). 
 
3.3. NO and lipoxygenases 

In a limited number of blood vessels, 
lipoxygenase metabolites can be released by the endothelial 
cells and evoke relaxation of the vascular smooth muscle 
by activating KCa (8,92-94). 
 

Lipoxygenases are non-heme iron dioxygenases 
and therefore do not contain the preferential target of NO. 
Nevertheless, the lipoxygenase-dependent formation of 
peroxynitrite, reduces and partially inhibits the enzyme 
activity (95,96). In hypercholesterolemic mice, the 

decreased contribution of NO in endothelium-dependent 
relaxations is compensated by metabolites of 12/15 
lipoxygenase (97). On the other hand, in mice deficient in 
12/15 lipoxygenase, the expression of eNOS and the 
production of NO are increased (98).  
 
3.4. NO and cytochrome P450 monooxygenases 
 In endothelial cells, cytochrome P450 enzymes of 
the 2C or 2J families generate epoxyeicosatrienoic acids 
(EETs). EETs contribute to endothelium-dependent 
relaxations and hyperpolarizations in various blood vessels, 
including large and small coronary arteries (99,100), by 
activating BKCa (101,102). In vascular smooth muscle cells 
cytochrome P450 of the 4A and 4F families catalyze the ω-
hydroxylation of arachidonic acid to produce 
hydroxyeicosatetraenoic acids (HETE). 20-HETE is a 
potent endogenous vasoconstrictor. The mechanisms 
underlying this vasoconstriction include inhibition of 
smooth muscle BKCa (103) as well as suppression of 
EDHF-mediated responses by inhibition of Na+/K+-ATPase 
(104, Figure 1). 
 

NO binds to the heme moiety of cytochrome 
P450 monooxygenases and inhibits their activity. 
Additionally, NO decreases the expression of the 
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cytochromes P450 of the 2C family but increases that of the 
4A family (103). In agreement with these observations, 
NO, derived from eNOS, iNOS or NO-donors, reduces 
endothelium-dependent hyperpolarizations that involve the 
generation of cytochrome P450 metabolites (105-107). In 
certain vascular beds of eNOS-genetically deficient mice, 
EETs compensate for the loss of NO production, for 
instance in response to flow (108; Figure 1).  
 

In some peripheral vascular beds, the endogenous 
levels of 20-HETE are elevated and are responsible for an 
elevated intrinsic vascular tone. NO by inhibiting the 
enzymatic formation of 20-HETE indirectly activates BKCa, 
in a cyclic GMP-independent manner, and produces 
repolarization and relaxation (109,110; Figure 1). In eNOS 
knockout mice, the expression of cytochrome P450 A4 is 
not altered but the enhanced production of 20-HETE 
augments myogenic constriction (111). 
 
 The administration of EETs and the 
overexpression of cytochrome P450 2C enhance eNOS 
activity and increase the expression of the enzyme (112). 
Conversely, overexpression of cytochrome P450 4A 
produces hypertension, generates oxidative stress and 
reduces the bioavailability of NO (113). 
 
 In resistance arteries, the balance between EETs 
and 20-HETE, which have directly opposing effects, 
contributes to the control of vascular tone and NO plays a 
crucial role in regulating both pathways. NO, EETs and 20-
HETE are not necessarily generated within the vascular 
wall. For instance, the neuron-astrocyte-endothelial 
signaling pathway is a major contributor in coupling blood 
flow to neuronal activity (114). 
 
3.5. NO and heme oxygenase – carbon monoxide 
 The predominant biological source of CO is the 
degradation of heme by heme-oxygenase (115). An 
endothelial production of CO, contributing to endothelium-
dependent relaxations in response to neurohumoral 
substances, is likely only in a limited number of arteries 
(8). 
 
 CO is a potent vasodilator in most, but not all, 
vascular beds. The mechanisms of CO-induced relaxation 
involve the stimulation of soluble guanylyl cyclase, the 
inhibition of cytochrome P450 and the activation of 
potassium channels. CO and CO-donors activate smooth 
muscle BKCa, KATP (116) and/or KV (117). CO induces the 
cyclic-GMP-dependent activation of BKCa (100) but also 
directly increases the open probability of BKCa (118-122). 
Additionally, CO can also activate BKCa in a more indirect 
manner. CO, like NO, inhibits cytochrome P450 and 
suppresses the synthesis of 20-HETE, the endogenous 
vasoconstrictor and tonic inhibitor of BKCa (103,123,124). 
 

