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1. ABSTRACT 

 
Experimental approaches to understand the 

pathogenesis and to develop treatments of atherosclerosis 
involve studies in animal and cellular models. However, 
relevant animal models are rare since atherosclerosis is a 
disease that naturally affects only humans and one or two 
other species (pigs and certain primates). For a long time, 
atherosclerosis studies were carried out using diet-induced 
atherosclerosis models, even though the diets were 
unphysiological and the arterial lesions that developed were 
often limited in size, composition and location. During the 
last decade, with the advent of molecular genetics and 
genetic manipulation techniques, the development of 
genetically-engineered animals, mainly mice, allowed an 
explosion in the number of models resulting in a 
tremendous progress in atherosclerosis research and 
enhancement of our understanding of the disease. 
Atherosclerosis is a multifactorial disease which normally 
develops very slowly and asymptomatically during several 
decades, leading to atheromatous plaque formation. Once 
the plaque is weakened, its rupture or erosion induces 

 
 

severe clinical complications, such as myocardial infarction 
or cerebrovascular accidents. Several risk factors 
predispose to atherosclerosis including hypertension and 
abnormalities in lipoprotein metabolism and glucose 
homeostasis. The formation of the atherosclerotic lesion is 
a complex process, characterized by the presence of lipid-
laden monocyte-derived macrophages (called foam cells), 
establishing therefore a status of chronic inflammation. The 
dysregulated expression of genes encoding proteins 
involved in the control of metabolic pathways contributes 
to vascular inflammation and the development of 
atherosclerosis. The expression of these genes is controlled 
by different transcription factors amongst which are the 
Peroxisome Proliferator-Activated Receptor (PPAR) family 
of nuclear receptors. This review focuses on the use of 
genetically-engineered animals as models for experimental 
atherosclerosis research, pointing out their contribution to 
investigate the implication of PPARs and their ligands in 
regulating metabolic and inflammatory abnormalities 
predisposing to atherosclerosis development.   
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2. INTRODUCTION 
 

It has been almost 100 years that the first 
evidence of experimental atherosclerosis was revealed 
using rabbits fed a special diet rich in proteins (meat, milk, 
eggs) (1). Until 1992, atherosclerosis research was 
executed using animals fed a cholesterol-containing diet, 
including, over the years, models such as rabbits, pigeons, 
pigs, dogs, rats, primates and, eventually, mice. Indeed, for 
a long time, the mouse was not used as an experimental 
model for atherosclerosis research principally because of its 
natural high resistance to the disease. Studies in the late 
60’s and early 70’s first demonstrated that only when fed 
diets high in cholesterol and fat, containing moreover 
cholic acid, certain strains of mice could develop 
atherosclerotic lesions (2, 3). These diets were very toxic 
and few mice survived. Moreover, when present, vascular 
lesions were not reproducible and their pathology differed 
from the human condition. Lower-fat and less toxic diets 
were then used, solving therefore the survival problem but 
most mice did not develop lesions. Next, the use of inbred 
rather than outbred strains improved the reproducibility 
problem (4). Finally, the knowledge that inbred mouse 
strains exhibit differences in susceptibility to 
atherosclerosis when fed an atherogenic diet, resulted in the 
most frequent use of those strains developing lesions (5). 
Although these mouse models of diet-induced 
atherosclerosis have provided considerable insight into 
mechanisms of atherogenesis, there were also many 
disadvantages in using them. The lesions are very small and 
largely limited to the aortic root. They consist almost 
entirely of macrophage foam cells with little evidence for 
smooth muscle cell involvement, limiting therefore the 
models to the early fatty streak stage without progression to 
complicated lesions. Therefore, the use of diet-induced 
atherosclerosis mouse models gradually diminished with 
the advent of genetically-engineered animals. This 
development has mainly been performed in the mouse 
system using transgenic and gene knock-out (KO) or 
knock-in (KI) technologies. Mice that displayed a higher 
susceptibility to the disease and exhibited larger 
atherosclerotic lesions were so created. Transgenic rats or 
rabbits have also been produced and used to study 
atherosclerotic mechanisms.  
 
3. ATHEROSCLEROSIS AND PPARs 

 
Atherosclerosis is a multifactorial process which 

may silently progress over decades but ultimately results in 
acute cardiovascular diseases (CVDs), principally ischemic 
events (e.g. myocardial infarction and stroke). Numerous 
factors, called risk factors, promote atherosclerosis and 
play significant roles in its development. Among them, 
some are genetic (sex, familial history), others are linked to 
environmental conditions (cigarette smoking, life-style and 
dietary habits) or metabolic perturbations (visceral obesity, 
hepatic steatosis, insulin resistance) resulting in clinical 
symptoms and pathologic systemic biological parameters 
like hypertension, obesity, dyslipidemia, hyperglycemia. 
These abnormalities are generally clustered and constitute 
the metabolic syndrome, yielding a prothrombotic and 
proinflammatory state. Atherosclerosis results from a 

cascade of events that involve interactions between the 
vessel wall and blood components (Figure 1). These 
interactions result in abnormal tissue growth and lipid 
deposition within the vessel wall. Development of the 
atherosclerotic lesion starts as a result of endothelial injury 
and dysfunction triggered by risk factors. In this phase that 
precedes lesion formation, endothelial permeability is 
increased to circulating low-density lipoprotein (LDL) 
particles which are trapped into the vessel wall and 
therefore have increased susceptibility to oxidation. 
Subsequently, upregulation of endothelial adhesion 
molecules, such as vascular cell adhesion molecule 
(VCAM)-1, intercellular adhesion molecule (ICAM)-1, or 
E-selectin, along with chemokine release from the 
endothelium and subendothelial cells, such as monocyte 
chemotactic protein (MCP)-1, facilitate the recruitment and 
migration into the vessel wall of peripheral blood cells, 
including lymphocytes and monocytes. Once migrated into 
the vessel wall, monocytes differentiate to macrophages 
and accumulate lipids from oxidized LDL via macrophage 
scavenger receptors (MSRs), especially MSR-A and CD36, 
leading to the generation of foam cells, a characteristic of 
the early atherosclerotic lesion. The foam cells, as well as 
endothelial cells (ECs), present in the atheroma, express 
inflammatory cytokines and a variety of growth factors 
(interleukin (IL)-1, angiotensin (Ang)-II, tumor necrosis 
factor (TNF)-alpha, vascular endothelial growth factor 
(VEGF), endothelin (ET)-1) that cause smooth muscle cells 
(SMCs) to migrate from the media to the intima, where 
they proliferate and participate in the formation of the 
neointima and fibro-proliferative lesions, characteristic of 
advanced stable atherosclerotic plaques containing large 
amounts of extracellular matrix. At the same time, 
apoptosis, necrosis and further lipid accumulation lead to 
the development of a necrotic lipid core in the center of the 
plaque. The extracellular matrix plays an important role in 
the stability of the plaque. Destabilization with breaks in 
the continuity of the endothelial lining, and generation of 
occlusive thrombus, involve multiple factors including 
matrix metalloproteinases (MMPs), such as MMP-9 from 
macrophages, generation of tissue factor (TF) and 
plasminogen activator inhibitor (PA)-1 which inhibits 
fibrinolysis. 
 

