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1. ABSTRACT 
 
 Increased blood-brain-barrier (BBB) permeability 
precedes any clinical or pathologic signs and is critical in 
the pathogenesis of multiple sclerosis (MS) and brain 
metastases. CD4+ TH1 cells mediate demyelination in MS, 
but how they get sensitized and enter the brain to induce 
brain inflammation remains obscure.  TH2 cytokines 
associated with allergic disorders have recently been 
implicated in MS, while genes upregulated in MS plaques 
include the mast cell-specific tryptase, the IgE receptor (Fc-
epsilon-RI) and the histamine-1 receptor.  Mast cell 
specific tryptase is elevated in the CSF of MS patients, 
induces microvascular leakage and stimulates protease-
activated receptors (PAR), leading to widespread 
inflammation.  BBB permeability, MS and brain metastases 
appear to worsen in response to acute stress that leads to 
the local release of corticotropin-releasing hormone (CRH), 
which activates brain mast cells to selectively release IL-6, 
IL-8 and vascular endothelial growth factor (VEGF).  
Acute stress increases BBB permeability that is dependent 
on CRH and mast cells. Acute stress shortens the time of 
onset of experimental alleric encephalomyelitis (EAE) that 
does not develop in W/W mast cell deficient or CRH -/- 
mice. Brain mast cell inhibition and CRHR antagonists 
offer novel therapeutic possibilities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The BBB is formed by a complex system of 
endothelial cells, astroglia, pericytes and perivascular mast 
cells (1), with tight junctions enclosed by a limiting 
basement membrane (2, 3). As a result, brain endothelial 
cells restrict passage of most circulating cells and 
molecules (4). However, BBB can play a dynamic role 
permitting certain peptides in and out of the brain (5). BBB 
breakdown (4) precedes any pathological or clinical signs 
of MS (6-8), as shown by trans-BBB leakage of albumin 
(9) and MRI-gadolinium studies (8). MS is a neurologic 
condition (10, 11) involving brain infiltration by 
lymphocytes that leads to demyelination (12, 13).  Even 
though T cell involvement has been well documented in 
MS, recent evidence implicates also TH2 processes 
historically associated with allergic reactions (14-16). 
These findings have led to a “crucial re-appraisal of the 
CD-TH1 model for MS” that concluded that MS may be 
heterogeneous and not necessarily strictly autoimmune 
(17). The original proposal that brain mast cells may play a 
critical role (18) is now supported by numerous pieces of 
evidence. 

 
Numerous studies have documented that the 

symptoms of MS can be precipitated by psychological
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Figure 1.  Electron photomicrograph of a “BBB unit” in a 
brain area with intense demyelination composed of a 
perivascular mast cell from a marmoset (callithrix jacchus) 
with EAE.  A venule full of red blood cells (R) is shown. 
The endothelial cell (E) is surrounded by a pericyte (P), 
which in turn is tightly embraced by a mast cell (MC).  
Note intragranular activation with loss of electron dense 
material in many granules that appear empty (solid arrow) 
possibly containing lipid.  Some secretory granules of mast 
cells are intact with homogeneous electron dense content 
(solid arrows against white background).  R = red blood 
cell. E = nucleus of endothelial cell. P = nucleus of 
pericyte. MC = nucleus of mast cell. Reproduced with 
permission. Magnification: x 19,000 
 
stress (19-25), including the appearance of new MRI 
lesions (26). In one study of parents with MS who had lost 
a child younger than 18 years (1980-1996 in Denmark) 
were matched to those who did not.  The parents who lost a 
child unexpectedly had a significantly increased risk of MS 
more so than other bereaved parents (25). The fact that the 
function of peripheral blood leukocytes in MS patients is 
unaffected by stress is irrelevant as the effect of stress is on 
brain and not peripheral cells (27). In particular, it has been 
known that immunoglobulin free light chains can sensitize 
mast cell release of cytokines that induce T-cell mediated 
immune relations critical in MS (28).  Moreover, mast cells 
can promote proliferation and T-cell activation, including 
TNF-alpha release, both through but also independent of 
IgE (29). Recent evidence, including one meta analysis, 
have now definitely linked acute stress to MS exacerbations 
(30). In one paper of 20 studies identified, 14 prospective 
studies were included and meta analysis showed a 
significantly increased risk of MS exacerbations after 
stressful events (p<0.0001) (30). These recent findings 
have prompted a review of the possible “stress-response 
systems for the pathogenesis and progression of MS,” but 
the hypotheses put forward of (a) the existence of 
glucocorticoid insensitive immune cells and (b) HPA axis 
hyperactivity fall for short of explaining the processes 
involved in MS (31) since (a) the latter has never been 
shown and (b) should improve not worsen MS. Infact, there 
has not been any explanation of how this may occur until 
now.  Clearly, the frequency, chronicity, severity and 
timing of stressors are important (32). Increased BBB 
permeability due to combat stress permitted entry into the 

