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1. ABSTRACT 
 
 Sperm-zona pellucida (ZP) binding is the first 
step of gamete interaction.  This binding occurs in two 
sequential steps, starting with the primary binding of 
acrosome-intact sperm to the ZP followed by the secondary 
ZP binding of acrosome reacting/reacted sperm.   While 
there are only a few ZP sulfoglycoproteins involved in 
these binding events, a large number of sperm surface 
molecules have been shown to possess ZP affinity.  In this 
review, we have given explanations to the existence of 
these many ZP binding molecules.  We have also 
summarized their origin and the mechanisms of how they 
are targeted to the sperm surface and acrosome.  Recently, 
we have shown that sperm lipid rafts have affinity for the 
ZP.  A number of ZP binding molecules are also present in 
sperm lipid rafts.  In this review, we have provided an 
argument that sperm lipid rafts may be the platforms on the 
sperm surface for ZP interaction.        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 The fertilizing sperm encounters its target, the 
mature egg, in the isthmic ampullary junction of the 
oviduct in most mammals (1,2).  In some species such as 
the mouse, this mature egg is enclosed in a cumulus matrix 
consisting of cumulus cells interlinked with hyaluronic 
acid/chondroitin sulfate proteoglycan networks.  The sperm 
penetrate this matrix through their motility force and the 
enzymatic action of their surface hyaluronidase (2).  In 
other species such as the bovine, the cumulus matrix is 
rapidly removed from the egg after ovulation, presumably 
by oviductal hyaluronidase (3).  Motile sperm then bind to 
the zona(e) pellucida(e) (ZP), an extracellular glycoprotein 
matrix surrounding the egg, in a species-specific manner 
(4,5).  Specific interaction including initial binding of 
sperm to the zona pellucida was recognized by Hartmann 
and colleagues (6).  This was subsequently revealed as a 
receptor-ligand interaction (7,8).  In many species 
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Table 1.   Nomenclature of Mouse, Human and Pig ZP Glycoproteins and Their Homology among Species 
ZP sulfoglycoprotein 
family (based on  
the mouse ZP 
nomenclature) 

Species Nomenclature Homology between 
mouse and human ZP 
glycoproteins 

Homology between human and 
pig ZP glycoproteins 

Homology between mouse 
and pig ZP glycoproteins 

Mouse ZP1 
Human ZP1 ZP1 
Pig ZP3alpha or ZPB1 

 
67.4% 

 
45.7% 

 
50.3% 

Mouse ZP2 
Human ZP2 ZP2 
Pig ZP1 or ZPA 

 
58.7% 

 
64.7% 

 
54.7% 

Mouse ZP3 
Human ZP3 ZP3 
Pig ZP3beta or ZPC1 

 
68.8% 

 
75.5% 

 
65.6% 

1A hetero-oligomer of pig ZP3alpha and pig ZP3beta is called ZP3 or ZP(B + C) 
 
including mouse, acrosome-intact sperm bind to the ZP, 
and this leads to the induction of acrosomal exocytosis 
(acrosome reaction).  However, in a number of other 
species including guinea pig, sperm may undergo an 
acrosome reaction prior to ZP binding (2,9-14).   
Subsequent sperm penetration of the zona pellucida is 
sometimes described as mechanical, enzymatic, or as a 
ratcheted binding through the ZP or a combination of these 
methods.  Following sperm penetration of the ZP, the 
acrosome-reacted sperm attaches at its apex to the egg 
plasma membrane, rapidly reorients to bind to the egg 
plasma membrane at the equatorial segment, and 
subsequently fuses with the egg plasma membrane (2). 
 

The zona pellucida is comprised of 3-4 families 
of sulfoglycoproteins, each of which shows peptide 
sequence homology across marsupial and placental 
mammals (15-17). The differences in the carbohydrate 
moieties are considered the main factor governing species 
specificity in sperm binding.   In mice and humans, ZP3 is 
the primary sperm receptor for acrosome-intact sperm, 
whereas ZP2 is the secondary receptor for acrosome-
reacted sperm (see more details in (17) and Table 1)).  
Nonetheless, recent observations suggest that primary 
mouse sperm binding to the homologous ZP can occur 
through a ZP3-independent mechanism, and oviduct-
derived ligand(s), deposited onto the ZP during egg transit 
through the oviduct, may be important for this alternative 
binding machinery (18,19).  In porcine, pig ZP3 (or 
ZP(B+C)), the hetero-oligomer of ZPB (or ZP3alpha) and 
ZPC (or ZP3beta) is essential for interaction with 
acrosome-intact sperm, although ZPB is more important for 
this sperm binding (20,21).  To date, it is still unclear which 
pig ZP glycoprotein is involved in secondary binding to 
acrosome-reacted sperm.  Although Yonezawa et al. (22) 
reported that ZPB bound to partially acrosome-reacted 
sperm and to proacrosin/acrosin, it did not bind to fully 
acrosome-reacted sperm.  Table 1 lists these ZP 
glycoproteins of mice, humans and pigs based on their 
peptide homology.   
 
3. BASIS FOR MULTIPLE SPERM MOLECULES 
WITH AFFINITY FOR THE ZONA PELLUCIDA 
 
 A large number of sperm molecules have been 
demonstrated to have affinity for the ZP and to be involved 
in sperm-ZP binding (Table 2).  Sperm interaction with the 