The PPARs are members of the nuclear receptor 
superfamily that act as ligand-transcription factors. Three 
distinct PPARs termed alpha, beta/delta and gamma, each 
encoded by a separate gene, have been described. All 
PPARs are activated by endogenous and natural ligands 
consisting of low-affinity dietary lipids and their 
metabolites. In addition, there exist synthetic and specific 
ligands that are used as drugs in clinical applications or 
molecules that are currently in development.  

 
The PPARs regulate gene expression by binding 

as heterodimers with the 9 cis retinoic acid receptor (RXR), 
an obligate partner, to specific DNA sequences known as 
peroxisome proliferator response elements (PPREs) located 
in the promoters of target genes. In the basal state and 
absence of activation, the PPAR/RXR heterodimer actively 
represses the transcription machinery through interactions 
with corepressor complexes. Binding of a ligand allows for
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Figure 1. The atherosclerotic process. Atherosclerosis is a complex vascular disease initiated by oxidation of plasma low-density 
lipoprotein (LDL) and accumulation in the sub-endothelial space of the vessels, followed by endothelial cell dysfunction 
resulting in the recruitment of circulating lymphocytes and monocytes. Trapped monocytes differentiate into macrophages that 
take up oxidized LDL (OxLDL) through macrophage scavenger-receptors (MSRs) (MSR-A, CD36), thus forming foam cells. 
Activated smooth muscle cells proliferate and migrate from the media into the intima, thus leading to intimal hyperplasia and 
fibro-proliferative lesion formation. Activation of these cells leads to the release of pro-inflammatory cytokines, which combined 
with the secretion of metalloproteinases and expression of pro-coagulant factors, results in chronic inflammation and plaque 
instability. This can further evolve to plaque rupture and acute occlusion by thrombosis, resulting in myocardial infarction and 
stroke. 

 
a conformational change in the protein, which results in the 
recruitment of coactivator proteins as well as the 
dissociation of corepressors and an increased transcription 
of the target gene (process called “activation”). In addition, 
PPARs can repress gene transcription in a DNA-binding-
independent manner by antagonizing the activities of other 
classes of signal-dependent transcription factors (process 
called “repression”) (Figure 2). This repression function 
contributes to the anti-inflammatory actions of PPARs.  

 
Although all three PPARs are widely expressed, 

their relative levels differ greatly between tissues in 
reflection of their distinct biological functions. PPARalpha 
is the primary PPAR subtype expressed in the liver where it 
plays a central role in the control of fatty acid (FA) and 
lipoprotein metabolism. Upon activation, PPARalpha 
stimulates intravascular lipoprotein lipolysis as a result of 

increased lipoprotein lipase (LPL) activity and reduced 
expression of apolipoprotein (apo) CIII, a natural LPL 
inhibitor. It also inhibits triglyceride (TG) synthesis and 
very-low density lipoprotein (VLDL) production by 
favouring FA uptake and retention, enhancing FA beta-
oxidative catabolism and reducing FA synthesis in 
hepatocytes. Moreover, when activated, PPARalpha 
induces the expression of apoAV, an important determinant 
of plasma TG levels. Decreasing circulating TG levels 
lowers the TG content of LDL and, therefore converts the 
atherogenic small dense LDL into less atherogenic larger 
particles. Finally, PPARalpha activation enhances the 
production of apoAI and apoAII in humans, thus leading to 
increased high-density lipoprotein (HDL) production. 
Besides its action at the hepatic level, PPARalpha also 
stimulates FA oxidation in other tissues in which it is 
expressed, including the heart, skeletal muscle and kidney.
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Figure 2. Mechanisms of transcriptional regulation by 
PPARs. Following activation, PPARs heterodimerize with 
retinoic X receptor and bind to response elements (PPREs) 
in the promoter region of target genes, thereby activating 
their transcription. PPARs also repress gene transcription in 
a DNA-binding independent fashion by interfering with 
other signalling pathways (e.g., nuclear factor kappaB (NF-
kappaB), activating protein-1 (AP-1) (Fos/Jun), signal 
transducers and activators of transcription (STATs), 
CCAAT/enhancer-binding proteins (C/EBPs)) which 
transmit the interactions of cytokines (interleukin (IL)-1, 
IL-6, tumor necrosis factor-alpha (TNF-alpha) with their 
cell surface receptors. 

 
PPARgamma is predominantly detected in adipose tissue 
where it promotes adipocyte differentiation and mediates 
lipogenesis. Indeed, activation of PPARgamma induces the 
expression of the LPL gene, generating therefore FAs at the 
adipocyte surface, as well as the genes that encode FA 
transport proteins and acyl-CoA synthetase, favouring the 
uptake of FAs and storage of TGs in adipocytes. 
Consequently, lipid levels in adipose tissue rise whereas 
circulating FAs diminish, and it has been proposed that by 
repartitioning lipids away from liver and muscle, the two 
primary tissues that are responsible for insulin-mediated 
glucose disposal and metabolism, PPARgamma agonists 
ameliorate insulin sensitivity by reducing insulin resistance. 
PPARbeta/delta is ubiquitously expressed with relative 
highest levels in skeletal muscle. PPARbeta/delta activation 
influences lipoprotein metabolism, increasing the number 
of HDL particles, decreasing circulating TG concentrations 
and decreasing LDL-cholesterol levels. Also, recent data 
suggest that PPARbeta/delta activation reduces intestinal 
cholesterol absorption via downregulation of the Niemann-
Pick C1 like 1 (NPC1L1) gene. Genetic models and ligand-
treatment studies have also demonstrated powerful 
regulatory functions for PPARbeta/delta in adipose tissue 
metabolism and weight control, by increasing FA transport 
and oxidation as well as thermogenesis through uncoupling 
protein (UCP)-1 and 3 gene regulation, thereby retarding 
weight gain and preventing obesity. In skeletal muscle, 
PPARbeta/delta regulates FA transport and oxidation, 
thermogenesis, and the formation of slow-twitch fibers, 
resulting in increased endurance capacity. Moreover, a 
recent study shows that PPARbeta/delta activation 
decreases glucose output in liver, contributing to improved 
glucose homeostasis. Finally, by increasing FA transport 

and oxidation in the heart, PPARbeta/delta enhances 
contractile function and may improve cardiomyopathy.  

