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1. ABSTRACT 
 

Research in the post-genome sequence era has 
been shifting towards a functional understanding of the 
roles and relationships between different genes in different 
conditions.  While the advances in genetic expression 
profiling techniques including microarrays enable detailed 
and genome-scale measurements, the extraction of 
meaningful information from large datasets remains a 
challenging task. Here, we propose a novel method of 
generating gene differential expression profiles such that 
gene expression values from one dataset can be directly 
compared with those of another dataset. A simplified 
Discrete Fourier Transform is applied to interposed gene 
expression values, thereby generating the ‘spectra’ for a 
pair of conditions.  Using this technique, differentially 
expressed genes produce higher amplitudes at the Nyquist 
Frequency. By measuring the phase of the ‘spectra’ 
generated, the over- and under-expressed nature of the 
genes can be identified. This method was validated using 
two sets of GeneChip array data, one from prostate cancer 
related dataset and the other from macular degeneration 
related dataset. The genes identified as differentially 
expressed by our method were found to be similar to those 
published using their preferred methods. Based on our 
findings, the proposed DFT method could be used 
efficiently in identifying differentially expressed genes 
from multiple-array experiments from two different 
conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION  
 

The application of Discrete Fourier Transform 
(DFT) Theory in the analysis of microarray gene-
expression data has been limited thus far. The theory has 
been applied in model-based methods of Luan and Li for 
identifying temporally expressed genes based on time 
course microarrays (1);  DFT method of Wichert et al. in 
identifying temporally expressed transcripts in microarray 
time series data (2);  Fourier harmonic approach of Zhang 
et al. for visualizing temporal pattern of gene expression  
(3); and  DFT method of Shedden and Cooper for analysis 
of cell-cycle-specific gene expression in human cells (4).  It 
has become apparent that the cell-cycle specific genes are 
expressed in a temporal manner so that the Fourier 
Transform Theory can be applied. The limited DFT 
applications may be due to the lack of naturally formed 
waveforms within microarray expression data.  
 

Depending on the underlying biological 
conditions, only a handful of genes are expected to have 
significant changes in their expression levels during the 
course of a microarray experiment. Many approaches have 
been described in the literature to detect the differentially 
expressed genes. These include fold change test and t-test 
by Long et al.(5), significance analysis of microarray 
(SAM) by Tusher et al.(6) and ANOVA by Kerr et al.(7).  
The fold change test has been popular mainly due to its 
simplicity. In this method, the potential candidates of 
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differentially expressed genes are selected based on large 
fold change variation.  If a selection is based on a single 
slide, the confidence level is low because real changes 
cannot be distinguished from experimental artifacts. Thus, 
the selected candidates of differentially expressed genes 
from single experiment have to be verified by repeating the 
experiment or by conducting experiments employing other 
methods such as Northern blotting.  
 

Various parametric-based models and 
nonparametric-based models were also developed to 
address the problem. In 2002, Pan W et al. investigated a 
model-based cluster analysis of microarray gene-expression 
data (8). Pan W also described a new approach in 2004, 
using permutation and nonparametric methods to analyze 
differential gene expression (9). Jeffrey et al., on the other 
hand, proposed a statistical modeling approach to uncover 
differentially expressed genes (10).  
 

Although each method has its own merits and 
produces reasonably good results, a good grasp of the 
complex models and knowledge in statistics is necessary to 
ensure correct and effective use of these approaches. 
Hence, a search for a simple and yet effective method is 
important for the advancement in this field of research. The 
method proposed here aims to achieve this very objective 
by applying a simplified DFT on intuitively arranged gene 
expression intensities from multiple microarray 
experiments. 
 
3. MATERIALS AND METHODS 
 

The proposed method uses Fourier Transform 
(FT) Theory and Sampling Theorem in detecting 
differentially expressed genes from microarray data. Since 
the data is processed in a computer, the Discrete FT is used 
instead of continuous FT. With a unique arrangement of the 
gene expression intensities and the use of Parseval’s 
Theorem, the original DFT equation can be further 
simplified for ease of implementation and fast computation. 
 
