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1. ABSTRACT 
 

Atherosclerosis is responsible for more than 
half of all deaths in western countries. Numerous studies 
have reported that exuberant accumulation of smooth 
muscle cells (SMCs) plays a principal role in the 
pathogenesis of occlusive vascular diseases. It has been 
assumed that SMCs derived from the adjacent medial layer 
migrate towards the atherosclerotic lesion, proliferate and 
synthesize extracellular matrix, thus contributing to 
atheroma growth. Although much effort has been devoted 
to targeting the migration and proliferation of medial 
SMCs, no effective therapy to prevent occlusive vascular 
remodeling has been established. By taking advantage of 
genetically-modified mice, we recently reported that bone 
marrow cells substantially contribute to the pathogenesis of 
vascular diseases. It was suggested that bone marrow cells 
may have the potential to give rise to vascular progenitor 
cells that home in the damaged vessels and differentiate 
into smooth muscle cells or endothelial cells, thereby 
contributing to vascular repair, remodeling, and lesion 
formation. This article summarizes what we learned from 
genetically-modified animals regarding the origins and the 
fates of vascular cells that contribute to lesion formation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. CONTRIBUTION OF SMOOTH MUSCLE CELLS 
TO VASCULAR LESIONS  
 

Exuberant accumulation of SMCs plays a 
principal role in the pathogenesis of vascular diseases (1-6). 
In atherosclerotic plaques, SMCs proliferate and synthesize 
extracellular matrix, thereby contributing to lesion 
formation. Percutaneous coronary interventions (PCIs) 
have been widely adopted for treatment of coronary 
atherosclerosis. Although the increasing use of new 
devices, such as drug-eluting stents for dilatation of 
stenosed arteries has lowered the incidence of restenosis, it 
still limits the long-term outcome of PCI (7). Furthermore, 
SMC hyperplasia is also a major cause of postcoronary 
bypass surgery occlusion (8, 9) and graft vasculopathy after 
cardiac transplantation, a leading cause of graft failure and 
retransplantation after the first postoperative year results 
(10). Therefore, much effort has been devoted to 
understanding the molecular pathways that regulate SMCs 
hyperplasia in order to prevent vascular diseases (1-4). 
However, the pathogenesis remains largely unknown and, 
consequently, effective therapy has not yet been established 
(6). There is a widely accepted view that atherosclerotic 
lesions result from an excessive, inflammatory–
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fibroproliferative response to various forms of insult to the 
endothelium and smooth muscle of the artery wall (1-4, 11-13). 
In brief, after endothelial injury, inflammatory cells infiltrate 
and secrete various cytokines, such as tumor necrosis factor 
alpha, interleukin-1β, and interferon-γ, which trigger 
dedifferentiation of the medial contractile-SMCs that regulate 
vascular tone and blood flow under normal physiological 
conditions (4, 5). Dedifferentiated synthetic-SMCs are 
characterized by a large cell body containing synthetic and 
secretary organelles (4, 5, 14-23). Medial synthetic-SMCs are 
believed to migrate into the subendothelial space, proliferate, 
and synthesize extracellular matrix (2). It was hypothesized 
that all of the neointimal cells in post-PCI restenosis and graft 
vasculopathy derive from medical SMCs (2). Thus, numerous 
pharmacological and gene therapies have been proposed to 
target the dedifferentiation, migration and proliferation of 
medial SMCs (24-35).  

 
 However, there are several phenomena that 
could not be explained in accordance with the 
aforementioned hypothesis. First, very few papers 
documented that SMCs were migrating across the internal 
elastic lamina from the media into the subendothelial layer, 
as often illustrated in cartoon (2, 4). On the other hand, 
many studies have shown that blood cells attach to the 
luminal side of mechanically-injured arteries prior to the 
development of neointimal hyperplasia that is composed 
exclusively of SMCs (36, 37). Second, it was observed that 
neointima could be formed in the absence of medial cells after 
they underwent apoptosis induced by severe injury (36). In this 
study, it was noted that neointimal cells were negative for 
SMCs markers and appeared to be hematopoietic rather than 
vascular cells at one week after injury. Third, many studies 
reported that SMC hyperplasia could be prevented by blocking 
chemokines or adhesion molecules (38, 39), which play a 
crucial role in recruiting blood cells but have no effect on 
migration and proliferation of differentiated SMCs (38). 
Fourth, neointimal SMCs are quite distinct from medial SMCs 
in phenotype and gene expression patterns (4, 40, 41). For 
example, neointimal SMCs have been shown to express a 
number of hematopoietic lineage markers, including FK506-
binding protein 12, interferon regulatory factor, and 
proinflammatory proteins (40, 41). These findings suggest that 
some of the neointimal SMCs might derive from blood cells 
rather than from medial SMCs. Evidence in support of this 
hypothesis was provided in several models of vascular diseases 
(42-45). 
 