zona pellucida includes attachment, binding, induction of 
the acrosome reaction, and penetration of the ZP matrix.  
Initial attachment is described as readily disrupted by a 
mild physical force.  This attachment is apparently not 
particularly species- or order-specific, e.g., between human 
sperm and mouse oocytes as observed by Bedford (6,23).  
This loose attachment is followed by a tight binding 
between sperm and the ZP of the homologous species. 
Binding is differentiated from attachment by the resistance 
of sperm to being removed from the ZP by a physical force 
such as repeated pipetting through a small bore pipet or 
centrifugation through a density gradient (7,24).  Some 
sperm surface molecules involved in the initial ZP binding 
are expected to be species- or order-specific as sperm from 
a species in one order generally do not bind to eggs from a 
species in a different order.  Other sperm surface molecules 
found in common among various species are also likely 
involved in this initial sperm-ZP binding.  While some of 
the ZP binding molecules are strictly engaged in the 
adhesion mechanisms in the initial step of sperm-ZP 
interaction, others are responsible for the activation of ZP-
induced sperm signaling events that culminate in the 
acrosome reaction.  In mice, this activation is a 
consequence of the aggregation of ZP3 receptors on the 
sperm surface, as induced by ZP3 multivalent 
oligosaccharides (25,26).  Shur and colleagues have shown 
that the cytoplasmic domain of sperm transmembrane beta-
1,4-galactosyltransferase (GALT), a mouse ZP3 receptor 
(27,28), interacts with the alpha subunit of Gi protein, and  
the acrosome reaction is initiated following ZP-induced 
aggregation of GALT (29).  As expected, sperm from Galt-
null mice do not bind to purified ZP3.  However, Galt-null 
sperm can bind to intact ovulated ZP and can fertilize eggs 
although at only 7% of the wild-type sperm capacity (30).  
This result confirms that there exists more than one 
molecule on the sperm surface with ZP affinity and they 
can act as backups for one another.  Specifically for Galt-
null sperm, Shur et al. have shown that SED-1, a sperm 
surface protein normally involved in the initial ZP binding, 
is still functioning, thus allowing gamete interaction (31).  
Through a low rate of spontaneous acrosome reaction, 
Galt-null sperm can then fertilize the egg (30).     
 
 The interaction between sperm and the ZP leads 
to the activation of sperm signaling events and 
consequently the acrosome reaction, which initiates with 
the fusion between the plasma membrane and the outer 
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Table 2. ZP-Binding Proteins 
Name 
 

Site on mature sperm Origin Remarks 

Glycoenzymes 
Beta-1,4-
galactosyltransferase 
(GALT) (27,79,132)  

Plasma membrane 
overlying the acrosome 
region (27,78,133,134)  

Primary spermatocytes (134,135) As a transmembrane protein (136), GALT is aggregated 
following binding to ZP3, leading to activation of Gi–
dependent sperm signaling events with the final outcome of 
the acrosome reaction (29,137) 
 
Galt-null male mice have been generated; they can sire 
offspring but their fertility is reduced.  Sperm from null males 
can fertilize eggs only at 7% compared to wild-type sperm 
(30).  

Alpha-D-mannosidase 
(138,139) 

Plasma membrane 
overlying the acrosome 
(140,141)  

Spermatocytes, round spermatids 
and condensing spermatids 
(primarily) (140)   

Alpha-D-mannosidase is an integral plasma membrane 
protein (140). 

PH-20 (Spam1) 
(142,143) 

Guinea Pig: Plasma 
membrane overlying the 
postacrosomal region 
and inner acrosomal 
membrane in acrosome-
intact sperm and inner 
acrosomal membrane in 
acrosome-reacted sperm  
(37,143)  
 
Mouse: Anterior head 
plasma membrane in 
acrosome-intact sperm  
(68,71,144) 
  
Human and monkey: 
Sperm head plasma 
membrane in acrosome-
intact sperm 
(71,145,146) and inner 
acrosomal membrane in 
acrosome-reacted sperm 
(145,146) 

Round spermatids (65,68)  
 
Epididymal epithelia (69,70) 
 
Uterine/ Oviductal epithelia (73) 
 
 
 

PH-20 in the inner acrosomal membrane of acrosome-reacted 
sperm is involved in secondary ZP binding 
(12,38,72,143,147) 
 
PH-20 possesses hyaluronidase activity, used by sperm, to 
disperse the cumulus mass for sperm movement towards the 
egg ZP (38,71,148).  Interaction between hyaluronan and 
sperm surface PH-20 leads to activation of sperm signaling 
events and  acceleration of induced-acrosomal exocytosis 
(149-151) 
 
Ph-20-null male mice are still fertile and their sperm can 
disperse cumulus masses although with a lower efficiency 
than wild-type sperm (152).  Hyal5, another sperm 
hyaluronidase, may also contribute to sperm-induced cumulus 
mass dispersion (153). 
 
PH-20 is a GPI-linked protein and this may be the basis of 
how PH-20 in the epididymal fluid is incorporated into the 
transit sperm plasma membrane, as well as how it moves 
from the plasma membrane in the postacrosomal region to the 
inner acrosomal membrane during the acrosome reaction  
(66,70) 

“Lectins” and “glycosaminoglycan binding proteins 
Proacrosin (36,154-156) Acrosome and inner 

acrosomal membrane 
(33,154,156-159) 

Primary spermatocytes and 
spermatids (primarily) (160-163) 

It is involved in the binding of acrosome reacting/ reacted 
sperm to the ZP.  Direct binding of proacrosin to mouse ZP2 
(secondary sperm receptor) has been demonstrated (36) and 
the binding is dependent on the sulfate group of the sugar 
residues of ZP carbohydrate moieties (36,154,155).   
 
Acrosin knockout mice have been generated (164,165).  
Although the null males can sire offspring, their sperm have 
compromised fertilizing ability, specifically in ZP penetration 
(165,166) 

Sp38 (167-169) Inner acrosomal 
membrane (168,169) 

Spermatogenic cells (169)  Sp38 is involved in secondary ZP binding presumably to 
sulfated sugar residues of the ZP glycans, a similar 
mechanism to proacrosin-ZP binding.  Furthermore, the ZP 
binding motif of Sp38 is also present in proacrosin  (167-
169).   

Zonadhesin (170-172) The acrosome 
(172,173), associated 
with the luminal aspect 
of the outer acrosomal 
membrane and adjacent 
acrosomal matrix (173)  

Round spermatids (170,172) The mature form with ZP binding activity of zonadhesin 
contains two covalently associated polypeptides possessing D 
domains of prepro-von Willebrand factor.  The precursor 
form of zonadhesin also contains  a MAM domain and a 
mucin-like domain in its N-terminal region (170,173).  
 
