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1.  ABSTRACT 
 

Recently, SNP has gained substantial attention as 
genetic markers and is recognized as a key element in the 
development of  personalized medicine.  Computational 
prediction of SNP can be used as a guide for SNP 
discovery to reduce the cost and time needed for the 
development of personalized medicine.  We have 
developed a method for SNP prediction based on support 
vector machines (SVMs) using different features extracted 
from the SNP data.  Prediction rates of 60.9 % was 
achieved by sequence feature, 59.1% by free-energy feature, 
58.1% by GC content feature, 58.0% by melting 
temperature feature, 56.2% by enthalpy feature, 55.1% by 
entropy feature and 54.3% by the gene, exon and intron 
feature.  We introduced a new feature, the SNP distribution 
score that achieved a prediction rate of 77.3%.  Thus, the 
proposed SNP prediction algorithm can be used to in SNP 
discovery. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.  INTRODUCTION 
 

A single nucleotide polymorphism (SNP) is 
defined as a location in the human genome that is different 
from one individual to another.  Most of the SNPs occur in 
the human genome where they do not affect any gene or 
protein.  However, SNPs found in any gene region may 
have some effects on the function of the gene.  In the case 
of the sickle-cell anemia disease, red-blood cells are found 
to have sickle shape that caused them to be removed by the 
body.  This resulted in less oxygen supply for the body. 
 

SNPs are useful as genetic markers because of 
their frequency and stability in the human genome.  Their 
frequent occurrence provides a large source of genetic 
markers that are more likely to be located close to target 
genes of interest. SNPs that are located close to genes tend 
to be inherited together over many generations.  SNPs that 
frequently differ in individuals with a disease compared 
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with individuals without the disease act as  beacons to warn 
scientists that a disease susceptibility gene may be nearby. 
 

Recently, SNPs have been receiving a lot of 
attention as it is discovered that the SNP patterns of 
patients will result in different responses to medicine.  
Researchers are trying to associate SNPs with diseases to 
predict which group of people are more susceptible to 
certain diseases and to work on prevention.  By associating 
SNPs with medicine, researchers are exploring 
personalized drugs for individual based on the genetic 
composition.    
 

Due to the importance of SNPs, many genotyping 
techniques are developed, including DNA arrays (3,10), 
mass spectrometry (6), DNA melting analysis (9), 
denaturing gradient gel electrophoresis and denaturing 
HPLC.  Although, the cost of SNP genotyping is 
decreasing, SNP prediction algorithm can be used as a 
initial test to  prioritize the regions where SNPs are likely 
to be found and this will result in even lower cost for SNP 
genotyping. 

 
In this paper, Support Vector Machine (SVM) is 

used for the SNP prediction.  SVM, an effective method for 
general purpose supervised pattern recognition (13,14), has 
been applied successfully to many biological data recently, 
including the identification of unknown genes using the 
gene expression data from DNA microarray hybridization 
experiments by Brown et al.(1), classification of ovarian 
cancer tissue (4) and prediction of protein structural test (3).  
In addition, SVM was also used for searching translation 
initiation sites (16) and for splice site recognition (11).   We 
trained the SVM with positive and negative SNP data using 
the sequence feature, melting temperature feature , free-
energy feature, GC content feature, entropy feature, 
enthalpy feature and gene, exon and intron feature and 
obtained prediction results of 54.3% - 60.9%.  Finally, we 
introduce the SNP distribution score feature that is able to 
give prediction rate of 77.3%.  
 
3. MATERIALS AND METHODS 
 
3.1. Data Generation  

The positive SNPs are obtained from the Japan 
SNP database (5)  as the data are wet-lab verified and well 
organized.  The data come with a standard flanking 
sequence length of 60bp upstream and 60bp downstream. 
This resulted in a total sequence length of 121bp.   10000 
SNPs are randomly selected from the Japan SNP database 
as positive SNPs. 
 

A negative SNP is defined as a continuous stretch 
of nucleotide sequence where no SNP has been reported. 
There is a possibility that SNP might occur in the sequence 
but not detected, however the probability is quite low.  In 
this paper, we have extracted randomly 10000 nucleotide 
sequences of 121 nucleotides length to be negative SNPs. 
The negative SNPs are randomly chosen over the 24 
chromosomes with the condition that there must not be any 
SNP within 60 positions on either side of the chosen 
nucleotide.   