3. BONE MARROW-DERIVED SMOOTH MUSCLE 
LIKE CELLS IN VASCULAR LESIONS 
 

By taking advantage of genetically-modified 
mice, we and others recently suggested that some of the 
SMCs in vascular lesions may derive from circulating cells. 
Particularly, transgenic or knock-in mice that express 
marker genes enabled us to investigate the origin and the 
fate of vascular cells in vivo. 

 
3.1. Bone marrow-derived smooth muscle like cells in 
graft vasculopathy  

The contribution of bone marrow cells (BMCs) 
was firstly investigated in graft vasculopathy (Figure 1), a 

robust form of atherosclerosis that develops rapidly in 
transplanted organs, leading to failure of the allograft (3, 
10). Heterotopic cardiac transplantation was carried out 
between wild-type mice and ROSA26 mice (42, 43), which 
are transgenic mice expressing LacZ ubiquitously (LacZ-
mice) (46, 47). Four weeks after transplantation of wild-
type hearts into ROSA26 mice, the allografts were stained 
with 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside 
(X-gal) to identify LacZ-expressing cells. Recipient-
derived SMCs were defined as positive against both of X-
gal and anti-SMalpha-actin immunostaining. Similarly, 
ECs and macrophages were identified by immunostaining 
with anti-CD31 and MOMA2 antibodies, respectively. The 
lumens of the large epicardial coronary arteries, their 
smaller branches and arterioles were found to have 
narrowed because of concentric hyperplastic growth of 
neointimal cells, the majority of which were recipient cells 
expressing LacZ (42, 43). It was also observed that some of 
the medial SMCs, as well as endothelial cells (ECs), had 
been replaced by recipient cells. Immunofluorescence 
studies revealed that the LacZ-positive cells in the 
neointima expressed smooth muscle alpha- actin (SMalpha-
actin) (43). Conversely, when LacZ-positive hearts were 
transplanted into wild-type mice, LacZ-negative neointima 
developed on the LacZ-positive coronary arteries. These 
results indicated that, in graft vasculopathy, the vast 
majority of the neointimal cells were derived from the 
recipient cells, but not from the medial cells of donor 
origin. To identify the potential source of recipient cells, 
bone marrow transplantation (BMT) was performed from 
LacZ-mice to wild type mice (BMTLacZ→wild mice). After 4–
8 weeks, wild type hearts were transplanted into the 
BMTLacZ→wild mice, and 4 weeks later, most of the 
neointimal cells were found to be LacZ-positive. Similarly, 
in studies of BMT followed by cardiac transplant using 
transgenic mice that ubiquitously expressed enhanced green 
fluorescent protein (GFP mice) (BMTGFP→wild mice) (43), it 
was observed that GFP positive cells accumulated on the 
luminal side of the graft coronary arteries. The 
immunofluorescence study revealed that some of the GFP-
positive neointimal cells in graft vasculopathy also 
expressed SMalpha-actin. These results indicate that 
recipient BMCs may substantially contribute to neointimal 
formation in transplanted grafts. 

 
Consistent with these observations, others 

independently reported that recipient cells are a major 
source of graft vasculopathy in the aortic transplantation 
model (48-51). Moreover, it has been reported that in 
human transplant-associated arteriosclerosis after renal 
transplantation most of the neointimal cells and ECs are 
derived from the recipient (52, 53). 