brain of pyridostigmine, an antidote given against 
organophosphate chemical warfare, to soldiers during the 
Gulf war leading to unexpected brain adverse effects. (37, 
38) Restraint stress was also reported to increase mortality 
rates and lead to higher CNS viral load during Theiler’s 
virus infection (33). Stressed mice had increased 
inflammatory lesions in their spinal cord and developed 
autoimmune antibodies to myelin basic protein (MBP) (34).   

 
Affected brain areas in MS fill with fibrotic tissue 

forming the MS plaque (26) that also contains activated 
mast cells (6, 35, 36). Mast cells have been associated with 
brain demyelination (39-41) (Figure 1). Gene array analysis 
recently showed that MS plaques overexpress genes for the 
IgE receptor (Fc-epsilon-RI), the histamine-1 receptor and 
the protease tryptase, all of which are associated with mast 
cells (42-44). Mast cell tryptase is elevated in the CSF of 
MS patients (45), can activate peripheral mononuclear cells 
to secrete TNF and IL-6 (46), as well as stimulate protease-
activated receptors (PAR) to induce widespread 
inflammation (47, 48). Restraint stress resulted in 
activation of dura mast cells and CSF elevation of rat mast 
cell protease (49), effects abolished by polyclonal 
antiserum to CRH (49) and the CRHR-1 antagonist 
Antalarmin (49, 50). We showed that acute restraint stress 
shortens the time required for the development of 
experimental allergic encephalomyelitis (EAE) in mice and 
it increases BBB permeability (51). CRH -/- mice were 
recently shown to be resistant to EAE with decreased 
clinical disability and decreased brain infiltration by 
immune cells (52). Restraint stress induces mast cell 
dependent increase in mouse serum IL-6 (53), while 
examination stress dramatically increases serum TNF-alpha 
levels in medical student volunteers.(54) Moreover, virally 
induced encephalomyelitis could not develop in W/Wv 
mast cell deficient mice [WBBGF, (WB-W/+xC57BL/6-Wv 

lineage) W/Wv mast cell deficient mice and their +/+ normal 
counterparts (Jackson Laboratories, Bar Harbor, ME).] (55, 
56), and EAE was attenuated and delayed in these mice (57).    

 
The BBB is also defective in metastatic tumors 

permitting brain metastases (58). For instance, cancer cells 
can penetrate the BBB in metastatic melanoma (59) and 
mammary carcinoma (60).  However, how the BBB permits 
tumor dissemination to the brain remains unknown (61). 
Brain metastases occur in about 30% of breast cancer 
patients, are associated with high morbidity and mortality 
(62) and are increased by stress (63, 64).  Mast cell deficient 
mice were reported to have reduced metastases (65). 
Moreover, a mast cell stabilizer inhibited growth and 
metastases of rat mammary adenocarcinoma (66). Stress also 
increased susceptibility to UV-induced squamous cell 
carcinoma in a mouse model (67). Many AIDS patients 
develop neurologic problems that do not necessarily correlate 
with the viral load (68). One explanation may be that the HIV-
1 virus does not infect peripheral neurons directly (69), but 
enters the brain through increased BBB permeability (70) 
inside macrophages and T-cells crossing the BBB. 

 
3. BBB REGULATION AND MAST CELLS 
 

The involvement of mast cells in BBB regulation 
was first hypothesized by us (18) and it was subsequently
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Figure 2. Schematic representation of the hypothesis 
linking stress, CRH and mast cells to BBB permeability; 
NO = nitric oxide; VIP = vasoactive intestinal peptide; 
VEGF = vascular endothelial growth factor. Reproduced 
with permission.   
 