The NO and CO systems further interact in a 
complex manner, to regulate vascular function. In many 
physiopathological situations the heme oxygenase-CO 
pathway compensates for the decreased bioavailability of 
NO (115,125). However, CO is a tonic inhibitor of NOS by 
binding to its prosthetic heme and can contribute to 

endothelial dysfunction (126-129). Both NO and 
peroxynitrite inhibit heme oxygenase activity by heme 
nitrosylation and oxidation of sulfhydryl groups, 
respectively (130-132). 
 
3.6. NO and C-type natriuretic peptide 
 CNP, a member of the natriuretic peptide family, 
is produced in the central nervous system but has also been 
detected in peripheral endothelial cells and to a lesser 
extent in vascular smooth muscle cells. CNP evokes 
relaxations and hyperpolarizations of arterial and venous 
smooth muscle cells via a cyclic GMP-dependent activation 
of BKCa and or KATP (8, 133-136). Additionally, in the rat 
mesenteric artery, endothelium-derived CNP could activate 
NPR-C receptor subtype present in smooth muscle. 
Hyperpolarization of the smooth muscle cells could be 
evoked via the cyclic-GMP-independent activation of a G-
protein regulated inward-rectifier K+ channel (GIRK; 
137,138). In other arteries, which also exhibit EDHF-
mediated responses, the involvement of CNP has not been 
verified so far (136,139-141).  
 
 CNP in general causes endothelium-independent 
relaxations (133), although in some blood vessels, the 
peptide causes the release of endothelium-derived NO 
(142). Furthermore, CNP induces a post-transductional 
decrease in the level of the β subunit of soluble guanylate 
cyclase and reduces its activity (143).  
 

NO produces a cyclic-GMP-dependent inhibition 
of the particulate guanylate cyclase associated-receptors, 
NPR-A and NPR-B (144,145) and inhibitors of NO-
synthases potentiate the vasodilator and the hyperpolarizing 
responses to natriuretic peptides (136,145). 
 
3.7. NO and hydrogen peroxide 

Hydrogen peroxide (H2O2) possesses dilator and 
constrictor properties. It can be involved in endothelium-
dependent relaxations and hyperpolarizations in response to 
agonists and flow (146-151). H2O2 can activate BKCa by a 
direct action on the channel as well as by an effect on 
soluble guanylyl cyclase (152,153), KATP (154), KV (155), 
and/or KIR channels (156). However, H2O2 does not always 
hyperpolarize vascular smooth muscle cells (157) and can 
even be a potent inhibitor of BKCa (158). Furthermore, in 
many arteries EDHF-mediated responses cannot be 
attributed to the generation of H2O2 (8,159,160) and in 
human coronary arteries it directly inhibits cytochrome 
P450 epoxygenases and the release of endothelial-derived 
hyperpolarizing epoxyeicosatrienoic acids (161).  

 
The interactions between NO and H2O2 are 

multiple. Under physiological conditions, eNOS itself and 
Cu, Zn superoxide dismutase (SOD) appear to be the major 
contributors for the production of H2O2, as an endothelium-
derived hyperpolarizing substance (149,162-164). Under 
pathological conditions H2O2 can compensate for the 
decreased production of NO, especially when the eNOS 
cofactor, tetrahydrobiopterin (BH4), is depleted (165). H2O2 
can produce endothelium-dependent relaxations via NO 
release (166,167), can increase either the expression of 
eNOS, through transcriptional and post transcriptional 
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mechanisms (168), or the activity of eNOS by augmenting 
the expression of GTP-cyclohydrolase (169). NO increases 
the expression of extracellular SOD, preventing the 
formation of peroxynitrite and increasing the probability of 
generating H2O2 (170). Additionally, H2O2 can share the 
same target as NO, since this reactive oxygen species 
directly activates the soluble guanylyl cyclase (171). 