3.1. Discrete Fourier Transform 

The Sampling Theorem states that for a limited 
bandwidth signal with maximum frequency component 
fmax, the sampling frequency (fs) used for capturing the 
signal must be greater than twice of that fmax (i.e., fs > 
2fmax), to prevent aliasing.  The frequency 2fmax is called the 
Nyquist sampling rate and half of this value, which is fmax, 
is referred to as the Nyquist frequency.  The Sampling 
Theorem was introduced by Nyquist in 1928 and 
mathematically proven by Shannon in 1949.  The terms 
‘Nyquist Sampling Theorem’ and ‘Shannon Sampling 
Theorem’ are used interchangeably.  They are in fact the 
same Sampling Theorem.  The Fourier transform, in 
essence, decomposes or separates a waveform or function 
into sinusoids of different frequencies which sum to the 
original waveform.  It identifies or distinguishes the 
different sinusoids and their respective amplitudes. The 
Fourier transform of a signal f(x) is defined as: 

 

 

Since a digital computer works only with discrete 
data, numerical computation of the Fourier transform of 
f(x) requires discrete sample values of f(x), which is called 
fk.  In addition, a computer can only compute the Fourier 
transform F(s) at discrete values of s, that is, it can only 
provide discrete frequency samples of the transform, Fr. If 
f(kT) and F(rs0) are the kth and rth samples of f(x) and F(s) 
respectively, and N0 is the number of samples in the signal 
in one period T0, then fk is defined as:   
 

 
 
The Discrete Fourier Transform (DFT) of f(x) is therefore 
given by: 
 

              
      
3.2. Arrangement of Gene Expression Intensity and Its 
Transform 

The proposed method describes a simple way of 
arranging two sets of microarray gene-expression data. The 
two sets of data could be derived from tissues under a pair 
of conditions, such as tumor versus normal or tumor x 
versus tumor y. For simplicity, the letters T and N are used 
to represent the two conditions. If there are M arrays, the 
gene-expression intensities are arranged in an interposed 
order, i.e., (T1N1)(T2N2)…(TM-1NM-1)(TMNM) such that 
those of the second condition interpose the expression 
intensities from first condition. Table 1 shows a possible 
arrangement for M arrays of N genes each.  
 

If a gene is consistently over-expressed in the T 
slides as compared to the N slides, the values in the 
columns Ti will be constantly higher than those in the 
columns Ni. The alternating expression intensities in T and 
N slides will then produce a consecutive high-low profile, 
which entails high DFT magnitude at the Nyquist 
frequency component. In Figure 1, Data A is a plot of 
intensities of differentially expressed gene and Data B that 
of a non-differentially expressed gene. The magnitudes of 
the DFT on these two datasets are shown in Figure 2. The 
frequency with the highest magnitude is fmax located at the 
(M/2)th position. This frequency component is the Nyquist 
frequency. Likewise, if a gene is consistently under-
expressed in T slides vis-à-vis the N slides, the alternating T 
and N slides will produce a consecutive low-high profile, 
which will generate high DFT magnitude at the Nyquist 
frequency component.  In other words, a gene that is 
differentially expressed will present a zigzag waveform 
producing high DFT magnitude at the Nyquist frequency.  

 
A quantitative measure of differentially 

expressed genes under two different conditions is described 
here. We normalize the magnitude of the Nyquist 
Frequency component to the sum of all the components. 
The normalized amplitude is defined as: 
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Table 1. Interposed arrangement of expression intensity for M arrays and N genes under T and N conditions 
Genes T1 N1 T2 N2 TM-1 NM-1 TM NM 
Gene1 393.15 280.4 323.75 316.9 327 300.5 255.15 263.9 
Gene2 151.4 102.5 108.5 117 112 88.4 108.65 103 
Gene3 137.65 103.65 101.75 107.9 113 86.15 102.5 91.15 
Gene4 217.65 189.75 213.5 179.65 223.15 199.05 177.4 170.4 
Gene5 191.4 135 152.5 143.9 150.65 146.15 146.15 134 
Gene6 929.25 122 141.25 197.15 143.75 152.15 171.25 129.5 
Gene n-1 141.15 98 98.65 95.15 112.15 82.4 118.75 100.15 
Gene N 582.65 210.75 259 387.25 234 285.25 360.65 215.75 
 

 
Figure 1. Gene expression intensities from 4 pair of slides 
arranged in T-N manner: Data A, representing a 
differentially expressed gene, has a distinctive zigzag 
profile; Data B does not have such profile. 
 

 
 
Figure 2. Plot of the magnitude of 256-point DFT 
performed on Data A (DFT A) and Data B (DFT B): DFT 
of Data A with zigzag profile has higher value at the 
Nyquist frequency as compared to that of Data B.    
 