 
3.2.  Contribution of bone marrow-derived cells to 
neointima hyperplasia after mechanical injury 
We previously reported that BMCs can also contribute to 
the pathogenesis of lesion formation after mechanical 
vascular injury. (42, 43) (Figure 2). The bone marrow of 
wild-type mice were replaced with that of LacZ-mice 
(BMTLacZ→wild mice) and it was found that transplanted 
LacZ BMCs had settled in bone marrow, spleen, and 
thymus, whereas LacZ-positive cells were not
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Figure 1. Recipient cells contribute to graft-vasculopathy. When wild-type hearts were transplanted into LacZ-expressing 
ROSA26 mice, 90% of neointimal cells were LacZ-positive and thus originating form the recipient (Left; Bar, 50 micrometer). 
Conversely, LacZ-negative recipient cells formed neointima on the LacZ-positive coronary arteries after cardiac transplantation 
from LacZ-mice to wild-type mice (Right; Bar, 25 micrometer). Bone marrow-derived SMCs were defined as positive against 
both of X-gal and anti-SMalpha-actin staining. Similarly, ECs and inflammatory cells were identified by immunostaining with 
anti-CD31 and MOMA2 antibodies, respectively. Arrows in histological panels indicate internal lamina. Reproduced with 
permission from Nature Publishing Company. 
 
detected in the uninjured femoral arteries of the 
BMTLacZ→wild mice. Four to 8 weeks after BMT, the 
femoral artery of the BMTLacZ→wild mice was injured by 
inserting a large wire, an excellent model of vascular injury 
that resembles balloon angioplasty (36). This injury led to 
complete denudation of the endothelium and marked 
enlargement of the lumen (36, 45, 54) followed by a 
decrease in cellularity in the medial layer caused by acute 
onset of SMC apoptosis. One week after the injury, the 
artery remained dilated and X-gal staining revealed that 
LacZ-positive cells were attached to the luminal side of the 
injured vessels. The LacZ-positive cells did not express 
markers of neither SMCs (SMalpha-actin) nor ECs (CD31). 
The dilated lumen gradually narrowed because of the 
formation of neointimal lesions, which were primarily 
composed of SMCs. A significant number of the neointimal 
and medial cells were LacZ-positive on X-gal staining (43). 
Immunofluorescence double-staining documented that 
some bone marrow-derived LacZ positive cells in the 
neointimal lesions expressed SMalpha-actin or CD31 (45). 
These results indicate that BMCs may give rise to vascular 
cells, thereby contributing to arterial remodeling after wire-
mediated endovascular injury. 

Most of the bone marrow derived cells expressed 
alpha-SMA, but not markers for highly differentiated 
SMCs. Some CD45-positive cells also expressed alpha-
SMA. These results indicate that bone marrow-derived 
cells present in the neointima easily express alpha-SMA 

even when they remain positive for hematopoietic markers. 
In contrast, it seems a rare event, if not at all, for bone 
marrow-derived cells to express markers of highly 
differentiated SMCs, at least within a few months after a 
wire injury. Consistently, it was reported that most of the 
bone marrow-derived cells detected in human 
atherosclerotic plaques expressed alpha-SMA-positive 
cells, but not calponin, a marker for differentiated SMCs 
(55). 

 
3.3.  Potential mechanism by which bone marrow-
derived cells contribute to vascular lesion formation 

Coronary angioplasty causes vessel wall injury 
and induces SMC proliferation with subsequent abundant 
production of extracellular matrix. Transplant-associated 
arteriosclerosis is also considered a consequence of an 
immunological attack against the allograft by the recipient. 
(3, 10) Various atherogenic substances, such as oxidized 
low density lipoprotein (56-58), homocysteine (59), 
angiotensin II (60) and lipopolysaccharides (61), have been 
reported to induce vascular cell apoptosis, presumably 
initiating the earliest phase of lesion development in 
atherosclerosis (62). Therefore, neointima formation 
appears to be similar to the healing process in response to 
vascular injuries (2). In addition to the conventional 
assumption that damaged tissues are repaired by individual 
parenchymal cells, an accumulating body of evidence 
suggests the occurrence of somatic stem cell mobilization
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Figure 2. Contribution of bone marrow cells to healing and lesion formation after mechanical injury. A large wire was inserted 
into the femoral artery of irradiated wild-type mice whose bone marrow had been reconstituted with that of LacZ-expressing 
ROSA26 mice. Bone marrow-derived SMCs were defined as positive against both of X-gal and anti-SMalpha-actin staining. 
Similarly, ECs and inflammatory cells were identified by immunostaining with anti-CD31 and MOMA2 antibodies, respectively. 
At four weeks post-injury, we observed that about 60% of neointimal cells and 40% of medial cells were LacZ-positive, and thus 
derived from the transplanted bone marrow. Arrows and arrowheads in histological panel indicate internal and external elastic 
lamina, respectively. Scale bar, 50 micrometer. Reproduced with permission from Nature Publishing Company. 