 
However, H2O2 can also cause vascular 

dysfunction (172). In mice overexpressing catalase, the 
pressor response to vasoconstrictors is decreased when 
compared to the wild type animals (173,174) and in 
transgenic mice, overexpressing human catalase 
specifically in vascular tissues, the arterial blood pressure is 
lower than in the wild type control (175). Similarly, the 
endothelium-dependent relaxations in arteries from 
glutathione peroxidase deficient mice are impaired 
(176,177) while overexpressing this enzyme can 
compensate for the adverse effects of 
hyperhomocysteinemia on endothelial function (178). 
Therefore, endogenously produced H2O2 favors vascular 
dysfunction either by direct vasoconstrictor effects on 
resistance vessels and/or by producing endothelial 
dysfunction possibly by decreasing eNOS gene expression 
(179) or by inactivation of eNOS cofactors (180). 

 
Additionally, NO regulates many of the 

enzymatic systems producing superoxide anions. For 
instance, it decreases the expression of two NAD(P)H 
oxidase subunits, Nox2/gp91(phox) and p47(phox) (181), 
and can decrease NAD(P)H activity directly by S-
nitrosylation of p47(phox) (182) and indirectly via the 
induction of heme oxygenase-1 (183). 

 
3.8. Conclusion 
 The endothelium-dependent control of vascular 
tone is essential for local vascular homeostasis. Hence, it 
comes as no surprise that compensatory pathways are put 
forward when the NO-bioavailability is reduced. For 
instance, in eNOS knockout mice, nNOS and 
cyclooxygenase derivatives partially compensates for the 
disruption of the endothelial isoform (184-189). Similarly, 
in various animal models as well as in the human, a 
compensatory role has been attributed to the NO-synthase- 
and cyclooxygenase-independent responses. This is the 
case for instance, in eNOS knockout mice (190,191) in 
double eNOS-COX1 knockout mice (192), in a murine 
model of hypercholesterolemia (193), in rat and murine 
models of diabetes (194,195), in rats with heart failure 
(196,197), in rat with L-NAME-induced hypertension 
(198), in Sprague-Dawley rats fed a high salt diet (199) and 
in hypertensive humans (200). 
 
 It has often been proposed that EDHF-like 
responses not only compensate for the absence of NO but 
that the latter exerts a tonic repression on the former 
(20,105). EDHF-like responses would be a backup 
mechanism unveiled under pathological conditions of 
decreased NO bioavailability. When cytochrome P450-
dependent responses are involved, a mutual compensation 
of these and NO-dependent responses seems plausible 
(105,201-207). Indeed, NO can directly inhibit the 

production of EETs by interacting with the heme moiety of 
the enzyme and can mask the effect of EETs by activating 
the same target in the smooth muscle cells, i.e. BKCa. 
Similarly the production of H2O2 by NO-synthase occurs 
mainly when the production of NO is jeopardized 
(149,165). 
 

Nevertheless, this direct reciprocal interaction 
between NO and EDHF-mediated responses is far from 
systematically verified. In the murine perfused hindlimb, 
EDHF-mediated responses can compensate for the lack of 
NO in both wild type animals treated with a NOS inhibitor 
and eNOS knockout mice. Conversely, a NO-dependent 
contribution is observed in the wild type mice only when 
the EDHF-mediated responses are blocked (191). However, 
although prior blockade of either NO or EDHF-mediated 
response is required to unmask the contribution of either 
endothelium-dependent vasodilator mechanism, this does 
not indicate that the two systems are directly linked. 
Indeed, in wild type mice treated with a NOS inhibitor, the 
restoration of NO levels (by infusing an NO donor) does 
not affect the EDHF-mediated responses (208). Similarly, 
EDHF-mediated responses in rat cerebral arteries (209,210) 
or in the human forearm (211) are independent of NO. 
Furthermore, a pathway can be specifically affected 
without altering the other. For instance, in SHR and 
steptozotocin-treated rats, the EDHF-mediated responses 
are reduced markedly, while the NO-dependent component 
of the endothelium-dependent relaxation is not modified 
(212-214). In SHR, treatments with converting enzyme 
inhibitors or AT1 receptor blockers restore the altered 
EDHF-mediated responses without affecting the NO-
dependent relaxations (215,216). In other models of 
hypertension, both the NO-component and the EDHF-
mediated responses could be decreased (217,218) while in 
the L-NAME-treated guinea-pig, EDHF-mediated 
responses are unaffected (219). 
 