Zonadhesin is the major sperm membrane protein that has ZP 
binding ability (170).  
 
Zonadhesin binds to glycosaminoglycans (e.g., heparin and 
fucoidan) (Hardy, D. personal communication) 

Sp17 (174,175) Acrosome (174) Primary spermatocytes and 
spermatids (abundantly) (176) 

Sp17 is highly antigenic  (177,178). 
 
It contains 3 domains: RII alpha subunit of protein kinase A 
in the N-terminal domain (enabling it to bind to A-kinase 
anchoring protein (AKAP)); a central sulfated carbohydrate 
binding domain; and a C-terminal Ca2+/calmodulin (CaM) 
binding domain (179) 

sp56 (AM67) (34) Acrosome (32,180,181), 
sperm head plasma 
membrane (34,182) 

Primary spermatocytes and 
spermatids (primarily) (35,180) 

sp56 is a rodent specific protein.  In mice, it has been shown 
for its binding ability to ZP3 O-linked oligosaccharides (34). 
 
Detection of sp56 on the sperm surface might be an artifact 
due to the exposure of the sperm acrosomal content during 
the early phase of the acrosomal exocytosis (180).   
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Spermadhesin (AWN, 
AQN-1 and AQN-3) 
(183-186) 

Sperm head plasma 
membrane (187,188)  

Male accessory glands (189) and 
epididymal/uterine/oviductal 
epithelia (186,190) 

Deposition of spermadhesins onto sperm is via their 
interaction with sperm phospholipids (186)  

Others 
SED-1 (P47) (31,191) Plasma membrane overlying the 

sperm head (31,191,192)  
Spermatogenic cells and 
epididymal epithelial cells 
(31,191,192)  

SED-1 is a mosaic peripheral plasma membrane protein with 
a high structural homology to milk fat globule-EGF factor 8 
(MFG-E8) (191).  It consists of 2 Notch like-EGF repeats and 
2 discoidin/F5/8 C domains (with known adhesion functions).  
Its ubiquitous expression suggests that SED-1 may be a 
generic adhesion molecule in the body (193).   
 
SED-1 has been shown to have direct binding ability to both 
ZP3 and ZP2 of unfertilized eggs.  The discoidin/C domains 
are important for SED-1-ZP binding.  However, the 
interaction between SED-1 and oviduct-derived ligand(s) on 
the ZP of unfertilized ovulated eggs has also been suggested 
(18,19).  
 
The significance of SED-1 in initial sperm-ZP binding has 
been confirmed by the subfertility observed in SED-1 null 
males (31).   

Gluthathione S-
transferase (GST) 
(49,194,195) 
 

Plasma membrane at the sperm 
head anterior, the postacrosomal 
region and the principal piece 
(GST Pi isoform); plasma 
membrane overlying the acrosome 
and the postacrosomal region  
(GST Mu isoform) (194,195). 

Sertoli cells; GST is 
secreted into the lumen of 
seminiferous tubules (194) 

GST (both Pi and Mu isoforms) attach to the sperm plasma 
membrane peripherally (49). 
 
Both isoforms bind to solubilized as well as intact ZP of 
unfertilized eggs in a ZP3-dependent manner (49). 
 
The roles of sperm surface GSTs in fertilization are 
independent of their enzymatic activities (194,195). 

Carbonyl reductase 
(P26h/P34H/P31m) 
(196-198) 

Plasma membrane overlying the 
acrosome (197,199,200). 
 
 

Hamster: Primarily 
spermatogenic cells 
(spermatocytes and round 
and elongated spermatids) 
(201,202) 
 
Human and monkey: 
corpus epididymal 
epithelia (196,203) 

Carbonyl reductase is involved in primary ZP binding (197); 
the activity of the enzyme is important for this binding (48) 
 
It is a GPI-linked protein and a component of 
epididymosomes, which are important for the transfer of 
carbonic hydrase to the transit sperm plasma membrane 
(204,205).  

Basigin/MC31/CE9 (60) Plasma membrane overlying the 
acrosome (60) 

Primary spermatocytes 
and spermatids (206) 

Basigin is a protein in the immunoglobulin superfamily (206). 
 
Basigin first exists on the tail of elongated spermatids and 
immature sperm, but is then relocalized to the convex ridge of 
capacitated sperm (60,206).  
 
Basigin null male mice are sterile due to  spermatogenesis 
arrest  (207). 

FA-1 (208-210) Postacrosomal region (210) Secondary spermatocytes 
(211)  

It is expressed specifically in testes (208) and its 
immunocontraceptive effect has been shown in mice (212).   
 
Antibodies against FA-1 present in infertile men (213) can be 
preadsorbed by FA-1, thus rendering sperm with higher 
fertilizing ability (214) 

Arylsulfatase A (AS-A) 
(44,45) 

Plasma membrane overlying the 
acrosome ((44,45) and the 
acrosome (46)) 

Pachytene spermatocytes  
for the AS-A in the 
acrosomal processes and 
epididymal epithelia for 
sperm surface AS-A (46)  

Although AS-A is known for its desulfation activity on 
sulfoglycolipids, it also interacts with sulfated 
glycoconjugates (including SGG) at its molecular surface 
(distinct from the active site pocket) (43).  Presumably, AS-A 
from the epididymal fluid deposits onto the sperm surface via 
its interaction with SGG (46) 
 
As-a null male mice can sire offspring (215), although they 
might be subfertile.   

SGG (47,216,217) Mouse and human: Plasma 
membrane overlying the acrosome 
and postacrosomal region 
(216,217) 
Pig: Anterior head plasma 
membrane (44) 

Pachytene spermatocytes 
(218) 

Its expression is restricted to mammalian male germ cells and 
it exists at 10 mole % of total sperm lipids (42). 
 