 
to remote organs, where they differentiate into required 
lineages and participate in organ repair and regeneration 
(63-67). Consistent with this notion, Minami et al. reported 
that extracardiac progenitor cells repopulated into various 
types of cells, including endothelial cells and VSMCs by 
evaluating human specimen of sex-mismatched cardiac 
transplantation (68). Bone marrow might be an additional 
source of vascular cells that contribute to both vascular 
repair and the pathological remodeling at least in models of 
post-angioplasty restenosis and transplant-associated 
arteriosclerosis. 

 
3.4.  Fractions of bone marrow cells that contribute to 
vascular remodeling 

Pluripotent cells in bone marrow are classified as 
hematopoietic stem cells (HSCs) and mesenchymal stem 
cells. Although it was assumed that HSCs give rise only to 
blood cells of hematopoietic lineage (69), recent reports 
suggest that they may have the broader potential to 
differentiate into various cell types, including epithelial 
cells (70), hepatocytes (71), and cardiomyocytes (72). To 
identify the bone marrow cells that have the potential to 
generate vascular cells, a HSC-enriched fraction (c-Kit+, 
Sca-1+, Lin-) was isolated from the bone marrow of LacZ-
mice by fluorescence-activated cell sorting (43) and 3000 
cells were injected into lethally irradiated wild-type mice. 
Four weeks after bone marrow reconstitution, the femoral 
artery of the recipient mice was mechanically injured with 
a large wire (36). At four weeks after the injury, both the 

neointima and the media contained many LacZ-positive 
cells (43), some of which expressed SMalpha-actin. LacZ-
positive cells were also found to contribute to endothelial 
regeneration (43). These findings suggest that the c-Kit+, 
Sca-1+, Lin- fraction (KSL fraction) of bone marrow cells 
may have the potential to differentiate into either SMCs or 
ECs that participate in vascular remodeling. 

 
In contrast, Wagers et al. extensively analyzed organs 

of wild-type mice whose bone marrow had been 
reconstituted with a single HSC (c-kit+Thy1.1loLin-Sca-1+). 
The authors concluded that transdifferentiation of HSCs 
into other lineages is an extremely rare event (73). This 
apparent discrepancy could merely derive from the analysis 
of non-injured vs. injured tissues in the two studies, or from 
the contribution of other cell types in the c-Kit+, Sca-1+, 
Lin- fraction. However, a recent study on ischemic 
myocardium failed to detect a contribution of 
hematopoietic cells to cardiac, smooth or endothelial 
phenotype (74). Thus, we investigated the vascular lesion 
induced by wire after the bone marrow was reconstituted 
by a single HSC (“Tip”-SP CD34-KSL cell, a bone marrow 
cell that had the strongest dye-efflux activity [“Tip”-side 
population (SP) cells] with a phenotype of CD34- c-Kit+ 
Sca-1+ Lin- (CD34-KSL))(75, 76). Although we noted 
appreciable level of hematopoietic engraftment activity, 
very few cells in the lesion were derived from this single 
HSC fraction. Our result suggests that it is a rare property 
for a highly-purified HSC to transdifferentiate into vascular 
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cells, whereas the KSL fraction of bone marrow cells 
contained a distinct population that could substantially 
contribute to lesion formation. Although the KSL fraction 
is considered to be enriched in HSCs (71), mesenchymal 
stem cells or multipotent cells that are more primitive than 
HSCs (77) could be included in this fraction. It is therefore 
plausible that those non-hematopoietic cells in the KSL 
fraction might be responsible for the KSL-derived 
endothelial-like cells or smooth muscle-like cells observed 
in the vascular lesion (43). 