 Therefore, endothelium-dependent responses 
resistant to inhibitors of cyclooxygenases and NO 
synthases are not necessary a backup mechanism that gets 
into action only when NO bioavailability is decreased 
(8,187). 
 
4. NO AND EDCF 
 
4.1. Release of EDRF and EDCF 

Agonists that elevate intracellular calcium 
concentration evoke the simultaneous release of both 
relaxing (EDRF) and contracting (EDCF) factors from the 
endothelium to control the tone of the underlying vascular 
smooth muscle. The mechanical consequence of the 
stimulation by any agonist relies on the net algebraic sum 
between the degrees of relaxation versus the degree of 
contraction. Nitric oxide is the principal EDRF in many 
arteries (220). Its synthesis involves the activity of 
endothelial nitric oxide synthase (eNOS), which is calcium-
dependent (220,221). Nitric oxide diffuses to the smooth 
muscle and stimulates soluble guanylyl cyclase to produce 
cyclic guanosine monophosophate (cyclic GMP) causing 
relaxation (222). Endothelium-dependent contractions are 
mediated by products of cyclooxygenases (15, 19). The 
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raise in intracellular calcium stimulates phospholipase A2, 
which frees arachidonic acid for the metabolism by the 
cyclooxygenase (223). The breakdown of fatty acid by the 
cyclooxygenase generates constrictor prostanoids (such as 
endoperoxides, prostacyclin and thromboxane A2) and 
reactive oxygen species (11,13,14,224-229). These 
mediators are termed EDCF. They ultimately activate TP 
receptors of the smooth muscle to evoke contractions 
(225,230). Under normal conditions, the releases of EDRF 
and EDCF are balanced and a normal vascular tone is 
maintained. However, in aging and in a number of diseases 
such as hypertension, diabetes and atherosclerosis, the 
balance between EDRF and EDCF release becomes 
dysfunctional and the generation of EDCF is favored 
(15,229-234). 
 
4.2. Acute inhibition of endothelium-dependent 
contractions by nitric oxide 

Inhibitors of nitric oxide synthase (such as Nω-
nitro-L-arginine methyl ester; L-NAME or NG-monomethyl 
L-arginine; L-NMMA) or scavengers of nitric oxide 
(oxyhemoglobin or carboxyl-PTIO), which interfere with 
the production and the transfer of nitric oxide, respectively, 
augmented endothelium-dependent contractions to 
acetylcholine in the aorta of the spontaneously hypertensive 
rat (SHR) (19). By contrast, methylene blue used as an 
inhibitor of soluble guanylyl cyclase did not affect 
endothelium-dependent contractions (19), suggesting that 
the inhibitory effect of nitric oxide on endothelium-
dependent contraction is independent of this enzyme. From 
these observations, nitric oxide was hypothesized to inhibit 
EDCF-mediated contractions by chemical inactivation, 
rather than functionally counteracting each other. However, 
methylene blue, at the concentration commonly used to 
inhibit guanylyl cyclase (10-4 M) had little effect on the 
accumulation of cyclic GMP induced by sodium 
nitroprusside (235). By contrast, oxadiazolo (4, 3-
a)quinoxalin-1-one (ODQ; at 10-5 M, a selective inhibitor 
of guanylate cyclase) produces nearly complete inhibition 
of the formation of the cyclic nucleotide under the same 
conditions (235). Furthermore, methylene blue is not only 
an ambiguous inhibitor of guanylyl cyclase, but it exerts 
many non-specific effects that are directly associated with 
endothelium-dependent contractions. In particular, 
methylene blue inhibits muscarinic receptors (236,237), 
including the M3 subtype which is specifically involved in 
the release of EDCF by acetylcholine (238). It also 
suppresses the metabolism of arachidonic acid and the 
synthesis of prostacyclin (239,240), postulated to be the 
main mediator accounting for the acetylcholine-induced 
endothelium-dependent contraction (14). Methylene blue 
also affects the contractile apparatus of smooth muscle as 
judged from the observations that it reduces contraction to 
potassium chloride and isoprostanes (241). Thus, the use of 
methylene blue to estimate the involvement of guanylyl 
cyclase in the inhibitory effect of nitric oxide on 
endothelium-dependent contraction is not at all convincing. 
 