further proposed that mast cell activation by CRH could 
explain how stress increases BBB permeability (Figure 
2). This was confirmed using extravasation of 99Tc-
gluceptoate as a marker (50). Evidence that stress 
disrupts the BBB, possibly through mast cell mediators, 
had been published previously in rats (71-74). Increased 
BBB permeability due to forced swimming was shown 
in the cerebellum, thalamus and hypothalamus using 
Evans blue albumin or 131I-sodium (72). Acute stress 
activates rat intracranial mast cells, an action blocked by 
pretreatment with CRH antiserum (49), and leads to 
increased BBB permeability (75), that is inhibited by the 
CRH-receptor-1 (CRHR-1) antagonist Antalarmin (50). 
Both acute stress and injection of CRH in the rat 
hypothalamus induce BBB permeability that is blocked 
by pretreatment with cromolyn and is absent in mast cell 
deficient W/Wv  mice (76). CRH, and the structurally 
related peptide urocortin (Ucn), also induce mast cell 
activation and vascular permeability in the skin (77). 
These effects, like those in the brain, are inhibited by 
cromolyn and Antalarmin and are absent in W/Wv mice, 
implying a common mechanism in ectodermal tissues (76, 
78, 79). We recently identified CRHR mRNA and protein 
in human leukemic mast (HMC-1) cells and human 
umbilical cord-derived cultured mast cells (hCBMCs) (80).  

 
Mast cell involvement in BBB permeability is 

supported by reports that the mast cell secretagogue, 

compound 48/80, stimulated brain mast cells in rats (81) 
and increased BBB permeability in pigeons (82). 
Moreover, local application of 48/80 to pia induced BBB 
permeability to fluorescein-labeled dextran (83). Using 
99mTc-sodium pertechnetate or 131I-serum albumin, 
histamine was shown to increase BBB permeability (84). 
This effect was blocked by the histamine-2 receptor 
antagonist cimetidine (84), which also blocked histamine-
induced BBB permeability measured by trans-endothelial 
electrical resistance in brain microvessels (85). Brain 
histamine decreased in the hypothalamus of electrically 
stressed guinea pigs and in rats subjected to restraint stress 
(71), in which plasma histamine increased three-fold (86). 
Pretreatment with the mixed histamine/serotonin receptor 
antagonist cyproheptadine inhibited BBB permeability 
induced by forced swimming (72), suggesting that both 
histamine and serotonin may be involved in BBB 
permeability in rodents. Further evidence that histamine 
released under stress comes from mast cells was obtained 
when rats exposed to water immersion stress had a four-
fold transient increase in plasma histamine levels that was 
absent in W/Wv mast cell-deficient rats (87). We also 
showed that acute stress increases serum histamine and IL-
6 levels, both of which are absent in mast cell deficient 
W/Wv mice (53, 88). 

 
 In addition to histamine, tumor necrosis factor-

alpha (TNF-alpha) may be involved in regulating BBB 
permeability (89). TNF-alpha was shown to be released 
along with histamine from rat hypothalamic mast cells (89) 
and was involved in both brain inflammation (90, 91) and 
BBB permeability (92). Other mast cell-derived 
vasodilatory molecules include tryptase, which can cause 
microvascular leakage (93), vascular endothelial growth 
factor (VEGF), an isoform of which is also vasodilatory 
(94) and vasoactive intestinal peptide (VIP) (95).  

 
4. STRESS, CRH AND INFLAMMATION 
 
 Chronic stress can suppress the immune system 
and influence human pathophysiology (96-100). Acute 
stress, however, can exacerbate inflammatory syndromes 
(101, 102), such as MS (18, 19, 21, 26) and migraines 
(102), both of which often co-exist in the same patients 
(103, 104). In fact, there is evidence that acute stress can 
stimulate the immune system. Stressed animals had greater 
leukocyte tissue infiltration, as well as TNF-alpha, and 
monocyte chemotactic protein-1 (MCP-1) production (96, 
99, 105-110). It is quite interesting that stress leads to 
increased serum IL-6 levels in care givers of chronically ill 
patients (111), but it is decreased in those who go to church 
regularly (112), indicating that reduction of stress could 
lead to decrease in a key pro-inflammatory cytokine.  
Corticotropin-releasing hormone (CRH) or factor (CRF) is 
a 41 amino acid peptide that regulates the hypothalamic-
pituitary adrenal (HPA) axis (113) and coordinates the 
stress response through activation of the sympathetic 
nervous system (101). CRH acts through specific receptors 
(114, 115), which include CRHR-1 (116) and CRHR-2 
(117). Both receptor types are located on brain neurons, but 
CRHR-2 has also been identified on cerebral arterioles 
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Figure 3. A mast cell (arrow) stained with toluidine blue 
adjacent to CRH positive nerve fibers around a blood 
vessel in the rat median eminence. Reproduced with 
permission. Magnification: x1,000  
 