 
3.5. Controversy on the methods to detect “bone 
marrow-derived smooth muscle-like cells” 

Recently, there are great controversy on the 
method to detect trans-differentiation of ectopic cells (73, 
74, 78-80). In most of the studies, double 
immunofluorescent method is used to detect bone marrow-
derived cells that express a marker of smooth muscle cells 
after transplantation of bone marrow cells that had been 
genetically labeled with LacZ or EGFP (43, 45, 76). 
However, other investigators made a caution regarding the 
specificity of co-localizing staining for the cell types and 
the markers to detect the origin of the cells in bone marrow 
chimeric animals and humans (80). Use of conventional 
microscopies potentially increases false co-localization 
signal by the overlap of two different cells. For example, 
when a “GFP-positive alpha-SMA-negative” inflammatory 
cell locates adjacent to a “GFP-negative alpha-SMA-
positive” media-derived SMC, a “GFP-positive alpha-
SMA-positive” pseudo-“bone marrow-derived SMCs” 
could be imaged artificially. Thus, higher 3-dimensional 
resolution with confocal/deconvolution microscopy is 
required to identify colocalization of signal in tissue 
sections (80). In this regard, we employed a high resolution 
confocal microscopy to convincingly demonstrate that bone 
marrow-derived cells did express alpha-SMA in neointima 
after wire-mediated vascular injury (45, 76). To rigorously 
identify GFP-positive cells, we used plastic embedding to 
preserve GFP-fluorescence signal and avoided use of anti-
GFP antibodies that potential increase the risk of false 
signalling by non-specific binding of the antibody. 

 
Moreover, there is criticism for the markers to be 

used to identify the SMC-like cells. In most of the studies, 
alpha-smooth muscle actin (alpha-SMA) is used as a 
marker of SMCs, because anti-alpha-SMA antibodies with 
high specificity and sensitivity are commercially available 
(81). It is well established that alpha-SMA is not a 
definitive lineage marker to identify differentiated SMCs, 
since alpha-SMA is reported to be expressed in a wide 
variety of non-SMC cell types under certain circumstances 
including 1) skeletal and cardiac muscle during normal 
development, 2) in adult cardiomyocytes in association 
with various cardiomyopathies, 3) in fibroblasts (or so-
called myofibroblasts) in a wide range of circumstances 
including wound repair , in endothelial cells during 
vascular remodeling and/or in response to transforming 
growth factor (TGF)-beta stimulation, and 5) in numerous 
tumor cells (82). In addition, it is known that some 
macrophages are positive for alpha-SMA (82). It is 
important to identify SMCs expressing only this differential 
marker. Therefore, detailed lineage-tracing study of SMCs 

in atherosclerotic lesions comparing SMalpha-actin 
expression with more specific SMC marker including 
smooth muscle myosin heavy chain (SM-MHC), caponin, 
SM-22 caldesmon and smoothelin (83) would be required 
to further characterize bone marrow-derived SMC-like cells 
that are positive for alpha-SMA. Moreover, transgenic 
animals that express a marker gene only in SMC-lineage 
cells under the transcriptional control of SMC-specific 
promoter would be useful to avoid potential artificial co-
localizing signaling by overlapping of bone marrow-
derived cells and local residual cells (84, 85). 

 
4. DIVERSE ORIGINS OF NEOINTIMAL CELLS IN 
VASCULAR LESIONS 
 

It is certain that bone marrow could not be the 
only source of neointimal cells (44). Numerous reports 
have shown that neointimal cells are heterogeneous and 
that the SMCs in vascular lesions are composed of cells of 
diverse origins (19, 45, 86). We also reported that the 
cellular constituents in neointimal lesions differ according 
to the type of vascular injury (45). Three distinct types 
of mechanical injuries were induced in the same mouse 
whose bone marrow had been reconstituted with that of 
GFP- or LacZ-mice. After wire-mediated endovascular 
injury (36), a significant number of the neointimal and 
medial cells were found to be derived from bone 
marrow. In contrast, marker-positive cells were seldom 
detected in the lesion induced by perivascular cuff 
placement. There were only a few bone marrow-derived 
cells in the neointima following ligation of the common 
carotid artery. These findings suggest that the mode of 
injury is crucial for the recruitment of bone marrow-
derived cells to tissue remodeling. 