When specific guanylyl cyclase inhibitors (such 
as ODQ and NS-2028) became available, the involvement 
of this enzyme in the inhibitory effects caused by nitric 
oxide on endothelium-dependent contraction was re-

examined. Both ODQ and NS-2028 were as effective as 
inhibitors of nitric oxide synthase or nitric oxide scavengers 
in increasing endothelium-dependent contractions (241), 
illustrating that the activation of guanylyl cyclase is indeed 
involved. The combined administration of nitric oxide 
synthase inhibitors or nitric oxide scavengers with guanylyl 
cyclase inhibitors did not have an additive enhancing effect 
on endothelium-dependent contractions (241). These 
studies imply that the inhibition of endothelium-dependent 
contractions by nitric oxide is through functional 
antagonism rather than through the direct inactivation 
process as concluded with the use methylene blue. The 
acute functional antagonizing effect of nitric oxide on 
endothelium-dependent contractions justifies the addition 
of nitric oxide inhibitors, nitric oxide scavengers and/or 
guanylyl cyclase inhibitors to vascular preparations to 
unmask the occurrence of EDCF-mediated responses and 
therefore facilitate their study.  
 

Endothelium-derived reactive oxygen species 
behave as an EDCF, at least in certain arteries, such as the 
basilar artery of the dog (11,242) and the renal artery of the 
rat (243) by causing direct contraction of the underlying 
smooth muscle. However, in other arteries of other species, 
it remains controversial whether reactive oxygen species 
are the EDCF themselves or act as facilitator of 
endothelium-dependent contractions (224,228,229,244-
247). Whatever the case, the ability of reactive oxygen 
species to scavenge nitric oxide can result in impaired 
relaxation and a higher propensity to develop endothelium-
dependent contractions (248-250).  
 
4.3. Long-term modulation of endothelium-dependent 
contractions by nitric oxide 

Aortic rings of SHR which are previously 
exposed to nitric oxide donor such as sodium nitroprusside 
or endothelium-dependent vasodilators such as 
acetylcholine that release NO have a reduced ability to 
produce EDCF-mediated contractions afterward (251). This 
suppressive role of nitric oxide on endothelium-dependent 
contraction is a time- and concentration-dependent process. 
Exposure to minimal active amount of sodium 
nitroprusside (as low as 10-9 M) or exposure to 10-4 M 
sodium nitroprusside for a mere five minutes significantly 
hampered the magnitude of the subsequent endothelium-
dependent contractions (251). These studies illustrate that 
nitric oxide not only exert acute inhibitory effects on 
endothelium-dependent contractions but it can also 
negatively modulate their occurrence in a longer lasting 
manner. Pre-exposure to sodium nitroprusside inhibited the 
subsequent endothelium-dependent contractions evoked by 
both acetylcholine and the calcium ionophore A23187 (a 
receptor-independent agonist that opens pores in the cell 
membrane and permits the free entry of extracellular 
calcium in the endothelial cells following its concentration 
gradient (252)) (251). Such observation suggests that the 
nitric oxide donor inhibits EDCF-mediated response 
through an event that is downstream of the rise in calcium 
concentration. The changes are unlikely to be at the level of 
vascular smooth muscle, since U46199, a synthetic TP 
receptor agonist, evoked similar responses in rings with or 
without pre-exposure to the nitric oxide donor (251). 



Nitric oxide the gatekeeper of endothelial vasomotor control 

4204 

 
 

Figure 2. NO and EDCF. Nitric oxide not only functionally antagonizes EDCF-mediated contractions, but it can scavenge 
reactive oxygen species and decrease the bioavailability of EDCF, presumably at the site of the endothelial cells. AA = 
arachidonic acid; ACh = acetycholine; ADP = adenosine diphosphate; m = muscarinic receptors; P = purinergic receptors; PGD2 = 
prostaglandin D2; PGE2 = prostaglandin E2; PGF2α = prostaglandin F2α; PGI2 = prostacyclin; PGIS = prostacyclin synthase; PLA2 = 
phospholipase A2; ROS = reactive oxygen species; TXA2 = thromboxane A2; TXAS = thromboxane synthase. 