The majority of SGG (70 %) is present in capacitated sperm 
lipid rafts, possessing ZP affinity (47). 
 
Male mice transgenetically deficient in SGG are infertile due 
to spermatogenesis disruption (219,220) 

 
acrosomal membrane (2).  The acrosomal matrix of 
acrosome-reacting sperm is then exposed for the interaction 
with the ZP.  A number of reports indicate that acrosomal 
proteins, such as proacrosin, sp56, Sp38, have ZP affinity 
(see Table 2 with references therein) and this would be the 
basis of how acrosome reacting sperm remain bound to the

 
ZP (32).  In fact, the acrosomal exocytosis occurs in a 
gradual manner with transient changes of the ZP binding 
partners in the acrosome (32,33), and both ZP3 and ZP2 
have been shown to interact with acrosomal proteins (34-
36).  Once the acrosome reaction is complete, sperm are 
left with the inner acrosomal membrane in the head
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Figure 1. Diagram of acrosomal exocytosis and the penetration of the zona pellucida.  A series of images showing the head 
region of a mammalian sperm and representing successive stages of acrosomal exocytosis and zona penetration (left to right).  
The various parts of the sperm are: cytoplasm (yellow); nucleus (red); acrosome (green).  The zona is composed of glycoproteins 
(blue lines: protein backbones; yellow hexagons: carbohydate moieties).  The acrosome is portrayed in various shades of green to 
illustrate the subcompartments that are present in the sperm acrosomes of several species.  The acrosomal matrix is perceived to 
be gradually released from the sperm following exposure to the external milieu by fusion of the outer acrosomal membrane with 
the plasma membrane overlying the acrosome.  The matrix may serve as a scaffold for enzymes/proteins that are required for 
zona penetration.  As a result, a narrow penetration slit through the zona is created.  Binding of the sperm to the zona via plasma 
membrane and/or internal acrosomal components may be considered as a two-step process (primary and secondary binding) or as 
a continuum. 
 
anterior, and the binding of acrosome-reacted sperm to the 
ZP is dependent on the molecules in the inner acrosomal 
membrane (e.g., PH-20) (37,38).  In short, a number of 
molecules in the acrosome and the inner acrosomal 
membrane are temporally involved in the binding between 
acrosome reacting/reacted sperm and the ZP.  In most 
cases, these sperm acrosomal molecules are distinct from 
those on the sperm head surface that are involved in the 
initial binding of acrosome-intact sperm to the ZP.   The 
continuum of the interaction between acrosome 
intact/acrosome reacting/acrosome reacted sperm and the 
ZP is pictorially shown in Figure 1.  
 
 Listed in Tables 2 are three categories of ZP 
binding molecules based on their biochemical properties.  
These include glycoenzymes, lectins and others (those that 
do not fit into the first two categories).  The fact that a 
number of ZP binding molecules are glycoenzymes and 
lectins are consistent with the results demonstrating that the 
carbohydrate moieties of the ZP are important for sperm 
binding (17,39).  Other proteins contain domains known to 
be involved in extracellular matrix/cell adhesion; these 
include SED-1 having discoidin domains (19) and basigin 
being in the immunoglobulin superfamily (40,41).  Of 
particular interest to our research is 

sulfogalactosylglycerolipid (SGG, also known as 
seminolipid), a male germ cell-specific sulfoglycolipid.  
SGG and its structural analog, sulfogalactosylceramide 
(SGC, also known as cerebroside sulfate and sulfatide) 
have been shown to bind to several extracellular proteins 
(fibronectin, laminin, selectin, von Willebrand factor and 
gp120) (42).  Besides its adhesion to the ZP, SGG has high 
affinity for arylsulfatase A (AS-A) (43), another ZP 
binding protein (44,45), and this is the basis of how AS-A 
in the epididymal fluid is peripherally deposited onto the 
sperm head plasma membrane during sperm transit through 
the epididymis (46).  It is likely that AS-A and SGG 
function together in ZP binding (see further description on 
this in Section 5).     The co-operative action of ZP binding 
molecules in sperm-ZP interaction may be another 
explanation of the existence of multiple molecules with ZP 
affinity.   
 
 A number of ZP binding proteins in the “Others” 
category listed in Table 2 are enzymes.   While the 
enzymatic activity of carbonic reductase is essential for its 
role in sperm-ZP binding (48), the ZP binding property of 
gluthathione S-transferase (GST) appears to be independent 
of its enzymatic activity (49).  It is still unknown whether 
the sulfatase activity of AS-A is important for sperm 
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binding to the ZP as well as their penetration through the 
ZP layer.  Since the binding of sperm surface SGG to AS-A 
does not result in SGG desulfation ((43) and our 
unpublished results on SGG docking to AS-A), it is 
unlikely that this binding involves the active site pocket of 
AS-A.  With the availability of the active site pocket, it is 
tempting to speculate that AS-A may exert its desulfation 
activity on sulfated sugar residues present on the ZP 
glycans (50), as part of the mechanism of sperm penetration 
through the ZP layer.  This type of mechanism might also 
be utilized by glycoenzymes such as alpha-D-mannosidase 
and PH-20 during the same event.   
 
 A few ZP binding proteins are not listed in Table 
2 due to a lack of information on their peptide sequence.  
These include a 55 kDa protein in pig sperm (51,52) and a 
low molecular weight (~15 kDa) trypsin inhibitor binding 
component on the mouse sperm surface (53,54).   Zona 
receptor kinase (ZRK), a 95 kDa ZP binding protein in 
human sperm with a homolog in mice (55-57), was also not 
listed in Table 2.  In this case, its peptide sequence was 
published and claimed to be a novel protein tyrosine kinase 
(55).  However, the validity of its sequence is questionable 
as it is identical to a truncated form of c-mer; this may be 
due to errors in molecular cloning and sequencing (58,59). 
 