 
With regard to their critical role in metabolism, 

PPARs have emerged as interesting molecular targets for 
the treatment of metabolic disorders that predispose to 
atherosclerosis and CVDs. Moreover, further data have 
established a function for PPARs in other settings, 
including involvement in vascular responses and 
inflammation. Indeed, expression of all PPARs has been 
identified in the major cellular constituents of the arterial 
wall, including ECs, T lymphocytes, 
monocytes/macrophages and vascular SMCs, where 
PPARalpha and PPARgamma influence several steps of 
atherogenesis, including cell recruitment and activation, 
and the local inflammatory response, by regulating the 
expression of adhesion molecules, chemokines and 
cytokines, and by limiting the oxidative stress pathways 
therefore leading possibly to less oxidized LDL. 
PPARalpha and PPARgamma activation have been shown 
to modulate lipid accumulation within the plaque by 
regulating the expression of genes involved in cholesterol 
uptake by macrophages (MSR-A and CD36 genes), and 
cholesterol removal through regulation of transporters like 
ATP-binding cassette transporter A1 (ABCA1), scavenger 
receptor (SR)-B1, NPC proteins 1 and 2. Moreover, both 
PPARs may control cell proliferation and migration by 
decreasing growth factors and MMPs expression as well 
as by blocking G1/S SMC cycle transition. Finally, 
PPARalpha and PPARgamma can ensure the stability of 
the atherosclerotic plaque and prevent thrombosis by 
inhibiting the expression of MMP-9, by controlling 
platelet aggregation through regulation of TF and 
platelet aggregation inducers or their receptors, and 
possibly by limiting fibrinolysis through PA-1 
regulation. 

 
Although most evidence attributes anti-

atherogenic and anti-inflammatory effects to PPARalpha 
and PPARgamma, PPARs may also exert some 
deleterious effects on atherosclerosis progression. 
Indeed, activation of both PPARs can induce 
macrophage apoptosis in vitro (6), and despite the fact 
that this effect can impede the development of 
atherosclerosis via reduction of the production of 
growth factors and inflammatory cytokines, it may also 
contribute to the development of the necrotic lipid core, 
thus potentially contributing to the destabilization of the 
plaque. Moreover, loss of macrophages may promote a 
proatherogenic environment, due to, for example, 
decreased production of apoE and reduced scavenging of 
toxic substances (oxidized LDL). Another surprising effect 
of PPARalpha, which is not exhibited by PPARgamma, is 
the stimulation by activated macrophages of hydrogen 
peroxide production, a marker of reactive oxygen 
species that induces the oxidative modification of LDL 
and activate the inflammatory pathways (7). Finally, in 
contrast to the unquestionable large literature identifying 
anti-inflammatory effects of PPARalpha, some reports also 
suggest a role for the receptor in promoting or 
potentiating the expression of inflammatory responses in 
endothelial or mesangial cells (8, 9).  
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In contrast to PPARalpha and PPARgamma, the 
role for PPARbeta/delta in vascular biology and 
atherosclerosis development remains relatively 
controversial. Taken together, data suggest that, in the 
mouse, PPARbeta/delta does not significantly affect 
macrophage cholesterol metabolism but does ameliorate 
inflammation through the regulation of inflammatory 
mediators.  

 
The role of PPARs in metabolic control and the 

mechanisms that participate in the development of 
atherosclerosis has been extensively reviewed (10-16). 
 
4. GENETICALLY-ENGINEERED ANIMALS: 
STRATEGIES FOR THEIR GENERATION AND USE 
AS ATHEROSCLEROSIS RESEARCH MODELS 

 
The development of genetically-modified animals 

has substantially enhanced our understanding of the 
atherogenic mechanisms, making it possible to study in 
vivo functions, expression and regulatory mechanisms of 
genes implicated in atherosclerosis. They can also be used 
to develop experimental models which resemble as close as 
possible the human disease to test pharmacological 
molecules or evaluate protocols for gene therapy. Apart 
from being the easiest and cheapest laboratory mammal to 
maintain, the availability of genetic information and the 
ability to genetically manipulate the genome have 
contributed to making the mouse the most widely used 
laboratory animal. There are however some drawbacks to 
using mice for atherosclerosis research. First, lipid and 
lipoprotein metabolism is distinct between mice and 
humans. In the mouse, most cholesterol is carried by HDL 
instead of by LDL (which is the major carrier of cholesterol 
in humans). This is partly due to the absence, in mice, of 
cholesterol ester transfer protein (CETP), a key enzyme 
involved in cholesterol transport. Second, the regulation of 
genes encoding proteins that are involved in lipid and 
lipoprotein metabolism are not identical between humans 
and mice and thus data obtained in the mouse are not 
always directly relevant to humans (17). Third, the mouse 
is highly resistant to atherosclerosis and does not develop 
atherosclerotic lesions spontaneously. Indeed, this is why 
most current mouse models for atherosclerosis research are 
based on genetic manipulations that result in susceptibility 
to atherosclerosis in the animals. 

 
4.1. Animal models with gene overexpression 

Transgenesis is the most common used method to 
induce overexpression of a gene in animals. It consists in 
pro-nuclear DNA micro-injection into fertilized ovocytes 
which are then reimplanted in a surrogate mother. This 
technique was applied for homologous or human gene 
overexpression. Although it is a well established and highly 
efficient technique which allows the generation of a large 
number of founder animals within a relatively short period 
of time, it is hampered by several major drawbacks. In 
particular, vector integration occurs randomly in the 
genome and sequences neighbouring the integration sites 
may strongly influence transgene expression. As a 
consequence, the expression of the transgene occurs 
randomly and may influence the expression of other 

neighbouring genes. Also, the copy number of integrated 
transgenes is highly variable, despite the fact that the 
integration generally does occur at one unique site. All 
these limitations can lead to unpredictable patterns and 
levels of transgene expression. Ideally, the injected DNA 
should contain all regulatory elements, and the transgenic 
construct should contain a specific tissue enhancer in order 
to reliably reproduce endogenous gene expression. In some 
studies, the production of animals with large transgenes 
was achieved by microinjection of bacterial artificial 
chromosomes (BAC) or yeast artificial chromosomes 
(YAC) (18). These transgene constructs often contain the 
natural promoter with all cis regulatory elements for gene 
expression, therefore allowing normal temporal, tissue-, 
and cell-specific expression of the transgene. However, 
inclusion of specific endogenous promoter sequences may 
be selected, allowing dissection of the contribution of 
different sequences to the normal regulation of the 
transgene. Somatic adenovirus-mediated gene transfer is 
another possible way to investigate the impact of a 
transgene and therefore to study its in vivo function (19). 