 
There might be several reasons by which different 

forms of vascular injuriy led to different contribution of 
bone marrow-derived cells. After perivascular cuff-
placement or flow-restriction by ligation, endothelial 
cells and medial cells remained relatively intact with 
mild expression of MCP-1, SDF-1, and VEGF. Those 
minimal changes in vessel wall were associated with 
little contribution of bone marrow cells to neointimal 
hyperplasia. In contrast, wire injury induced complete 
endothelial denudation and medial cell loss due to 
apoptosis (87). In this model, the cellularity of the 
injured media remains very low until one or two weeks 
after the injury (88). The injury induces expression of 
MCP-1, SDF-1, and VEGF that may be important for 
homing of bone marrow-derived cells. It was observed 
that neointimal hyperplasia developed when the media 
remained acellular (88). It is most likely that bone 
marrow-derived cells must be recruited to repair the 
injured artery, when there are not enough local 
mesenchymal cells for the process. 

 
Recent advances in gene-manipulating 

techniques have produced various genetically modified 
mice to determine the role of specific molecules in vascular 
remodeling, such as post-PCI restenosis. However, mouse 
arteries, unlike those of larger animals, are too small for 
transluminal injury with a balloon. Alternatively, several 
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models of vascular injury (89-91) have been shown to 
produce neointima-like hyperplasia and are used to 
evaluate the susceptibility of transgenic/knock-out mice 
to vascular lesion formation. Our findings suggest that 
we should be cautious about the difference in the 
mechanisms of neointimal hyperplasia when we 
compare findings obtained in different experimental 
systems.  

 
Given the complexity of human 

atherosclerotic lesions, none of the aforementioned 
experimental vascular injury models would represent the 
exact human pathogenesis. It has been suggested that 
BMCs would substantially contribute to lesion 
formation when arteries are subjected to severe forms of 
injury (45). Advanced human atherosclerotic lesions 
exhibit a higher incidence of internal elastic rupture and 
intimomedial interface damage (92), both of which are 
associated with focal intra-plaque micro-hemorrhage 
(93). Angioplasty markedly denudes the endothelium 
and mechanically dilates atherosclerotic lesions with a 
tear in the luminal surface (94). It is likely that 
circulating progenitors substantially contribute to 
vascular remodeling in humans when arteries are 
subjected to severe injuries, such as PCI, transplantation 
and plaque rupture (43, 45, 54, 95, 96). Consistent with 
this notion, an analysis of sex-mismatched bone marrow 
transplant subjects revealed that SMCs throughout the 
atherosclerotic vessel wall are derived from the donor 
bone marrow (97). Of interest is the finding that 
recruitment of bone marrow-derived SMC-like cells was 
more extensive in diseased compared with undiseased 
arterial segments. 

 
5. CELL FUSION AS A POSSIBLE MECHANISM OF 
BMC ‘DIFFERENTIATION’ 
 

Recent evidence suggests that somatic stem 
cells or adult stem cells remain in the adult organism (98). 
Many animal studies have documented that adult stem cells 
can transdifferentiate into other lineages (65, 70, 99, 100). 
In gender-mismatched human BMT, it has been reported 
that donor-derived HSCs participated in organ regeneration 
(70, 71). On the other hand, the results of recent studies 
suggest that adult stem cells adopt a tissue-specific 
phenotype by cell fusion, in vitro (101, 102) and in vivo 
(103, 104), but not by transdifferentiation. Alvarez-
Dolado et al. demonstrated that bone marrow-derived 
cells fuse spontaneously with neural progenitors in vitro 
using a simple method based on Cre/lox recombination 
to detect cell fusion events (105). Furthermore, bone 
marrow transplantation demonstrated that bone marrow-
derived cells fuse in vivo with hepatocyte in liver, 
Purkinje neurons in the brain and cardiac muscle in the 
heart, resulting in the formation of multinucleated cells 
(105). The authors observed no evidence of 
transdifferentiation of bone marrow-derived cells 
without fusion in these tissues (105, 106). Consistent 
with this notion, polyploidization of vascular SMCs in 
response to mechanical and humoral stimuli has been 
documented (107). Thus, it is possible that fusion 
between BMCs and SMCs can account for the presence 

of at least some of the cells identified as bone marrow-
derived SMC-like cells in vascular lesions (43). 