4. ORIGIN OF SPERM MOLECULES WITH ZP 
AFFINITY AND THEIR TARGETING TO THE 
ZONA PELLUCIDA BINDING SITES ON THE 
SPERM HEAD 
 
 Sperm molecules that are involved in the primary 
ZP binding need to be localized to the head anterior plasma 
membrane of capacitated acrosome-intact sperm, whereas 
those engaged in the secondary ZP binding can exist at the 
outer acrosomal membrane, as part of the acrosomal matrix 
and/or the inner acrosomal membrane.  A number of 
primary ZP binding molecules are synthesized in 
spermatogenic cells and targeted to their plasma membrane 
(such as GALT, mannosidase, P26h, basigin, and SGG) 
(Table 2 and references therein).  In most cases, the ZP 
binding molecules are compartmentalized to the sperm 
head anterior during spermiogenesis.  However, basigin is 
first targeted to the sperm tail but is then relocalized to the 
sperm head anterior plasma membrane during sperm 
capacitation (60).  An increase in sperm plasma membrane 
fluidity during capacitation (61), due to cholesterol efflux 
(17), may account for this significant movement of basigin.    
 
 Epithelial cells of the epididymis and oviduct as 
well as Sertoli cells synthesize ZP binding molecules, 
which are then secreted into luminal fluid, ready to be 
adsorbed onto the plasma membrane of male germ cells 
that come into contact with the  fluid.  Besides being 
synthesized in spermatogenic cells, SED-1 is additionally 
acquired onto the sperm plasma membrane from the 
epididymal luminal fluid during sperm transit/storage (31).  
In contrast, AS-A, P31m, P34H, spermadhesins and GST 
on the sperm surface are solely derived from the luminal 
and/or seminal fluid.  AS-A originates from the epididymal 
fluid, spermadhesins from the epididymal and oviductal 
fluid and seminal plasma (secreted from the male accessory 

glands), and GST from seminiferous tubal fluid (secreted 
from Sertoli cells).  Deposition of these extracellular 
proteins onto the sperm surface appears to be through two 
main mechanisms.  First, P31m and P34H, containing a 
glycosyl phosphatidylinositol (GPI) link (see references in 
Table 2), integrate into the sperm plasma membrane via 
their lipid anchor.  Second, proteins such as AS-A and 
SED-1, possessing inherent affinity for specific lipids on 
the sperm surface (SGG in the case of AS-A (43,46) and 
anionic phospholipids for SED-1 (62,63)), are peripherally 
deposited to the sperm plasma membrane via binding to 
these sperm membrane lipids.      
 
 In contrast to sperm molecules involved in 
primary ZP binding, secondary ZP binding molecules 
(proacrosin, Sp38, zonadhesin, Sp17 and sp56) are 
synthesized in spermatogenic cells and, except for PH-20, 
they are directly targeted to the acrosome.  The targeting 
process of PH-20 in guinea pig sperm appears to be unique.  
PH-20 is synthesized in round spermatids with one pool 
targeted to the acrosomal membrane and the other to the 
plasma membrane.  In testicular sperm, PH-20 exists 
uniformly on the whole head plasma membrane as well as 
the outer and inner acrosomal membranes.  The localization 
of both PH-20 populations changes dramatically in mature 
epididymal acrosome-intact sperm.  The plasma membrane 
population is localized to the postacrosomal region and the 
acrosome population to only the inner acrosomal 
membrane.  Following acrosomal exocytosis, the PH-20 
population that used to be on the postacrosomal plasma 
membrane moves to the inner acrosomal membrane with 
the population that has been there (37,64,65).   In 
acrosome-intact sperm, there may exist a barrier between 
the postacrosomal plasma membrane region and the inner 
acrosomal membrane.  This barrier may interact with PH-
20, thus slowing down its diffusion rate, as observed in 
fluorescence recovery after photobleaching (FRAP) studies.  
Once this barrier breaks down during the acrosomal 
exocytosis, the diffusion rate of PH-20 increases.  PH-20 gains 
free movement towards the inner acrosomal membrane where 
its density is the highest for ZP interaction (66).  Recent single 
particle fluorescence imaging (SPFI) studies, using a 
fluorescent lipid reporter, 1,1'-dihexadecyl-3,3,3'3'-
tetramethyindocarbocyanine (DiIC16), also indicate the 
presence of a barrier at the border of the postacrosome.  In 
these studies, particles with a ~200 nm diameter were 
shown to be incapable of moving freely between the 
postacrosomal region and the equatorial segment/the 
anterior acrosomal area, whereas the free DiIC16 could 
(67).  These results suggest that sperm surface molecules 
existing in microdomains with a diameter of 200 nm or 
larger are restricted from crossing this barrier.  While the 
GPI anchor of PH-20 may allow its lateral diffusion in the 
sperm plasma membrane, it may also sequester the protein 
into microdomains such as lipid rafts (see the next section), 
thus preventing PH-20 in acrosome-intact sperm to move 
through this barrier.   
 
 In mice, PH-20 is synthesized by both 
spermatogenic cells and epididymal epithelial cells (68-70).  
PH-20 is present in the anterior head plasma membrane in 
mature mouse sperm.  It plays an important role in sperm 
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penetration through the cumulus cell layer as it possesses a 
hyaluronidase domain (71), which is separate from the ZP 
binding domain utilized by PH-20 at the time of sperm-egg 
union (72).  It is unclear at the present time how much PH-
20 derived from spermatogenic cells versus the PH-20 
population secreted from the epididymal epithelial cells is 
distributed on the mature mouse sperm head plasma 
membrane.  Furthermore, Zhang and Martin-DeLeon (73) 
have described that PH-20 is present in the 
uterine/oviductal luminal fluid and it is deposited onto the 
transit sperm plasma membrane.  Zhang and Martin-
DeLeon argue that this additional deposition of PH-20 may 
ensure that the protein exists in a sufficient amount for their 
functions during sperm penetration through the cumulus 
layers of cumulus oocyte complexes (as hyaluronidase) and 
during sperm-ZP interaction (as a ZP adhesion molecule) 
(see Table 2 for more details).   Nonetheless, future studies 
need to be performed to discern the mechanisms of how 
PH-20 is targeted to the inner acrosomal membrane 
following acrosomal exocytosis in the mouse system.  
 