 
Although there is substantial interest in this 

strategy, due to its relative facility and rapidity, its use is 
limited by the short duration of transgene expression. 
Moreover, due to its hepatic tropism, the efficiency of 
intravascular gene delivery to atherosclerotic lesions may 
be low because lesions that are frequently rich in 
connective tissue contain limited numbers of transfectable 
cells (20). Finally, there are important reservations about 
applicability for gene therapy in humans, particularly due 
to the use of an adenovirus as vector which can induce an 
immune response.  

 
By using these diverse techniques, numerous 

transgenic mouse models that overexpress an endogenous 
(Table 1) or more interestingly a human gene (named 
throughout the text as human transgenic mice) have been 
created. The pioneer was the human apoAI transgenic 
mouse strain described in 1989 (21). It was followed by 
numerous other transgenic models for human 
apolipoproteins, enzymes, receptors or transport proteins 
(Table 2). Since variant forms of apolipoproteins have been 
identified in humans that are associated with the severity of 
dyslipoproteinemia and predisposition to atherosclerosis, 
transgenic mouse lines carrying some of these gene 
variants, such as apoE2 (22, 23), apoE3 Leiden (24, 25) or 
apoAI Milano (26, 27) have been created to determine the 
implication of these variants in the development of the 
disease. Besides these models used to study the 
relationships between dyslipoproteinemia and 
atherosclerosis, other transgenic mice that express proteins 
with other biological functions were developed and shown 
to impact on atherogenesis, such as, for example, globular 
adiponectin (28), demonstrating in vivo the anti-diabetic 
and anti-atherogenic effects of this adipokine, or 
paraoxonase, demonstrating that this enzyme is necessary 
for HDL integrity and function during oxidative stress (29).  

 
Rabbits display several characteristics making it 

an excellent model for the study of mechanisms involved in 
the development of atherosclerosis. New Zealand White
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Table 1. Deletion or overexpression of endogenous genes: 
selected mouse models for lipoprotein metabolism and 
atherosclerosis research 
Gene Deletion Overexpression 
Apolipoproteins  
AI 137   
AII 138 148 
AIV   149 
AV 139 150 
B100, B48 140-144   
CI 145   
CII     
CIII 146   
E 46-48   
Cluster AI/CIII/AIV 147   
Enzymes  
LPL 151-153   
HL 154, 155 166 
HSL 156   
LCAT 157, 158   
PLTP 159   
Cholesterol 7alpha-OH 160   
ACAT-2 161   
ACAT-1 162-164   
Sterol 27-OH 165   
Receptors  
LDLR 49   
LRP 167-169   
VLDLR 170 174 
LDL/LRP/VLDLR 171   
CD36 172 175 
MSR-A 67, 173   
Transport proteins  
ABCA1 155, 176-179 182 
SRB1 180, 181 183-186 
MTP 144   

Abbreviations: LPL, lipoprotein lipase; HL, hepatic lipase; 
HSL, hormone-sensitive lipase; LCAT, 
lecithine:cholesterol acyltransferase; PLTP, phospholipid 
transfer protein; ACAT, acyl CoA:cholesterol 
acyltransferase; LDLR, low-density lipoprotein receptor; 
LRP, low-density lipoprotein receptor-related protein; 
VLDLR, very low-density lipoprotein receptor; MSR-A, 
macrophage scavenger receptor A; ABCA1, ATP-binding 
cassette transporter A1; SRB1, scavenger receptor class B 
type 1; MTP, microsomal transfer protein 

 
(NZW) rabbits have lipoprotein profiles more similar to 
humans than mice, and present a high susceptibility to 
atherosclerosis as do humans. However, rabbit strains have 
a more diverse genetic background than mouse strains, and 
this may hamper its use. Despite this limitation, NZW 
transgenic rabbits were developed, expressing rabbit, and 
more frequently human transgenes (Table 3). In addition, 
human transgenes have been introduced into Watanabe 
heritable hyperlipidemic (WHHL) rabbits, which carry a 
LDL receptor (LDLR) mutation and are a model of familial 
hypercholesterolemia (Table 3).  

 
Compared to the mouse and rabbit, genetically-

modified rat models are rare (30, 31). Notably, a transgenic 
Dahl salt-sensitive hypertensive rat strain that expresses 
moderate levels of human CETP is among the rare 
transgenic animal models of coronary artery disease (30, 
32). This model has been particularly useful to investigate 
the role of hypertension in the aggravation of coronary 
atherosclerosis, the implication of infectious agents such as 
Chlamydia pneumonia (a common human respiratory 

pathogen) in coronary plaque progression, and the 
differential regulation of functional gene clusters in overt 
coronary artery disease characterized by atherosclerotic 
plaque destabilization and resultant myocardial injury.  

 
Employing all these transgenic models, the 

identification of genes affecting atherosclerosis 
susceptibility, as well as the study of environmental factors 
affecting atherosclerosis (such as diet) and the assessment 
of therapies that might block atherogenesis or lesion 
progression have become able to be studied. Moreover, 
overexpression of human proteins in animals naturally lacking 
them, is another advantage of transgenic manipulation. 
Overexpression of apo(a), CETP (Table 2) or C-reactive 
protein (CRP) (33) in mice, and human hepatic lipase (HL) or 
apo(a) in rabbits (Table 3) are excellent examples.  