A positive or negative SNP data refers to the 
chosen nucleotide and the immediate left and right 
neighbors.  Most of the features are generated with lengths 
of 3, 7 and 11 nucleotides.  A length of 3 nucleotides refers 
to the SNP and the immediate left and right neighbor. 
 
3.2. Features used in SVM Training 
 

The features used in this paper are free energy, 
entropy, enthalpy, GC content, melting temperature, SNP 
distribution score, sequence, gene, intron and exon features.   
Many features can be extracted from the DNA sequences, 
such as the GC content and sequence information. Other 
features required additional transformations applied to the 
sequence to create information used in the SNP prediction, 
such as the melting temperature, free energy, entropy and 
enthalpy.  These features can be used together or separately. 
The features are calculated in the following sections. 
 
3.2.1. Free Energy 

Free energy (∆G) of a reaction is a measure of its 
spontaneity, and of how much energy is released or 
required to drive the reaction.  In this paper, we used 
lengths of 3, 7 and 11 nucleotides to generate 3 sets of 
values for the free energy. In the example of 3 nucleotides, 
free energy of AAT = free energy of AA + free energy of 
AT+ energy(Initiation) = -1.02 -0.73+2.8 = 1.05 kcal/mol  
   
3.2.2. Entropy 

Entropy (∆S) is a measure of the randomness or 
disorder in either the system or the surroundings. The 
calculation of entropy for 3, 7 and 11 nucleotides are 
similar to the free energy using the parameters in Table 1 
for entropy. 
   
3.2.3 Enthalpy 

Enthalpy (∆H) is the heat/energy released or 
consumed during a chemical reaction due to differences 
between the chemical bond energies of the products and 
reactants of the reaction.  The calculation of enthalpy for 3, 
7 and 11 nucleotides are similar to the free energy using the 
parameters in Table 1 for enthalpy. 
 
3.2.4. Melting Temperature 

Melting temperature is defined as the temperature 
at which 50% of the oligonucleotide and its perfect 
complement are in duplex.  The melting temperature is 
calculated using Wallace rule (15).  The melting 
temperature is calculated for 3 , 7 and 11 nucleotides with 
the equation below. 
 
Melting Temperature =  4 x (#C + #G) + 2 x (#A + #T) °C 
For example, if the sequence is ATG, #C=0,  #G=1, #A=1, 
#T=1, Melting temperature = 4x(0+1)+2x(1+1)=8 °C. 
 
3.2.5. GC Content 

The GC content of genomic DNA is defined as 
the mean percentage of guanine (G) and cytosine (C).   For 
example, a sequence of 10 bases, ATGTACCCCG, will 
have GC content of 60%. GC rich regions melt at higher 
temperatures than regions that are AT rich.   The GC 
content is calculated for 3,7 and 11 nucleotides. 
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Table 1.  Thermodynamic Parameters for DNA Helix 
Initiation and Propagation  
DNA sequence Free Energy (∆G) Entropy (∆S) Enthalpy (∆H)
AA/TT -1.02 -23.6 -8.4 
AT/TA -0.73 -18.8 -6.5 
TA -0.6 -18.5 -6.3 
CA -1.38 -19.3 -7.4 
GT -1.43 -23 -8.6 
CT -1.16 -16.1 -6.1 
GA -1.46 -20.3 -7.7 
CG -2.09 -25.5 -10.1 
GC -2.28 -28.4 -11.1 
GG -1.77 -15.6 -6.7 
Initiation at GCb  +1.82 -5.9 0 
Initiation at ATc +2.8 -9 0 
(The data below is extracted from (17) ). bInitiation parameter for duplexes 
that contain at least one GC base pair. cInitiation parameter for duplexes that 
contain only AT base pairs. 
 
Table 2. Numeric code for sequence  feature 

A 0 0 0 1 
C 0 0 1 0 
T 0 1 0 0 
G 1 0 0 0 

 
Table 3. Calculation of Sensitivity and Specificity  

Test Results Disease 
 + - 

+ Number of true positive Number of false positive 
- Number of false negative Number of true negative 

Sensitivity = True Positive / (True Positive + False Negative ), Specificity = 
True Negative / (True Negative + False Positive ) 
 
GC content for ATG = (No of G & C)/(Number of 
nucleotides) 
              = (0+1)/(3) 
              =0.33 
 
3.2.6 SNP Distribution Score 

The human genome is divided into equal 
segments of fixed predetermined length. The SNP 
distribution score measures the number of SNP found in 
these fixed segments of the DNA where the chosen 
nucleotide position is situated.  The SNP distribution score 
is calculated for segment lengths of 10000, 50000 and 
100000 nucleotides.   The SNP distribution score parameter 
is calculated as follows: 
 

I.  The human genome is divided into smaller 
segments of predetermined length (10000,50000 
and 100000 nucleotides lengths are used in this 
paper). 
 