 

 

where   
 

 
 
Making use of the Parsevals’s Theorem which states that: 
 

 

 
 
The normalized amplitude becomes:  
 

 
                   

This simplification leads to a significant 
reduction in computational time. Instead of computing the 
complete N0 points of DFT, we only need to compute one 
point, that of the Nyquist frequency component, and 
normalize it with the sum of the gene-expression as shown 
in equation (7). This normalized amplitude gives the ratio 
of the Nyquist Frequency magnitude to the sum of 
magnitudes. Indirectly it gives a score on the consistency of 
a gene being differentially expressed over the M slides in 
the microarray experiments.  
 

In addition, a DFT on any data series results in 
complex values, i.e. Fk = Rk+Jk i, where Rk is the real value 
and Jk is the imaginary value of the transformed Fk, i 
defined as √(-1), represents the imaginary term. The phase 
of the component Fk is computed as: 

 

 
            

Figure 3 shows two expression datasets, Data A 
represents under-expressed gene in T as compared to N 
condition, and Data C represents over-expressed gene in T-
N conditions. Figure 4 shows the plot of the phase for the 
two transformed data series. It is interesting to note that the 
phase for the Nyquist component is -π radians for Data A 
(the under-expressed gene) and zero radian for Data C (the 
over-expressed gene). This property can be exploited in 
that a phase of zero radian at Nyquist component indicates 
an over-expressed gene, and that a phase of -π radian 
indicates an under-expressed gene. This feature removes 
the need to compute the ratios or the log ratios used in the 
popular fold-change method. The phase and normalized 
amplitude of the Nyquist Frequency component are 
sufficient for ferreting differentially expressed genes and 
determining whether they are over- or under-expressed 
genes. 

 
3.3. The Scatter Plot of Normalized Amplitude Versus 
Absolute Amplitude 

For the purpose of comparison, three common 
representations of differential gene expression are shown in 
Figure 5.  Figure 5a shows a scatter plot of microarray data 
where the Red intensity (R) is plotted against the Green  
intensity (G), the R and G intensities represent gene
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Figure 3. Gene expression intensities from 4 pair of slides arranged in T-N manner: Data A, representing under-expressed gene 
in T-N condition, has a low-high profile; Data C, representing over-expressed gene, has a high-low profile. 
 

 
 
Figure 4. Phase plot of 256-point DFT performed on data shown in Figure 3 after removing the mean value from these data 
points. The phase of Nyquist Frequency component located at 129 is -π radians for Data A and zero radian for Data C. A measure 
on the phase of one frequency component reveals whether a gene is over-expressed or under-expressed in the datasets. 
 
expressions obtained from diseased and normal conditions 
respectively.  Figure 5b shows another scatter plot of 
microarray data where the logarithm of Red intensity 
(log2R) is plotted against the logarithm of Green intensity 
(log2G).  Figure 5c shows a third scatter plot of microarray 
data where M is plotted against A.  M is defined as log2C, 
where C = R/G, and A as (log2R + log2G)/2. 
 
The use of DFT magnitude and phase presents more 
information visually. Figure 6 shows a plot where the 

normalized amplitude of the Nyquist frequency is plotted 
against the absolute amplitude. The normalized amplitudes 
of over-expressed genes, with phase equals zero radian , are 
set to positive values, and the normalized amplitudes of 
under-expressed genes, with phase equals -π radian, are set 
to negative values. In this novel representation, the 
differentially expressed genes are prominent and readily 
identified. In addition, the higher the magnitude of the 
normalized frequency component, the more consistent is 
the gene expression profile over the M slides. Similarly, the
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Table 2. Prediction result from (1)            
 Raw data Normalized data 

 TT TN  TT TN 
PT 26 4 PT 19 0 

 
4 Gene model 

PN 1 4 

85.7% 
(30/35) 
p=0.00061 PN 8 8 

77.2% 
(27/35) 
p=0.0005 

 TT TN  TT TN 
PT 27 6 PT 22 0 

 
16 Gene Model 
 PN 0 2 

82.9% 
(29/35) 
p=0.047 PN 5 8 

85.7% 
(30/35) 
p=0.0001 

TT = True Tumour, TN = True Normal, PT = Predicted Tumour, PN = Predicted Normal, 1 All values calculated by Fisher’s 
Exact Test 
 
Table 3.  Prediction result using the DFT method 

 Raw data  Normalized data 
 Disease Normal  Disease Normal 
True Test 39 2 True Test 42 2 
False Test 7 44 False Test 4 44 

 

          
 

Figure 5. Three different gene-expression plots visualizing 
the ratio and the log2(ratio) of gene expression intensities. 

 
higher the magnitude of absolute amplitude, the higher 
is the fold changes between the T and N conditions. The 
novel plot also presents different quadrants that 
represent gene expression of different characteristics; 
genes located in the high normalized-amplitude and high 
absolute-amplitude quadrant will be best for use in 
clustering the microarray data. This plot complements 
well with the plots mentioned earlier. 
 