 
4.2. Mouse models with gene deletion or targeted 
recombination 

Highly elegant are the relatively recent 
homologous recombination methodologies in embryonic 
stem (ES) cells, presently feasible only in the mouse (34-
36). In these technologies (37), an engineered construct 
(such as a reporter gene), is inserted into the chromosome 
in place of the targeted mouse gene of interest, without 
affecting any other locus in the genome. The mouse gene 
will be no longer expressed, and the gene is “knocked-out” 
(KO). Numerous mouse models were so generated (Table 
1). Conversely, when a transgene is introduced in 
replacement at the locus of interest, in such a way that its 
transcription is driven by the promoter of the mouse gene, 
the transgene is expressed with the same pattern of 
expression as the mouse gene. This strategy is called 
“knock-in”, and the resulting mice are referred to as KI 
mice. If the transgene is the human counterpart of the 
mouse gene, then this strategy is called humanization and 
the mouse is a “humanized” mouse. The main advantage of 
the KI technology is that both copy number and the genetic 
environment of the transgene is controlled. Conventional 
gene targeting leads to inactivation of a gene in all tissues 
of the body from the onset of development throughout the 
whole lifespan (38). More recently, methods have been 
developed that aimed at controlling gene targeting in a 
tissue-or cell type-dependent manner. These conditional 
gene targeting approaches use the Cre-Lox system (38-40) 
and are particularly useful in cases where complete gene 
inactivation leads to a lethal or otherwise adverse 
phenotype that prevents a more detailed in vivo analysis. 
Moreover, if a given gene has a widespread pattern of 
expression, tissue-specific gene inactivation may define 
physiological roles of the gene product in a certain tissue, 
without compromising other functions in the organism. For 
completeness on the diverse genetic manipulation 
technologies that result in tissue-specific gene inactivation 
in mice, we have to mention new technologies in which 
selective gene silencing is induced in a specific tissue of 
mice through RNA degradation by adenoviral delivery of 
small interfering RNA (siRNA) or short hairpin RNA 
(shRNA) (41, 42). These approaches are principally 
developed in in vitro experiments, and only few studies 
have been described that used them in vivo to assess the 
role of susceptible genes for atherosclerosis (43).  
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Table 2. Human transgenic mouse models for lipoprotein metabolism and atherosclerosis research 
Transgene Expression site (non induced state) References 
Apolipoproteins  
AI liver 187-192 
  liver, intestine 193 
  macrophages 63 
AII liver 194-196 
  liver, kidney 197 
AIV liver 198, 199 
  intestine 200 
AV liver 139 
B liver 201, 202 
  liver, intestine 203, 204 
  liver, kidney, brain 205 
CI skin, liver1, lung, testis, stomach 206 
  liver 207 
  liver, skin, AT 208 
CII liver, brain 209 
CIII liver>intestine1 210, 211 
E kidney 212 
  kidney, liver1 213 
Apo(a) liver 214, 215 
Cluster AI/CIII/AIV liver, intestine 216 
Cluster AI/CIII/AIV/AV liver, intestine (AI CIII, AIV), liver (AV) 217 
Enzymes  
LPL heart, skeletal muscle, AT 218 
  heart, skeletal, …, liver 219 
  AT, muscle, heart, kidney, stomach 220 
  skeletal muscle 221-223 
  liver 224, 225 
  cardiac muscle 226 
HL liver, heart, kidney 227 
  liver, adrenal cortex 228 
HSL macrophage 229 
LCAT liver 230-234 
PLTP liver 235 
  AT, lung, heart, spleen 236 
  liver>kidney>brain>small intestine> lung>spleen>heart> AT 237 
  
  

adrenal testis>lung>liver, kidney, 
intestine, brain, spleen 

238 

Sterol 27-OH ubiquitors 239 
Cholesterol 7alpha-OH liver 240, 241 
Receptors 
LDLR liver 49, 242 
VLDLR liver 174 
  testis>heart>kidney, liver, aorta 243 
Transport proteins     
CETP heart, AT, brain>liver, small intestine, muscle 244 
  liver spleen, small intestine, kidney, heart, brain1 245 
  not indicated 246 
ABCA1 liver, macrophages 247 
  liver>spleen, testis, lung, small intestine 248 
  liver>small intestine, brain, lung, testis, stomach, macrophage 249 
  liver 250 

1 Depending on the construct or the lines.  Abbreviations: AT, adipose tissue; CETP, cholesteryl ester transfer 
protein. 
 

Mouse models with a gene deletion are very 
important tools for bone marrow experiments. Upon bone 
marrow injection into non-mutated recipient mice that have 
been depleted of white blood cells by irradiation (44), or 
upon bone marrow transplantation from mice with the 
normal gene (45), it is possible to study the contribution of 
macrophage (and other hematopoietic cell) gene expression 
to atherogenesis.  

 
The advent of gene targeting to modify the 

expression of genes involved in atherosclerosis was an 
improvement, and the creation of targeted mouse models, 
particularly those resulting from the deletion of the apoE 
(46-48) and LDLR (49) genes, has greatly facilitated the 

research on genetic and environmental determinants of the 
disease. Both strains are widely used as models for 
dyslipoproteinemia and atherosclerosis, and also as 
sensitized strains to investigate the role of additional 
modifier genes of atherosclerosis. By interbreeding them 
with another deficient or transgenic murine strain, either 
double knockout mice or deficient mice expressing a 
transgene can be created. Using these models, the role of 
genes encoding proteins implicated in lipoprotein 
metabolism has been substantiated. Genes involved in 
inflammation, cell cycle control, hypertension, and 
coagulation have been also identified as key modulators of 
plaque progression (50-54). Also, by interbreeding apoE or 
LDLR gene-targeted deficient mice with other murine
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Table 3.  Human transgenic rabbit models for lipoprotein 
metabolism and atherosclerosis research 
Rabbit strain Transgene References 
New Zealand White apoAI 251 
  apoB100 252, 253 
  apoE2 254 
  apoE3 255, 256 
  apo(a) 253, 257, 258 
  cluster AI/CIII/AIV 259 
  HL 256, 260 
  LCAT 261, 262 
  LPL 263-265 
  SRB1 266 
Watanabe apoAI 267, 268 
  LCAT 269, 270 
  apo(a) 271 
  LPL 272 

 
models that are genetically predisposed to atherosclerosis 
or to diet-induced metabolic abnormalities, it is possible to 
study the relative contributions of such perturbations in 
atherosclerosis development. For example, when 
interbreeding LDLR-deficient mice with leptin-deficient 
(ob/ob) mice (55) or viral glycoprotein (GP)-transgenic 
mice (56), it is possible to study the relationship between 
dyslipidemia, insulin resistance and atherosclerosis. 
Finally, apoE- and LDLR-deficient mice are used in 
numerous nutritional and pharmacological studies, for 
example, to assess the effects of agents that act on 
cardiovascular risk factors (discussed in the following 
sections), antioxidant therapy (57), steroid hormone 
replacement therapy (58), or the inhibition of the renin 
angiotensin system (59, 60) on atherosclerosis. A specific 
and interesting utility of LDLR-deficient mice is for bone 
marrow experiments (61-64), serving as a better host model 
for transplantation as compared to apoE-deficient mice 
which, due to the synthesis of apoE by macrophages, are 
rescued for apoE deficiency upon transplantation. 
 