Ii.  The number of SNPs located in each region is 
recorded for all the segments in the entire human 
genome. 
 
III.  The position of the SNP data is used to locate 
the segment that it belongs to and the number of 
SNPs found in the segment is recorded as the 
SNP distribution score parameter.  

 
3.2.7. Sequence 

Sequence feature contains the actual nucleotide 
sequence of 7 nucleotides length.  The nucleotides are 

converted to numeric codes based on the table below.  For 
example, ACTACTA is represented by 
0001001001000001001001000001. 
 
3.2.8. Gene, Intro & Exon  

The gene parameter is given a value of 1 if the 
chosen nucleotide position is found in a gene and 0 
otherwise.  The intron and the exon parameters are 
calculated in the same manner. 
  
3.3. Accuracy of Diagnostic Tests  

Accuracy of a diagnostic test can be expressed 
through sensitivity and specificity.  Sensitivity refers to the 
ability of a certain diagnostic test to detect a particular 
disease.  It is expressed as the probability of testing positive 
if the particular disease is truly present, i.e., the probability 
of having both a positive test and a positive diagnosis.  
Hence a test with 98% sensitivity means that 98% of those 
with the disease will test positive. Specificity, on the other 
hand, refers to the probability of testing negative if the 
disease is truly absent.  In other words, 98% specificity 
means that 98% of those who are truly negative for the 
disease or problem will have a negative test while 2% of 
them will have a false positive test.  See Table 3 for 
calculation. 
 
3.4. Support Vector Machines 

SVM is a learning algorithm that was developed 
by Vapnik (13,14).  The basic idea behind SVM is the 
formation of a linear classifier to separate the positive and 
negative training data.  This linear classifier is then used on 
the test data.  Depending on the position of the point falling 
on the positive or negative side of the linear classifier, the 
prediction result is calculated.  In real world situation, a 
linear classifier may not be able to separate the positive and 
negative data sets.  To overcome this limitation, kernels are 
used to transform the data into a feature space where the 
linear classifier can be used for the separation.  Choosing 
the right kernel to use is therefore essential for the 
separation in the feature space.   
 
3.5. Design and Implementation 

SVMLight (7,8) was used to implement the 
SVM.  The training sets consist of 2500 SNPs, each for the 
positive and negative sets.  The SVM is trained with the 
training sets using linear and radial basis function (RBF) 
kernels with different C values (trade-off between training 
error and margin).  The result is repeated by reversing the 
training and test sets.  The experiment is further repeated 
with another group of training and test sets containing 2500  
SNPs each.  Table 4 shows 4 sets of results generated by 
reversing the test and training data.  The sensitivity and the 
specificity are calculated from the prediction results.  Table 
4 shows the best results obtained with different features 
using different kernels and parameters. 
 
4. RESULTS 
 

The results from the SNP prediction in Table 4 
can be broadly divided into 3 main groups.  The worst 
performance comes from enthalpy, entropy and gene, exon 
and intron features with an average percentage of 54-56%.
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Table 4. Prediction results for different features and with selected parameters 
Features Kernel gamma C Sensitivity Specificity Average 
Free Energy 1 RBF 0.5 0.05 0.5908 0.6156 
Free Energy 2 RBF 0.5 0.5 0.568 0.6156 
Reverse  Free Energy 1 RBF 0.5 0.5 0.5636 0.6024 
Reverse Free Energy 2 RBF 0.5 0.2 0.574 0.5956 

 
0.591 

       

GC Content 1 RBF 0.0001 0.05 0.5032 0.6752 
GC Content 2 RBF 0.0001 0.05 0.4928 0.6708 
Reverse GC Content 1 RBF 0.0 0.1 0.5716 0.5832 
Reverse GC Content 2 Linear 0 0.1 0.5584 0.596 

 
0.581 

       