 
Therefore, the changes exerted by pre-exposure 

to sodium nitroprusside most likely involve an alteration of 
EDCF bioavailability that takes place within the endothelial 
cells (Figure 2).  
 

The inhibition of acetylcholine-mediated 
endothelium-dependent contractions caused by pre-
exposure to sodium nitroprusside in SHR aortic 
preparations was partially restored by the the guanylyl 
cyclase inhibitor, ODQ, suggesting that the inhibitory 
process involves both a cyclic GMP-dependent and -
independent effect (251). Controversially, ODQ did not 
prevent the inhibitory effect caused by pre-exposure to 
sodium nitroprusside on EDCF-mediated contractions 
mediated by the calcium ionophore A23187 (251). The 
endothelium-dependent contractions by acetylcholine and 
the calcium ionophore A23187 are not entirely identical in 
nature. Endoperoxides and prostacyclin are the main 
mediators accounting for the endothelium-dependent 
contractions mediated by acetylcholine (13,14). In contrast, 
endoperoxides and thromboxane A2 are the main 
contributor to the EDCF-mediated contraction to A23187 
(226). Nitric oxide may modulate each different prostanoid 
synthases differently. Pre-exposure to nitric oxide may 
selectively decrease the expressions and/or the activities of 
prostacyclin synthase and thromboxane synthase and 
perhaps only the inhibition of the former is cyclic GMP-
dependent. Such hypothesis may explain the discrepancy in 
the restoration with ODQ in endothelium-dependent 
contractions evoked by acetylcholine and A23187. Nitric 
oxide can influence the enzymatic activity of 
cyclooxygenase by interacting with the iron-heme group 
which is needed as a co-factor for the enzyme (253,254). 
By direct binding, it can modulate the protein structure of 

the enzyme (253,254). Such mechanisms may account for 
the cyclic GMP-independent inhibition of endothelium-
dependent contractions.  
 
4.4. Conclusion 

Care must be taken to design an experimental 
protocol with minimal previous exposure to agonists which 
release nitric oxide during studies of endothelium-
dependent contractions, or else EDCF-mediated response 
can be severely hampered.  If the presence of the 
endothelium or the viability of an arterial ring needs to be 
tested, short exposures to a single dose of acetylcholine are 
recommended in order to avoid the attenuation of the 
endothelium-dependent contraction.   
 

Nitric oxide and EDCF exert opposing effects on 
the vascular smooth muscle and thus behave as acute 
functional antagonists. Nitric oxide also negatively controls 
and modulates the occurrence of endothelium-dependent 
contractions in a longer lasting manner. Under conditions 
of reduced nitric oxide bioavailability, as caused by the 
endogenous release of nitric oxide inhibitors such as 
asymmetric dimethylarginine (255,256) or by the enhanced 
formation of superoxide anions which scavenge the 
relaxing factor (18), the brakes on the development of 
EDCF-mediated response and the overall opposing effect 
on the contraction are weakened and this leads to the 
emergence of endothelium-dependent contractions. 

 
5. NO AND Endothelin-1 
 
5.1. Release and action of endothelin-1 

A turning point in the quest to identify EDCFs 
was the discovery that besides superoxide anions, 
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Figure 3. NO and endothelin. Release and actions of endothelin-1 (ET-1) in the vascular wall. AA : arachidonic acid ; AVP = 
arginine vasopressin ; cAMP = cyclic AMP ; cGMP = cyclic GMP ; COX= cyclooxygenases; ECE = endothelin converting 
enzyme ; ETA and ETB = endothelin-receptors ;  NO = nitric oxide ; NOS = nitric oxide synthase ; PGI2 = prostacyclin ; R = cell 
membrane receptor  

 
endoperoxides, and thromboxane A2 endothelial cells can 
produce potent vasoconstrictor peptides (16,257). These 
peptides were identified by Masaki and colleagues (17) and 
termed "endothelins" (ET), although it soon became obvious 
that cells other than the endothelium produce them, and that 
indeed their role in development and/or physiology may well 
lie with other cell types (258). Endothelin-1 was for several 
years the most potent vasoconstrictor substance known (e.g. 
259-263). 
 