If arguably the advent of homologous 
recombination techniques deleting a specific gene has 
become central for research programmes on 
atherosclerosis, there are some drawbacks to these models. 
First, the functionality of all metabolic pathways is not 
necessarily maintained in the modified mice, and thus the 
model only provides information about whether a 
mechanism or a pharmacological compound requires the 
presence of the deleted gene. Second, a genetic deletion 
may lead to a compensatory adaptation that in turn would 
affect metabolic pathways or lesion development in 
unexpected ways. The conflicting results on the 
physiopathological role of MSR-A, a scavenger-receptor 
which mediates cholesterol uptake into the vessel wall 
might be an example. Although recent work reassessed the 
role of the receptor as pro-atherosclerotic mediator (65), it 
was previously reported that deleting the MSR-A gene in 
apoE3 Leiden-transgenic mice induced an increase in 
atherosclerotic lesion size (66) while inhibiting the same 
gene in apoE-deficient mice led to decreased lesion size 
(67). A possible explanation for this difference relates to 
the role of apoE in the vessel wall which is to mediate 
efflux of cholesterol from macrophages. Therefore, 
deficiency in apoE probably predisposes to foam cell 
formation, a process which in turn could be limited by 
deletion of MSR-A. On the contrary, macrophages from 

mice carrying the apoE3 Leiden gene show normal apoE-
mediated cholesterol efflux, and MSR-A-mediated 
cholesterol uptake does not lead to enhanced foam cell 
formation.  

 
Interestingly, homologous recombination also 

permits the replacement of a specific gene, without altering 
the genome organization. This strategy allows the creation 
of KI mouse models which certainly are the most powerful 
experimental models since the replaced gene is expressed 
according to normal physiological regulation. Examples are 
KI mice for the human LDLR minigene (68), or the 
different human apoE isoforms E2, E3, E4 (69-71). The 
apoE2 KI mice exhibit plasma lipoprotein characteristics 
that are equivalent to those of type III hyperlipidemic 
patients. These mice spontaneously develop atherosclerotic 
lesions composed predominantly of macrophage foam cells 
and they are responsive to a Western diet, enhancing the 
dyslipidemia and increasing atherosclerosis development. 
Lesions formed during the feeding of modified diets are 
also predominantly composed of macrophage foam cells 
(69). Using this model, it is possible to determine which 
conditions predispose to the development of 
dyslipoproteinemia in humans, as for example a reduced 
expression of the LDLR (68). Another advantage of apoE2 
KI mice is their responsiveness to pharmacological agents 
that act on lipid metabolism and atherosclerosis, indicating 
suitability of the model for drug-testing (72). In apoE 
isoform KI mice, aortic root atherosclerosis increases in the 
following order: murine apoE<apoE3<apoE4<apoE2 (70). 
In a recent study, it has been demonstrated that 
overexpression of human LDLR in apoE4, but not in 
apoE3, KI mice, causes severe atherosclerosis with marked 
hypercholesterolemia when the animals are fed an 
atherogenic diet (73). This result was totally unexpected 
and contrary to the current hypothesis that downregulation 
of LDLR in individuals with an apoE4 allele is the cause of 
their dyslipoproteinemia and increased risk of 
atherosclerosis. Thus, using these KI mice expressing 
human apoE isoforms, the occurrence of important 
interactions between the apoE genotype, LDLR expression 
and diet is demonstrated. 

 
Although all these gene targeting approaches 

have become essential in the study of atherosclerosis-
related genes, complex and time-consuming preparative 
molecular biology work is still required. Moreover, an 
important issue that should be considered before starting a 
lengthy targeting experiment is the genetic background on 
which the mutation will be studied. Indeed, mice containing 
exactly the same genetic manipulation can exhibit 
profoundly different phenotypes due to the diverse genetic 
backgrounds (74, 75), making it imperative to take the 
genetic background into account when interpreting 
experimental results. The majority of available ES cell lines 
are derived from the SV-129 strain which unfortunately 
presents a low susceptibility to atherosclerosis. It is 
therefore necessary to develop a congenic strain by 
transferring the mutation to a more appropriate genetic 
background. The C57BL/6 strain is the most frequently 
used atherosclerosis-prone background. The easiest but 
most time-consuming approach to generate a congenic 
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strain is via traditional backcrossing, a process which 
involves sequential breeding of mutated offspring to a pure 
genetic background strain. Ten generations (commitment of 
2-3 years) of successive backcrossing are theoretically 
required to assure that less than 0.1% of the genetic 
material from the original background strain remains. 
However, even after that long time, due to the reliance on 
statistical probabilities to achieve congenesis (the percent 
of residual donor background contamination is never 
quantified), all experiments using these mice should 
preferentially be performed with wild-type littermates as 
controls. The goal of developing a congenic strain in much 
less time can be accomplished by another process referred 
to as “speed congenesis” (76). This technique uses marker-
assisted selection of breeders and identifies “best” founders 
at each generation. However, while reducing by half the 
time to obtain a congenic strain, its development is 
expensive.  

 
In conclusion, using genetic manipulation 

techniques, many animal models have been developed for 
research on atherosclerosis. However, despite that they 
represent invaluable tools, and except very few reports (32, 
77-79), nearly all these models suffer the disadvantage that 
they do not progress to plaque rupture and occlusive 
thrombosis that occur in humans, limiting therefore their 
utility to study genetic factors contributing to the 
pathogenesis and potential treatment of the disease.  
 
5. GENETICALLY-ENGINEERED ANIMALS : 
RESEARCH MODELS TO STUDY THE ROLE OF 
PPARs IN ATHEROSCLEROSIS 

 
Two different strategies can be applied to 

investigate in vivo the pathophysiological role of PPARs in 
atherosclerosis. The first is based on mice, virtually the sole 
animal species that has been subjected to genetic 
manipulation of the different PPAR genes, whereas the 
second employs pharmacological treatment with a specific 
PPAR ligand. Despite the fact that both approaches have 
elucidated many important functions of PPARs in 
atherogenesis, it has to be kept in mind that these findings 
are obtained in experimental animal models displaying 
species differences that might limit the extrapolation of the 
results to humans. Lipid and lipoprotein metabolism 
pathways, particularly between rodents and rabbits or 
humans, present important differences. Moreover, PPAR 
ligand affinity may differ between species. Also, some 
target genes are expressed differentially (tissue localization 
and level of expression) across species. Lastly, because the 
promoter regions of genes are less well-conserved across 
species, the regulatory sequences of some genes are 
different between species. The nuclear receptors that 
control certain gene expression in one species may 
therefore not be crucial regulators in another (80-82), or the 
regulation pathways that are activated by certain nuclear 
receptors can lead to opposite results depending on the 
species (17).  