4. RESULTS 
 

To evaluate our method, we apply it to two 
published microarray datasets – a prostate cancer related 
dataset and a macular degeneration related dataset. 
 
4.1. Performance on Prostate Cancer Datasets     

T h e  f i r s t  d a t a s e t ,  t h e  p r o s t a t e  
c a n c e r  r e l a t e d  d a t a s e t ,  w a s  o b t a i n e d  f r o m  
U R L :  h t t p : / / w w w . b r o a d . m i t . e d u / c g i -
bin/cancer/publications/pub_paper.cgi?mode=view&pap
er_id=75. In this study (11), microarray expression 
analysis was used to identify genes that might anticipate 
the clinical behavior of prostate cancer.  Singh et al. 
identified a set of genes that strongly correlated with the 
state of tumor differentiation, measured by Gleason 
score.  The prediction result is shown in Table 2.  
 
This dataset contains gene expression data from 46 
Affymetrix slides of prostate cancer tumor tissues and 
46 slides of normal tissues.  The expression intensities 
of the prostate cancer tissue and normal tissue were 
interposed in the manner as shown in Figure 1.  These 
interposed intensities were then subjected to DFT as 
described in the previous section.  We identified the top 
10 genes and used them for classification with Eisen’s 
K-Means Cluster Program (12). We successfully 
isolated the tumor slides from the normal slides with 
high prediction rate, as shown in Table 3. Table 3a 
shows the prediction result without normalizing the data 
(raw values) and Table 3b shows the prediction result on 
mean-normalized data (i.e. the data is mean-normalized 
before using the proposed method). The prediction 
results, based on true-positive and true-negative tests, 
are 90.21% and 93.48% respectively for raw and 
normalized data. It is worth noting that 9 of our 18 top 
ranking genes are identical to those in the 16-gene 
model used by Singh et al. Table 4 summarizes the top
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Table 4. Top 18 ranking genes identified by DFT method as compared to Singh’s 16-gene prediction model 
S/N Affy ID Singh’s Model S/N Affy ID Singh’s Model 
1 37639_at x 10 39315_at  
2 38634_at x 11 40282_s_at x 
3 41152_f_at  12 1804_at  
4 32598_at x 13 31527_at  
5 41706_at  14 38406_f_at x 
6 37366_at  15 39755_at x 
7 33656_at  16 40024_at  
8 41468_at x 17 39054_at x 
9 1740_g_at  18 38028_at x 

Affy ID = Affymetrix Probe ID, x = found in Singh’s 16-gene prediction model (11). 

 
 
Figure 6. Scatter plot of the Nyquist Frequency normalized amplitude and absolute amplitude. 
 
18 genes identified using our method compared to those in 
Singh’s model. 
 
4.2. Performance on Age-Related Macular 
Degeneration Datasets 
The second gene-expression data, macular disease 
related dataset, was obtained from public database 
published at the following URL: 
http://microarray.cnmcresearch.org/ListProjExp.asp?Pro
jectName=WSilk+Macular+Degeneration, by Dr Karl 
GC. He conducted this experiment entitled ‘Age-related 
macular degeneration has a strong epidemiological 
association with cardiovascular disease’ at the National 
Eye Institute with the aim to identify disease-specific 
genes. Using microarray technology, 13 gene-expression 
data each were obtained from diseased and age-matched 
control patients. We applied our method to these data 
and identified top 10 ranking genes using our scoring 
method. These ten genes achieved 100% prediction rate 
in differentiating diseased samples from the control 
ones.  
 
5. DISCUSSION 
 

We discussed and presented two hypotheses. 
The first hypothesis describes a simplified DFT method 
that can be used for fast and efficient detection of 
differentially expressed genes from multiple microarray 
experiments. The second hypothesis reveals a new way 

in visualizing multiple microarray gene-expression 
intensities by plotting the normalized amplitude, 
incorporating phase information, against the absolute 
amplitude of the transformed intensities. It was shown 
in two real microarray datasets that this approach was 
able to detect consistently over- and under-expressed 
genes. It also showed that the method worked on both 
normalized and raw datasets. The scatter plot allows us 
to visualize genes of different expression modes plotted 
in different quadrants. Finally, the approach assumes 
that equal numbers of microarray experiments for 
tissues under two different conditions are conducted. 
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