 Targeting ZP binding molecules to sperm head 
anterior is the first essential step for their functionality 
during sperm-ZP interaction.  However, it is generally 
believed that these ZP binding molecules, especially those 
involved in the primary binding, are not yet optimally exposed 
for ZP interaction until capacitation (2,17).  They are masked 
by decapacitation factors present in the seminal plasma and 
male reproductive tract.  These decapacitation factors include 
cholesterol containing membrane vesicles in the seminal 
plasma (74), and phosphoethanolamine binding protein 1 
(75-77) and glycosides (27,78,79) in the epididymis.  
Through still unclear mechanisms, these decapacitation 
factors are removed during capacitation; thus, the ZP 
binding molecules are exposed on the sperm surface.  
Recent results of Aitken and colleagues (80) suggest that 
sperm inherent factors may also play a role during 
capacitation in exposing the ZP binding molecules on the 
sperm surface.  They have described the tight correlation 
between tyrosine phosphorylation of proteins on the plasma 
membrane overlying the mouse sperm acrosome (ZP 
binding site) and the ZP binding ability of sperm.  There 
appear to be three major proteins from this sperm entity 
that are tyrosine phosphorylated and two of them are 
identified to be molecular chaperones, heat shock protein 60 
(hsp60) and endoplasmin 99 (erp99).  Since pretreatment of 
capacitated sperm with anti-phosphotyrosine antibody does not 
result in inhibition of sperm-ZP binding, the authors have 
suggested that tyrosine phosphorylation of the two 
molecular chaperones may be important for ZP binding 
molecules becoming functional ZP receptor complexes; this 
may be through conformational changes of these molecules 
that lead to exposure of their ZP binding domains (80).  It 
is also tempting to propose that these molecular chaperones 
may bring various ZP binding molecules into the same 
microdomains on the sperm head plasma membrane.   This 
may facilitate co-operative binding activities of these ZP 
binding molecules, thus allowing sperm interaction with the 
ZP to be stable enough to withstand the pulling force 
generated by the ongoing sperm movement.  We have 
recent evidence that these microdomains are likely sperm 
lipid rafts, and this is discussed in detail in the next section.     

5. ROLES OF SPERM LIPID RAFTS IN SPERM-
ZONA PELLUCIDA INTERACTION 
 
 Freeze fracture electron microscopy reveals the 
presence of elevated hexagonal particles (each with a 
diameter of ~20-30 nm) on the plasma membrane overlying 
the acrosome in both guinea pig and rat sperm (81).  This 
finding corroborates the more recent concept that there 
exist liquid ordered microdomains termed lipid rafts on the 
plasma membrane (82,83).  The “liquid ordered” property 
of lipid rafts refers to their intermediate state between the 
gel phase and the “fluid” liquid crystalline phase; the 
hydrocarbon chains of raft-resident lipids pack together in 
an orderly fashion, yet they can still move laterally in the 
bilayers (84-86).  In most lipid rafts, cholesterol is an 
integral component.  Glycolipids, sphingolipids and 
saturated phospholipids, as well as GPI-linked and acylated 
proteins, are also present selectively in lipid rafts (82,83).  
The saturated nature of the hydrocarbon chains of these 
lipids facilitates hydrophobic interaction between 
themselves and the planar rings and side chain of 
cholesterol.  Hydrogen bonding between cholesterol and 
glycolipids further stabilizes the lipid raft microdomains.  
This results in the resistance of lipid rafts to solubilization 
by a number of non-ionic detergents (85,87,88) and they 
are often referred to as detergent resistant membranes 
(DRMs).  Triton X-100 (0.5 to 1%) has been widely used at 
cold temperature to isolate lipid rafts from cells (85,89).  
Due to their low buoyant density (attributed to low 
proteins/lipids weight ratio), lipid rafts float up in a density 
gradient.  In contrast, detergent solubilized proteins/lipids 
remain at the bottom (89). Lipid rafts have also been 
prepared using milder non-ionic detergents and even no 
detergents (90-94).  Notably, similar types of lipid and 
protein components are present in rafts isolated either by 
detergent or non-detergent methods (92,94).  Furthermore, 
lipid rafts have been isolated from a mixture of two HeLa 
cell populations: one metabolically labeled with tri-
deuterated Leu (LeuD3) and the other cultured in medium 
with normal Leu but treated with a cholesterol binding 
molecule to disrupt lipid raft microdomains.  The isolated 
lipid rafts only contained LeuD3-labeled proteins (92).  
These results argue against the controversy that lipid rafts 
are detergent induced aggregation artifacts.  Nonetheless, 
high resolution imaging methods that can account for the 
dynamic nature of lipid rafts are desirable for validating the 
existence of lipid rafts in situ.  Results from imaging 
studies reveal that lipid rafts of somatic cells are between 
10 and 700 nm in size and are dynamic in their existence 
(95-99).   
 