Gene, Exon & Intron1 RBF 0.0001 0.05 0.4108 0.6816 
Gene, Exon & Intron2 RBF 0.0001 0.05 0.396 0.6836 
Reverse Gene, Exon & Intron1 RBF 0.0001 0.05 0.4068 0.6752 
Reverse Gene, Exon & Intron2 RBF 0.0001 0.05 0.41 0.6836 

 
0.543 

       

Enthalpy 1 RBF 0.001 0.2 0.2792 0.8444 
Enthalpy 2 RBF 0.01 0.5 0.2588 0.8776 
Reverse Enthalpy 1 RBF 0.1 0.05 0.2768 0.8428 
Reverse Enthalpy 2 RBF 0.1 0.5 0.2328 0.8868 

 
0.562 

       

Melting Temperature1 Linear 0 0.1 0.634 0.5548 
Melting Temperature2 Linear 0 0.05 0.6088 0.542 
Reverse Melting Temperature1 Linear 0 0.05 0.524 0.6228 
Reverse Melting Temperature2 RBF 0.0001 0.2 0.512 0.6384 

 
0.58 

       

Entropy 1 RBF 0.5 0.2 0.5804 0.5424 
Entropy 2 RBF 0.5 0.5 0.586 0.514 
Reverse Entropy 1 RBF 0.5 0.5 0.6052 0.518 
Reverse Entropy 2 RBF 0.5 0.5 0.552 0.5292 

 
 
0.551 

       

Sequence 1 RBF 0.5 0.2 0.5716 0.644 
Sequence 2 RBF 0.5 0.1 0.5968 0.6308 
Reverse Sequence1 RBF 0.5 0.05 0.608 0.604 
Reverse Sequence2 RBF 0.1 0.2 0.5652 0.6516 

 
0.609 

       

SNP Distribution Score 1 RBF 1 0.5 0.8392 0.7148 
SNP Distribution Score 2 RBF 0.1 0.1 0.858 0.668 
Reverse SNP Distribution Score 1 RBF 1 0.5 0.8192 0.726 
Reverse SNP Distribution Score 2 RBF 0.1 0.5 0.818 0.7404 

 
0.773 

       

Combined Energy1 RBF 0.01 0.5 0.542 0.6756 
Combined Energy 2 RBF 0.0001 0.2 0.4688 0.7196 
Reverse Combined Energy 1 RBF 0.01 0.5 0.5124 0.6904 
Reverse Combined Energy 2 RBF 0.001 0.5 0.502 0.6796 

 
0.599 

       

All1 RBF 0.01 0.5 0.782 0.7208 
All2 RBF 0.01 0.5 0.8136 0.7184 
Reverse All1 RBF 0.001 0.5 0.7668 0.7516 

 
0.759 

Abbreviations:  RBF: Radial Basis Function. 
 

The next higher group consists of free energy, GC content 
and melting temperature with average prediction of 58-59%.  
Better performance comes from the sequence feature with 
prediction rate of 60.9 % while the SNP distribution score 
gives prediction rate of 77.3 %.  The high prediction rate 
indicates that large number of SNPs nearby is a good 
indicator for the presence of SNP.  Of the 3 energy features, 
free energy features gives slightly higher prediction rate 
than enthalpy and entropy.  However the prediction rates of 
the these 3 energy features are low when compared to other 
features showing that the relationship between energies and 
SNP is not strong.  Surprisingly, gene, intron and exon 
feature do not have a close relationship to SNP as seen by 
the low rate of prediction.  Sequence feature gives an 
prediction rate of 60.9 %  which suggests that SNP is more 
closely related to the sequence than to the energy and gene 
features.  Finally, the best result is achieved by the SNP 
distribution score which shows that the number of SNPs in 
the surrounding region does indicate whether a SNP is 

likely to be present.  The combined energy feature 
combined the free-energy, entropy and enthalpy features 
together and the prediction rate improved to 59.9 %.  By 
combining all the available features together, the SVM is 
able to give a prediction rate of 75.9 % . 
  
5. CONCLUSION 
 

SNP will be playing a important role in 
improving the health care of tomorrow.  Through the 
SVM prediction, we are able to show the relationship 
between SNP and the different features.  It is 
demonstrated in this paper that SNP can be predicted 
with a reasonable high level of accuracy using the SNP 
distribution score feature.  The prediction algorithm can 
be used as early indicator of the presence of SNP.  This 
will allow the researchers to set priority on which 
regions to search for SNP and will result in lower cost 
and shorter time for SNP discovery. 