 
All the genetic manipulations described above 

with the goal of creating animal models for atherosclerosis 
research have been applied to the PPARs, including 

conventional or conditional tissue or cell-specific PPAR 
gene deletion, targeted transgenesis of PPAR subtypes, 
bone marrow transplantation from PPAR subtype-deficient 
mice to mice predisposed to atherosclerosis, and 
overexpression of PPAR subtypes by adenoviral gene 
transfer (Table 4). The technique of conventional gene 
targeting deletion was particularly successful for 
PPARalpha, resulting in the first viable homozygous 
PPARalpha deficient mouse model described in 1995 (83). 
Recently, the same laboratory reports the KI of human 
PPARalpha gene under the control of natural promoter and 
regulatory elements, on a background of PPARalpha 
deficient mice. In these mice, the transgene is expressed 
specifically in the liver (84). This model is particularly 
pertinent to examine the mechanisms determining species 
differences in the peroxisome proliferator response between 
mice and humans. Conditional gene targeting deletion 
approaches using the Cre-Lox system are determinant to 
study the role of the other PPAR isoforms gamma or 
beta/delta, for which complete deletion results in 
embryonic lethality, as well as for the analysis of tissue-
specific activities of the different PPAR isoforms. The 
main characteristics and informations provided on the role 
of PPARs through these various models are detailed in 
Table 4. 

 
By analysing the phenotype or response to 

different situations (nutritional or hormonal stress, ligand 
activation) of PPAR subtype-deficient mice, it has been 
possible to identify target genes and evaluate the adaptive 
capacity of the mice, yielding therefore insight about the 
function of the PPAR subtype or identify the requirement 
of PPAR for activity of a ligand (analysis of on versus off 
target effects). For example, when compared to wild-type 
mice, the characterization of PPARalpha-deficient mice 
maintained in basal state, or submitted to a high fat diet or 
fasting, or stimulated by beta1 adrenergic receptor agonists, 
demonstrates the pivotal role for PPARalpha in controlling 
lipid and glucose homeostasis, as well as maintaining 
cardiac functions (85-89). Also, the targeted disruption of 
PPARgamma in beta cells or liver of mice that are further 
treated by a specific agonist, revealed that PPARgamma is 
not required for the pharmacological actions of the ligand 
in the beta cells and that adipose tissue is the major site of 
ligand action (90, 91). The administration of an atherogenic 
or diabetogenic diet to PPAR subtype-deficient mice (high 
fat diet to PPARalpha- or PPARbeta/delta-deficient mice), 
or by interbreeding them with other strains susceptible to 
metabolic abnormalities predisposing to atherosclerosis 
(PPARalpha-deficient mice crossed with apoE-deficient 
mice or leptin-deficient mice), allows the investigation on 
the role of the receptor in the pathophysiology of the 
disease, demonstrating therefore the role of the PPAR 
subtype on obesity and its associated disorders like insulin 
resistance, or atherosclerosis susceptibility (92-95). 

 
Paralleling these genetic strategies, 

pharmacological approaches consisting in the 
administration of a specific PPAR ligand to animals are 
more widely applied because of their relative ease. Among 
these ligands, some are used clinically in humans while 
other molecules that are more active and more specific are
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Table 4. Genetically-modified mouse models as useful tools for the analysis of PPAR subtype function on metabolic disorders 
predisposing to atherosclerosis 

PPAR subtype Model Methodology Characteristics Ref. 
PPARalpha KO Targeted disruption gene - no induction of hepatomegaly, peroxisome proliferation and 

transcriptional activation of target genes upon treatment with specific 
ligands 

83 

      - abnormalities in pancreatic response of beta-cells on ob/ob 
background or palmitate-induced lipotoxicity in islets 

94 

      - reduced atherosclerosis and improved insulin resistance in apo E KO 
background 

131 

      - decreased glucocorticoid-induced insulino resistance in LDLR KO 
background 

273 

      - no regulation of HDL by specific ligands in human apoA-I 
transgenic background  

92 

  KI Transgenesis of human PPARalpha in 
liver of PPARalpha KO mice  

no hepatocellular proliferation upon treatment with specific ligands 84, 274 

  Human expressor 
in liver 

Adenoviral gene transfer restored pleiotropic responses, including peroxisome proliferation and 
expression of target genes upon mouse PPARalpha KO background 

275 

PPARgamma KO (homozygous) Targeted disruption gene lethality due to abnormalities in placental, cardiac and adipose tissue 
development (embryonic or perinatal phases) 

276 

  KO 
(heterozygous) 

Targeted disruption gene - survival and protection from the development of insulin resistance 277,278

      - little or no contribution of null cells to adipose tissue development 279 
  Over expressor in 

liver (gamma 1) 
Adenoviral gene transfer hepatic steatosis 280 

  KO in 
macrophages 

Conditional specific gene disruption - impaired cholesterol efflux from primary peritoneal macrophages 
and cholesterol transport in plasma 

281 

      - increased atherosclerosis and high number of macrophages in 
atherosclerotic lesions 

44 

    Bone marrow transplantation increased atherosclerosis (lipid-rich and macrophages-containing 
aortic lesions) in LDLR KO background 

282 

  KO in liver Conditional specific gene disruption - decreased hepatic steatosis but aggravation of the diabetic phenotype 
on ob/ob background 

283 

      - decreased hepatic steatosis but aggravation of the insulin resistance 
in muscle and adipose tissue 

91 

  KO in adipose 
tissue 

Conditional specific gene disruption - insulin resistance in adipose tissue and liver, but not in muscle, 
unless on a high fat diet 

284 

      - reduced fat formation, protection, from the development of high fat-
induced obesity and insulin resistance increased hepatic PPARgamma 
mRNA 

285 

  KO for 
PPARgamma 2 

  - lipid and glucose homeostasis relatively well maintained, 
compensation by muscle 

286 

      - reduced adipose tissue, lowered lipid accumulation in fat, increased 
whole body insulin resistance 