(118) that could be stimulated by CRH and Ucn directly 
(119). CRHR-2 has been further subdivided to CRHR-
2alpha and CRHR-2beta (120) which are best activated by 
Ucn, a peptide with about 50% structural similarity to CRH 
(121). Two more forms of Ucn, Ucn II (122) and Ucn III 
(123) have also been identified and are potent CRHR-2 
agonists.  CRHR-2alpha was found exclusively in the brain 
of mice, while CRHR-2beta was also found outside the 
brain. Both CRH and CRH mRNA have been demonstrated 
in rodent spleen and thymus (124), while human peripheral 
blood leukocytes (125) and enterochromaffin cells (126) 
express mRNA for Ucn. CRH and CRHR mRNA exist in 
rodent and human skin (127-129), while CRH-like 
immunoreactivity is present in the dorsal horn of the spinal 
cord and dorsal root ganglia (130-132), as well as in 
sympathetic ganglia (132, 133). We showed that acute 
stress could increases the skin content of CRH (134). We 
also showed that human mast cells contain both CRH and 
Ucn that could be released in response to immunologic 
stimulation. (134) CRH stimulated leukocytes (124) to 
produce beta-endorphin, ACTH and alpha-melanocyte 
stimulating hormone (alpha-MSH), (18) as well as 
monocytes to secrete interleukin-l (IL-1), and lymphocytes 
to produce IL-2 (135). CRH also stimulated lymphocyte 
proliferation (136, 137), increased IL-2 receptor expression 
on T-lymphocytes (136), was chemotactic for mononuclear 
leukocytes and activated CRHR-1 on spleen cells (138, 
139).  
 
5. CRH AND MAST CELLS 

 
Mast cells derive from a bone marrow progenitor 

(140, 141) and mature in tissues depending on 
microenvironmental conditions (142). Mast cells are 
important for allergic reactions (142-145), but also 
immunity (146, 147), in autoimmunity and inflammation 
(102). Mature mast cells vary considerably (142) in their 
cytokine (148) and proteolytic enzyme content. However, 
the phenotypic expression of mast cells does not appear to 
be fixed (149, 150). Mast cells secrete various vasodilatory 
and proinflammatory mediators, such as histamine, heparin, 
kinins, proteases, (preformed) as well as leukotrienes, 

prostaglandins, nitric oxide (NO), cytokines and VEGF 
(newly synthesized). In addition to IgE and antigen, 
anaphylatoxins, cytokines, hormones and neuropeptides 
can trigger mast cell secretion. The latter include SP (151), 
neurotensin (NT) (152), and nerve growth factor (NGF) 
(153). Brain mast cells do not normally express their 
surface growth factor (c-kit) receptor (154) or Fc-epsilon-
RI (155), but do so in EAE (156). In such conditions, mast 
cells undergo ultrastructural alterations of their electron 
dense granular core indicative of secretion, but without 
degranulation, a process termed "activation" (81, 157, 158) 
"intragranular activation" (159) or "piecemeal" 
degranulation (160). This appearance was prominent in 
brain mast cells of non-human primates with EAE (161), 
and may be associated with the ability of mast cells to 
release some mediators selectively (162, 163), as shown for 
serotonin (164), eicosanoids (165-167) or IL-6 (168-170). 
Moreover, in certain diseases, such as scleroderma and 
interstitial cystitis, mast cells appear totally depleted of 
their granule content and they could not be recognized by 
light microscopy (phantom mast cells) (158, 171). The 
possible relationship of mast cells in stress-induced CNS 
pathophysiology is supported by findings that mast cell 
activation can occur in response to isolation stress (172), to 
restraint stress (49), to subordination stress, and during 
courtship following isolation of male doves (173). A 
functional association between mast cells and neurons has 
been reported (50) and the potential pathophysiological role 
of brain mast cells has been reviewed (102, 174, 175). 

 
 Mast cells are located perivascularly in close 
proximity to neurons (102, 130, 131, 159, 176-181) in the 
leptomeninges, (50) the choroid plexus, thalamus and 
hypothalamus, especially the median eminence in the rat 
(182-186), where 50% of histamine derives from mast cells 
(184, 187-189). The diencephalon is the brain area with the 
highest number of mast cells, (185) while the cerebellum 
also contains a smaller number. (190) Mast cells are 
localized around the cerebral microvasculature (191) and 
have been identified close to CRH positive neurons in the 
rat median eminence (49) (Figure 3). CRH administration 
in humans causes peripheral vasodilation and flushing 
reminiscent of mast cell activation (135, 192). Moreover, 
intradermal CRH administration leads to histamine-
dependent swelling, (193) activation of mast cells (78) and 
Evans blue extravasation (78). It was also shown using 
iontophoresis and laser Doppler that CRH increased human 
skin vasodilation that was dependent on CRHR-1 and mast 
cells (194, 195). Moreover, CRHR-1 was shown to be 
involved in the stress-induced exacerbation of chronic 
contact dermatitis in rats (196). The involvement of CRH 
as a mediator of the cutaneous response to stress has been 
reviewed (197) and CRH has been shown to produce 
corticosteroids from melanocytes (198). 
 