After the discovery of the endothelins, the attempts 
to link it to the normal control of moment-to-moment changes 
in vascular tone did not yield very convincing data (e.g. 264). 
Likewise, a causal or early role in pathologies such as 
hypertension (e.g. 265,266) was not obvious. However, its 
presence in, and possibly its contribution to the terminal stages 
of vascular (and other) diseases became probable (e.g. 267-
272). The availability of endothelin-antagonists for the use in 
humans has confirmed that endothelin-1 may progressively 
become more important with age (273,274) and in diseases 
such as pulmonary hypertension (e.g. 272,275,276). In the 
latter case the trophic, mitogenic effect of endothelin-1 must 
play a key role (277) besides the direct vasoconstrictor effect 
of the peptide (278). When the concept emerged that the 
production of the peptide is a sign of pathology and that under 
normal circumstances it plays little role in vascular 
homeostasis (261,279). The production of endothelin-1 once 
initiated not only progresses linearly with time (at least in 
cultured endothelial cells) but also can be up regulated by a 
number of factors believed to play a role in vascular disease 
(e.g. 280). Thus one suggested that under normal physiological 
conditions the production and/or the action of endothelins 
could not proceed unmatched (279).  
 
5.2. Modulation by NO 

In a number of blood vessels, nitric oxide 
synthase and endothelin-1 co-localize, implying 

interactions between the two mediators (e.g. 281-284). A 
key finding was the demonstration that stimulation of the 
production of NO inhibits the expression and the 
production of endothelin-1 (285,286), an observation that 
has been reproduced repeatedly and extended to other 
means of increasing the intracellular concentration of cyclic 
GMP (287-290). Likewise, when confronted with the 
extraordinary powerful and sustained vasoconstrictor 
potency of the peptide, it soon became obvious that the 
administration of exogenous nitric oxide, or its liberation 
from endothelial cells was a very good way to deal with it 
(e.g. 291,292;), as NO attenuates in a cyclic-GMP 
dependent way the activation by endothelin-1 of the 
signaling cascade leading to the contraction of vascular 
smooth muscle (293,294). This is more than another 
pharmacological action of NO. Indeed, if endothelin-1 
reaches normal endothelial cells it activates receptors (of 
the ETB subtype) on their cell membrane which are linked 
to the production of nitric oxide through pertussis-toxin 
sensitive G-proteins (295,294-306). Hence, any tendency to 
(over) produce the peptide in endothelial cells would be 
offset, under normal conditions, by the increased release of 
NO which automatically will reduce the generation of 
endothelin-1 and curtail its vasoconstrictor (and growth-
stimulating) effects. This feedback inhibition of the 
production and action of endothelin probably is not limited 
to nitric oxide, as it also augments the release of 
prostacyclin (which by activating adenylyl cyclase further 
inhibits the production of the peptide) and EDHF (which 
contributes to the inhibition of its vasoconstrictor properties 
(307,308) (Figure 3). 

 
The dual action of nitric oxide (and possibly of 

prostacyclin and EDHF) on the release and the action of 
endothelin provides a satisfactory explanation for the minor 
contribution of the peptide in local vasomotor conditions 
under normal circumstances. As the endothelium ages 
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and/or regenerates (and in particular loses the Gi-proteins 
mediated responses; 296,309-311), the buffering action on 
the production of, and the inhibition of the response to 
endothelin disappears (e.g. 312). Hence the peptide begins 
to contribute to vascular abnormality, a situation carried to 
the extreme in the terminal stages of cardiovascular disease 
(267,313-317). One of the most convincing demonstration 
of the unleashing of the production of endothelin-1 by the 
absence of nitric oxide are the repeated observations that 
the sustained increases in arterial blood pressure caused by 
inhibitors of nitric oxide synthase (originally attributed 
solely to a permanent state of vasodilatation maintained by 
the ongoing release of nitric oxide (6,318)), in fact are 
nearly prevented by antagonists of ET receptors, which are 
the primary effectors of the vasoconstrictor response to the 
peptide (288,319-333). 
 
 5.3. Conclusion 

In the vascular wall, it seems reasonable to 
conclude that as long as enough nitric oxide (and possibly 
prostacyclin and EDHF) are produced by the endothelial 
cells endothelin contributes little to vascular homeostasis. 
Only when the endothelium loses its ability to generate 
EDRFs, the peptide can be generated in sufficient amounts 
to contribute to the symptoms of vascular disease. 
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