 
On the other hand, we seldom detected 

neointimal cells that were positive for both LacZ and GFP, 
when we performed heterotopic heart transplantation using 
genetically modified mice that express LacZ or green 
fluorescent protein (GFP) ubiquitously and constitutively 
(108). It was suggested that spontaneous cell fusion 
between recipient and donor-derived cells seems to be a 
rare event, if it occurs at all, in a murine model of cardiac 
transplantation (42). Furthermore, culture of mononuclear 
cells can give rise to smooth muscle-like cells in the 
absence of SMCs (109, 110), suggesting that circulating 
cells can differentiate into adherent cells that express some 
SMC-lineage markers. Consistently, it was reported that 
bone marrow cells, when properly administrated in the 
infarcted heart, efficiently differentiated into myocytes and 
coronary vessels with no detectable differentiation into 
hemopoietic lineages independently of cell fusion (111). 
Here we show that vascular endothelial cells can 
differentiate from common myeloid progenitors and 
granulocyte/macrophage progenitors. Here we show that 
vascular endothelial cells can differentiate from common 
myeloid progenitors and granulocyte/macrophage 
progenitors (112, 113). Thus, it is unlikely that cell fusion 
accounts for all types of bone marrow-derived smooth 
muscle-like cells.  

 
6. THERAPEUTIC STRATEGIES TARGETING 
CIRCULATING VASCULAR PROGENITOR CELLS 
 

Although a lot of effort has been devoted to 
targeting the migration and proliferation of medial SMCs 
(5), effective therapies based on such strategies have not 
yet been established to prevent vascular lesion formation. 
Our findings indicate that bone marrow-derived vascular 
progenitor cells might become additional targets for this 
purpose (43). Consistent with this notion is a previous 
observation that transient myelosuppression inhibited SMC 
hyperplasia in balloon-injured coronary arteries (114). 
Similar effects could be obtained by inhibition of a 
chemokine (38) or an adhesion molecule (39), which may 
play a crucial role in the recruitment and homing of 
putative SMC progenitors. Recently, the sirolimus-eluting 
stent has emerged as a promising strategy to inhibit post-
PCI restenosis (115, 116). In spite of clinical enthusiasm, 
very little is known as yet about the mechanism by which 
sirolimus-eluting stent effectively prevents neointimal 
hyperplasia. It is possible that sirolimus effectively inhibits 
accumulation of bone marrow-derived vascular precursors 
when delivered locally at the site of progenitor cell 
accumulation. We recently reported sirolimus potently 
inhibits differentiation of human vascular progenitor cells 
(110). The potent inhibitory effects of sirolimus on 
circulating smooth muscle progenitor cells may, at least in 
part, mediate the clinical efficacy of SES. On the other 
hand, sirolimus potentially inhibited differentiation of 
endothelial progenitor cells and retarded 
reendothelialization. Influence on re-endothelialization 
might be, at least in part, responsible for late thrombosis, 
which could be observed occasionally in some patients 
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treated with SES after interruption of anti-platelet therapy 
(117). 

 
7. PERSPECTIVE 
 

Further studies are needed to identify and 
characterize putative vascular progenitor cells. It has been 
observed that bone marrow-derived cells were negative for 
the markers of SMCs and ECs when they homed on the 
luminal side of the artery at 1 week after mechanical injury 
(43), so it is likely that plastic, immature cells may be 
mobilized to the injured vessels, where they differentiate in 
response to mechanical and humoral stimuli. Consistent 
with this notion, it has been reported that blood cells 
contain progenitors that have the potential to differentiate 
into either ECs or SMCs in vitro according to the 
composition of the culture medium under certain conditions 
(95, 97, 109, 118). Experiments that dissect the molecular 
mechanisms by which progenitors are recruited and 
differentiate at the site of injury are required. 
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