 Numerous cell adhesion, signaling and trafficking 
molecules have been found in isolated lipid rafts 
(92,94,100-104).  Therefore, lipid rafts have been 
considered as platforms on the plasma membrane for cell 
adhesion and signaling as well as final targets of 
protein/lipid sorting and trafficking (82,83).  In addition, 
the current concept states that ligand-induced aggregation 
of lipid rafts leads to stabilization of the raft microdomains 
as well as activation of cell signaling (82,83,96).  These 
results and new concept have made research in lipid rafts a 
hot topic. To date, approximately 2000 articles on lipid 
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rafts are reported in PUBMED.  While sperm-egg 
interaction is an ideal physiological process for validating 
the implication of lipid rafts in cell adhesion and signaling, 
research on gamete lipid rafts is still limited.  Only 17 
research articles on sperm lipid rafts and 6 articles on egg 
lipid rafts have appeared in PUBMED.  All egg lipid raft 
studies involved isolation of the raft vesicles and are thus 
restricted to the Xenopus and sea urchin systems (105-110), 
since eggs can be obtained in quantity from these animals.  
Most of these studies reveal the presence of signaling 
proteins in egg lipid rafts (e.g., xSrc and uroplakin in 
Xenopus egg rafts and Src and PLCγ in sea urchin egg 
rafts).  The presence of GM1, a ganglioside found in 
somatic lipid rafts, is also reported in isolated Xenopus egg 
lipid rafts (109).  For sperm lipid rafts, reports are available 
from both mammalian (47,111-123) and sea urchin (124-
126) systems.  To date, three lines of questions have been 
addressed in sperm lipid raft research.  First, do sperm or 
isolated sperm lipid rafts (DRMs) contain markers known 
to exist in somatic cell lipid rafts?  Second, is the formation 
of lipid rafts compromised in capacitated sperm due to the 
efflux of cholesterol, a raft integral component?  Third, are 
sperm lipid rafts involved in egg binding?  Positive answers 
have been given for the first question.  Mammalian sperm 
and/or their isolated lipid rafts contain GM1 (114,117-120), 
caveolin (111,115,120,121,123) and flotillin (47,114,123,127).  
A number of GPI-anchored proteins are also present in isolated 
sperm lipid rafts, including CD59, CD52, TESP5 and PH-20. 
(112,114,117,122), and these findings are similar to what  has 
been observed in somatic cells (82).  In place of GM1, isolated 
sea urchin sperm lipid rafts contain unique acidic glycolipids, 
i.e., sulfated and non-sulfated poly-sialic acid containing 
gangliosides (124-126).   
 
 Two opposing answers have been obtained to the 
second question.  Our studies, as well as those from Roy 
Jones’ group, indicate an increase in the levels of lipid rafts 
in capacitated pig sperm (47,113).  In contrast, Pablo 
Visconti et al. show a disappearance of lipid rafts in mouse 
sperm following capacitation (115), a finding that concurs 
with the known fact that cholesterol, an integral lipid raft 
component, is released from capacitated sperm.  However, 
it should be remembered that there is still a substantial level 
of cholesterol remaining in capacitated sperm (~50% of 
non-capacitated sperm levels), and it is unlikely that all 
lipid rafts would have disappeared as described by Visconti 
et al. (115).  We argue that this disappearance is due to the 
use of a high weight ratio of Triton X-100 to sperm 
proteins (47) in their lipid raft isolation.   On the other 
hand, an increase in lipid raft levels following capacitation 
can be explained by the following events.  First, cholesterol 
is released from the non-raft (fluid) domains of the sperm 
plasma membrane during capacitation.  This release leads 
to activation of scramblase (128), which then allows the 
remaining cholesterol to regroup with its preferential lipid 
partners (i.e., SGG and saturated phospholipids), thus more 
patches of lipid rafts can be formed (47).   This model is 
shown in Figure 2A.     
 
 Direct interaction of sea urchin sperm lipid rafts 
with SBP, a 350 kDa sperm binding protein, existing in the 
egg vitelline layer, has been documented (126).  These 