In addition to CRH stimulating mast cells, mast 
cell mediators could influence CRH release. For instance, 
human mast cell synthesize and secrete large amounts of 
CRH (199); histamine also increased CRH mRNA 
expression in the hypothalamus (200), and mast cells could 
stimulate the HPA axis (201-203). Moreover, CRH 
secretion could be triggered by IL-6 and IL-1 (168, 204-
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208), both of which are released from mast cells (142, 209). 
Conversely, CRH stimulates IL-6 release (210-213). It is 
interesting that hyperthermic stress induced HPA axis 
activation and transiently increased IL-6 mRNA levels in 
the trigeminal ganglion (214). Moreover, restraint stress 
increased CRHR gene expression on the primary sensory 
nuclei of the trigeminal nerve suggesting that CRH could 
stimulate the nerve to secrete neuropeptides that could 
activate mast cells in parts of the brain innervated by the 
trigeminal nerve, such as the leptomeninges (215). Mast 
cells could also be activated by antidromic trigeminal (157) 
or cervical (216) ganglion stimulation, and SP reactive 
fibers were localized close to mast cells (50, 189, 217). 
Acute stress also increased BBB permeability in rats and 
mice only in brain areas containing mast cells (75). 
 

We recently showed that normal human cultured 
mast cells express mRNA and protein for CRHR-1 and 
CRHR-2 (218). Stimulation of CRHR-1 led to selective 
release of VEGF (218), a process independent of 
extracellular calcium, but dependent on cAMP and p38 
(219). Inflammatory triggers such as IL-1 and LPS were 
shown to upregulate CRHR-2 expression (220). A 
subpopulation of skin mast cells were shown to express 
CRHR (221) and such findings led to the premise that mast 
cells could serve as “sensors” in a “brain-skin” connection 
(222). The action of CRH on mast cells may not be direct.  
For instance, release of SP from sensory afferents could 
stimulate mast cell secretion in vivo (223). NT could be 
released from dorsal root ganglia (DRG) alone or together 
with CRH (80). A direct action of CRH on blood vessels 
cannot be precluded since CRHR-2 was identified on rat 
brain arterioles (120), CRH induced vasodilation of the 
fetal circulation (224), and both CRH and Ucn could 
stimulate cAMP production by brain endothelial cells 
(119). However, these effects on blood vessels may be 
delayed and could lead to either similar or opposite results 
to those of CRH stimulation of mast cells.  Mast cells have 
also been activated by endothelin (225, 226), and blockade 
of the endothelin receptor was recently shown to block in 
vivo effects attributed to mast cells (227). 
 
6. SIGNIFICANCE  
 

Brain mast cells could increase BBB permeability 
and brain metastases by being the targets of CRH released 
locally by acute stress (Figure 1). Even though restraint 
stress does not represent psychological stress in humans, 
this animal model has been used (228, 229) for studies 
investigating the role of stress (97, 229-232). Moreover, 
99-technetium gluceptate (99Tc), the marker used in our 
studies, has been used to assess BBB permeability in 
experimental gliomas (233) and in humans (234). Future 
studies could quantify entry of green fluorescent protein 
(GFP)-tagged T-cells cells administered following different 
periods of acute stress. (GFP)- tagged cells have been used 
to visualize metastatic cancers, including the brain (235-
239). 

 
  The impact of our findings was highlighted in 

recent reviews on the versatile role of mast cells (240), as 
well as their potential as the next target for MS therapy 

(241). Recent findings indicate that certain natural 
flavonoids can inhibit myelin phagocytosis by macrophages 
(242), as well as inhibiting EAE (239, 243). This is quite 
exciting as flavonoids have potent anti-inflammatory 
activity (244) and can block secretion of pro-inflammatory 
cytokines from human mast cells (245). In fact, certain 
dietary supplements combine such inhibitory substances 
(246) and could be used in clinical trials.  Such flavonoids 
could also be combined with the heterocyclic antihistamine 
hydroxyzine, which we have recently shown in clinical 
trials to reduce MS disability (237, 247). 
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