Predicting SNP from DNA sequence by SVM   

1614 

6. REFERENCES 
 
1.  Brown MPS, W.N. Grundy, D. Lin, N. Cristianini , C.W. 
Sugnet, T.S. Furey , M. Jr. Ares, D. Haussler: Knowledge-
based analysis of microarray gene expression data by using 
support vector machines. Proc Nat Acad Sci USA 97: 262-
267 (2000) 
 
2.  Cai Yu-Dong, Xiao-Jun Liu, Xue-biao Xu  and Guo-
Ping Zhou: Support Vector Machines for predicting protein 
structural class. BMC Bioinformatics 2:3 (2001) 
 
3.  Fan J.B., X. Chen, M.K. Halushka, A. Berno, X. Huang, 
T. Ryder: Parallel genotyping of human SNPs using 
generic high-density oligonucleotide tag arrays. Genome 
Res, 10:853–60 (2000) 
 
4   Furey T. S., N. Cristianini, N. Duffy, D.W. Bednarski, 
M. Schummer, and D. Haussler: Support vector machine 
classification and validation of cancer tissue samples using 
microarray expression data. Bioinformatics, 16(10):906-
914 (2000) 
 
5.  Hirakawa M., T. Tanaka, Y. Hashimoto, M. Kuroda, T. 
Takagi, and Y. Nakamura: JSNP: a database of common 
gene variations in the Japanese population. Nucleic Acid 
Res, 30:158-162 (2002) 
 
6.  Jackson P.E., P.F. Scholl, J.D. Groopman : Mass 
spectrometry for genotyping: an emerging tool for 
molecular medicine. Mol Med Today, 6:271–6 (2000) 
 
7.  Joachims T.:  Making large-scale SVM learning 
practical.  In: scholkppf, B.,Burges, C.,Smola, A. (Eds.), 
Advances in Kernel Methods-Support Vector Learning.  
MIT Press, Cambridge, MA (1999) 
 
8. Joachims T.: Proceedings of the International 
Conference on Machine Learning (1999) 
 
9.  Lipsky R.H., C.M. Mazzanti, J.G. Rudolph, K. Xu, G. 
Vyas, D. Bozak: DNA melting analysis for detection of 
single nucleotide polymorphisms. Clin Chem, 47:635–44 
(2001) 
 
10.  Pastinen T., M. Raitio, K. Lindroos, P. Tainola, L. 
Peltonen, A.C. Syvanen:  A system for specific, high-
throughput genotyping by allelespecific primer extension 
on microarrays. Genome Res, 10:1031–42 (2000) 
 
11.  Sonnenburg S., G. Rätsch, A. Jagota, K.R. Müller: 
New Methods for Splice Site Recognition. Proceedings of 
the International Conference on Artifical Neural Networks 
(2002) 
 
12.  Hua Sujun and Zhirong Sun: Support vector machine 
approach for protein subcellular localization prediction. 
Bioinformatics, 17(8):721-728 (2001) 
 
13.  Vapnik V.: The Nature of Statistical Learning Theory. 
Springer, Berlin (1995) 
 

14.  Vapnik V.: Statistical Learning Theory.  Wiley-
Interscience, New York (1998) 
 
15.  Wallace R.B., J. Shaffer, R.F. Murphy, J. Bonner, T. 
Hirose, K. Itakura: Nucleic Acids Res, 6, 3543 (1979) 
 
16.  Zien A., G. Ratsch, S. Mika, B. Scholkopf, T. 
Lengauer,  K.R. Muller: Engineering support vector 
machine kernels that recognize translation initiation sites. 
BioInformatics, 16(9):799-807 (2000) 
 
17.  Santa-Lucia J. Jr., H.T. Allawi, P.A. Seneviratne: 
Improved nearest-neighbor parameters for predicting DNA 
duplex stability. Biochemistry, 35, 3555-62  (1996) 
 
Key Words: SVM, SNP, SNP prediction 
 
Send correspondence to: Dr Waiming Kong, 
Bioinformatics Group, Nanyang Polytechnic,180 Ang Mo 
Kio Ave 8, S(569 830), Singapore, Tel: 65-6550-0441, Fax: 
65-6452-0400, E-mail: KONG_Wai_Ming@nyp.gov.sg 
 
http://www.bioscience.org/current/vol12.htm 
 
 