investigators further show that the highly acidic sulfated 
and non-sulfated poly-sialic acid containing glycolipids are 
important for this binding.  SGC (a structural analog of 
SGG), co-present with these highly acidic glycolipids in 
sea urchin sperm lipid rafts, is also involved in this 
interaction (126).  For mammalian sperm lipid rafts, a 
number of reports indicate the presence of molecules with 
affinity for the ZP and egg plasma membrane.  These 
include PH-20 (112), spermadhesins, proacrosin (123), 
basigin, IZUMO, CRISP1, TESP1 (115), SGG and AS-A 
(47).   Finally, our recent work indicates that isolated pig 
sperm lipid rafts are able to bind directly to solubilized pig 
ZP with mechanisms similar to those employed by intact 
sperm and isolated sperm anterior head plasma membranes 
(47).  In particular, the sperm lipid rafts-ZP interaction is 
greatly dependent on pig ZPB glycoprotein as well as the 
ZP carbohydrate moieties.  Most significantly, our results 
reveal a high affinity and capacity of lipid rafts from 
capacitated sperm to bind to the ZP (which may reflect 
larger areas of lipid raft microdomains in these sperm).  Of 
further interest is the finding that the majority of SGG 
exists in lipid rafts of capacitated sperm. Furthermore, SGG 
contributes to lipid raft formation via its interaction with 
cholesterol and saturated phospholipids, as well as the ZP 
binding ability of the sperm lipid rafts (47).  However, 
since the galactosyl sulfate groups of SGG molecules rise 
only a short distance above the sperm plasma membrane 
bilayer, it is likely that another protein, well exposed on 
the sperm head surface, may be responsible in the initial 
capture of the ZP glycans to interact with these 
galactosyl sulfate groups of SGG.  Our recent result 
indicates the presence of AS-A, a ZP binding protein, in 
isolated sperm lipid rafts.  As an SGG binding partner 
and a peripheral plasma membrane protein, AS-A is 
likely  engaged in capturing the ZP glycan for the 
subsequent carbohydrate-carbohydrate interaction with 
SGG head groups.  This postulation is illustrated in 
Figure 2B.  Our observations, as well as the proteomic 
analysis results of sperm lipid rafts described above, 
support the concept that sperm lipid rafts are platforms 
of ZP binding molecules on the sperm head plasma 
membrane for ZP interaction.  Nonetheless, changes of 
lipid raft microdomains prior to or after the initial 
sperm-ZP binding may also be important for the 
fertilization process.  Prior to the sperm-ZP binding 
(perhaps as part of sperm capacitation), angiotensin 
converting enzyme (ACE), possessing a GPI-anchored 
protein releasing activity, can release TESP5 and PH-20 
from sperm lipid rafts, and this release appears to be 
essential for sperm binding to the ZP (129).  Sperm 
retrieved from the infertile Ace-null mice cannot bind to 
the ZP (130).  However, this ZP binding activity can be 
restored by pretreatment of sperm with ACE.  It is likely 
that components of sperm lipid rafts involved in the 
initial sperm-ZP binding would be released from the 
sperm surface following the acrosome reaction.  The 
movement of PH-20 out of these raft microdomains 
prior to the initial sperm-ZP binding would protect it 
from this release, so that it can serve as a ZP adhesion 
molecule during the secondary binding.  In contrast, the 
interaction between multivalent oligosaccharides of ZP3 
and their receptors on the sperm surface leads to 
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Figure 2. A. Hypothetical models for an increase in lipid rafts microdomains in the sperm plasma membrane following 
capacitation.  For simplicity, only the outer plasma membrane leaflet is shown in this model as well as in the model in B.  In 
control sperm, ~30% of SGG was in the lipid rafts (cropped in a dashed-line square).  These SGG molecules interact with 
cholesterol and saturated phospholipids.  Some GPI-linked proteins may also exist in control sperm lipid rafts via the interaction 
of their acyl chains with the saturated fatty acyl chains of phospholipids.  The remaining SGG molecules are in the non-raft areas, 
which contain a high percentage of phospholipids with one of their acyl chains being mono- or polyunsaturated.  However, the 
other acyl chain of these phospholipids is mainly saturated, thus interacting with the hydrocarbon chains of SGG in the non-raft 
areas.  Cholesterol also coexists with SGG and phospholipids in the fluid non-raft areas, interacting with their saturated 
hydrocarbon chains or monounsaturated acyl chains with the double bond deep below the membrane interface.  During 
capacitation, cholesterol is likely to be released from the non-raft areas, resulting in a further increase in fluidity.  Scramblase is 
also activated allowing lipids to reorganize themselves (Flesch et al., 2001).  SGG, cholesterol and saturated phospholipids would 
regroup together, thus forming new patches of lipid rafts, which may coalesce with preexisting lipid raft microdomains in the 
sperm plasma membrane.  B. Hypothetical model of how SGG molecules in sperm lipid rafts interact with the ZP glycans.  The 
ZP glycans likely interact with the galactosyl sulfate moiety of SGG.  However, since this monosaccharide head group would rise 
only a short distance above the sperm membrane layer, it would be difficult for the ZP glycans to reach this head group without 
additional anchoring force.  AS-A, a peripheral plasma membrane protein which exists in a dimeric form at physiological pH, has 
affinity for both SGG and the ZP (Carmona et al., 2002a,b).  AS-A may first bind to the ZP glycans (possibly via interaction 
between positively charged amino acids of AS-A and sulfated sugar residues of the glycans) and attract them to the sperm plasma 
membrane for the interaction with the galactosyl sulfate lawn of SGG molecules. Although the carbohydrate-carbohydrate 
interactions between the galactosyl sulfate groups of SGG and ZP glycans are not strong, they may be stabilized by the 
multiplicity of SGG molecules in the lipid raft microdomains.   Reproduced with permission from 47. 
 
aggregation of these receptors and then activation of 
sperm signaling events (25).  Since sperm lipid rafts 
contain a number of ZP binding molecules, it is likely 

that the raft microdomains are the sperm surface entities 
that become aggregated.  This hypothesis corroborates 
the concept in lipid raft research that cell signaling 
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events are induced following aggregation of lipid raft 
microdomains (82,83,96).      
 
6. PERSPECTIVES  
 
 Several explanations have been given to the 
existence of a large number of ZP binding molecules.  The 
arguments that they can act as backups for one another 
and/or they act co-operatively via different mechanisms are 
supported by the ability of Galt-null mouse sperm to bind 
to intact ZP and to fertilize the egg.  The concept that a 
group of molecules are involved in the initial primary ZP 
binding, whereas the other in the secondary binding is 
attested by the different localization of these two types of 
molecules on the sperm head.  The former is on/in the 
plasma membrane overlying the acrosome and the latter in 
the acrosome.  In addition, molecules involved in the initial 
interaction between sperm and the ZP have selective 
binding to ZP3, and those engaged in the secondary binding 
likely interact more with ZP2.  However, the explanation 
that a certain set of ZP binding molecules serves for 
species/order specificity has not been well supported by 
data obtained so far.  Only sp56 appears to be rodent-
specific.  The search for species/order specific ZP binding 
molecules will require extensive sperm proteomic analyses 
among different species/orders.  Furthermore, information 
on the identities of ZP carbohydrate moieties, as well as the 
understanding of how ZP glycoproteins interact with sperm 
surface molecules, will be required in this search, as this 
species- or order-specific binding may also be attributed to 
the ZP glycoproteins (131).     
 
 If ZP binding molecules on the sperm surface can 
act co-operatively as well as act as backups for one another, 
it would be logical to speculate that they are in close 
proximity to one another.   The observations that a number 
of ZP binding molecules exist in isolated sperm lipid rafts 
support this hypothesis.  However, in order to prove this, 
co-localization of these molecules in the lipid raft 
microdomains on the sperm head surface needs to be 
shown in situ.  A number of imaging techniques have been 
applied to detect lipid raft components, including 
fluorescence resonance energy transfer (FRET), 
fluorescence recovery after photobleaching (FRAP), single 
particle tracking, photonic force microscopy and spatial 
analysis by electron microscopy (95,98).  Among these 
techniques only the electron microscopy approach gives the 
direct information on molecular localization, and can be 
easily used to localize more than one molecule. This is in 
contrast to other detection methods, which are based on the 
deduction of the diffusion rates of the molecules (98).  As 
illustrated by freeze fracture electron microscopy done in 
1974 that there exist elevated microdomains on the sperm 
head plasma membrane (81), it remains to be seen whether 
these microdomains house lipid raft components including 
those that are ZP binding molecules.   
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