287 

  KO in muscle Conditional specific gene disruption - glucose intolerance, progressive insulin resistance 288 
      - excess adiposity, whole body insulin resistance, impaired hepatic 

insulin action 
289 

  KO in pancreas Conditional specific gene disruption islet hyperplasia, no change in glucose homeostasis 90 
PPARbeta/delta KO (homozygous) Targeted disruption gene - frequent (>90%) embryonic lethality 290 
      - impaired development (foetuses and newborns), altered 

myelinisation in the central nervous system, accentuated epidermal 
cell proliferation 

291 

      - glucose intolerance and decreased insulin sensitivity 125 
  KO in adipose 

tissue 
Conditional specific gene disruption reduced adiposity of PPARdelta null mice not reproduced 290 

  KO in 
cardiomyocyte 

Conditional specific gene disruption lipotoxic cardiomyopathy 292 

  KO in 
macrophages 

Bone marrow transplantation attenuated inflammation, reduced atherosclerotic lesion area on LDLR 
KO background 

293 

  Overexpressor in 
adipose tissue 

targeted transgenesis resistance to both high-fat diet-induced and genetically predisposed 
(db/db) mice 

95 

  Overexpressor in 
muscle 

Targeted transgenesis resistance to high-fat diet-induced obesity 294 

Abbreviations: KO, knock-out; KI, knock-in. 
 

in development or still in experimental stages. These last 
compounds are indicated by numbers preceded by the 
initials of the pharmaceutical company (i.e GW 7647 for 
Glaxo Wellcome compound number 7647). PPARalpha 
ligands (fibrates, such as fenofibrate, ciprofibrate, 
clofibrate, gemfibrozil) were developed as hypolipidemic 
agents and PPARgamma ligands (thiazolidinediones 
(TZDs), such as rosiglitazone, pioglitazone or troglitazone) 
are used to improve insulin resistance in patients suffering 

from type 2 diabetes. Even though this review focuses on 
the use of genetically-engineered animal models, it should 
be mentionned that wild-type or lean animals fed a standard 
or atherogenic/diabetogenic diet (mice (96-102), rabbits 
(103-105), rats (106-114), hamsters (115, 116), guinea pigs 
(117), monkeys (118), pigs (119), or dogs (120, 121) have 
been widely used to study the effects of PPAR activation 
on molecular, metabolic, vascular or clinical markers and 
do provide information on the function of these PPARs. 
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Indeed, using these various models, mounting evidence 
demonstrates beneficial effects of PPARalpha activators on 
energy, lipid and carbohydrate metabolism. For example, in 
wild-type mice or golden Syrian hamsters fed a high fat 
diet, PPARalpha activation results in an improved lipid and 
lipoprotein phenotype, corrects insulin resistance and 
reduces adiposity (102, 116). Also, in rabbits, the 
administration of gemfibrozil enhances TG-rich lipoprotein 
catabolism in peripheral tissues such as adipose tissue and 
muscle by increasing the expression of VLDL-receptor in 
these tissues (104). Concerning atherogenesis, fenofibrate 
induces plaque regression in hypercholesterolemic rabbits 
(105), and reduces the tissue necrosis in an experimental rat 
model of myocardial infarction (122). Finally, in mice 
experiencing experimental cerebral injury, fenofibrate 
reduces the deleterious neurological consequences of stroke 
(101). Numerous experimental animal studies showed that 
PPARgamma activators reduce the development of 
atherosclerosis and limit its complications. Indeed, in the 
intimal hyperplasia rat model, treatment with TZDs 
prevents restenosis (110, 113) and, similar as for 
PPARalpha activators, the administration of troglitazone or 
pioglitazone to rats reduces infarction volume and 
improves neurological function following middle cerebral 
artery occlusion (109). Moreover, it has been shown that 
pioglitazone administration decreases platelet aggregation 
and delays intra-arterial thrombus formation in rats (111). 
Finally, chronic administration of rosiglitazone to dogs 
with mitral regurgitation results in an improved ventricular 
function (120). As for PPARalpha and gamma, the 
administration of PPARbeta/delta activators to animal 
models contributed to the demonstration that this PPAR 
subtype is a promising target for drugs aimed to treat or 
prevent atherosclerosis. Indeed, upon PPARbeta/delta 
activation with GW610742, wild-type mice show increased 
plasma HDL concentrations and reduced intestinal 
cholesterol absorption (96). Also, when dosed to insulin 
resistant obese rhesus monkeys, GW501516 causes dose-
dependent rise in serum HDL cholesterol while lowering 
the levels of small-dense atherogenic LDL, fasting TGs and 
fasting insulin (118), therefore improving metabolic 
parameters associated with the metabolic syndrome and 
atherosclerosis risk. Human transgenic animal models are 
useful tools to test compounds which exhibit species-
dependent regulation of a given gene, as is the case for 
human apoAI transgenic mice given that PPARalpha 
differentially regulate the human and mouse apoAI gene 
(17), or in demonstrating that the beneficial effects of such 
agonists on lipoprotein metabolism occur dissociated from 
effects on peroxisome proliferation. For instance, using the 
human apoAI transgenic rabbit, an animal species that, 
contrary to mice and similar to humans, is less sensitive to 
peroxisome proliferators, it was shown that fenofibrate 
treatment increased serum human apoAI concentrations via 
an increased expression of the human apoAI gene in liver 
without changing liver weight or expression and activity of 
fatty acyl-CoA oxidase, a rate-limiting and marker enzyme 
of peroxisomal beta-oxidation (123). Finally, the 
administration of PPAR ligands to animals that present risk 
factors for atherosclerosis (dyslipidemia, type 2 diabetes, 
insulin resistance) not only allows assessment of the role of 
PPARs in the development of the disease, including effects 

on metabolic and vascular parameters, but also establishes 
the preclinical efficacy and interest of PPAR ligands in 
managing the disease. These animals often suffer a 
constitutive genetic defect such as the diabetic and insulin-
resistant db/db or ob/ob mice (95, 124, 125), fatty Zucker 
or OLETF (Otsuka Long-Evans Tokushima Fatty) rats 
(102, 126, 127), the stroke-prone spontaneously 
hypertensive (SHRSP) rat (128), the WHHL hyperlipemic 
rabbit (129). For example, treatment of OLETF rats with 
fenofibrate lowers fat of skeletal muscle and adipose tissue 
and improves insulin sensitivity in these animals, thus 
providing further knowledge on the metabolic effects of 
PPARalpha in tissues other than liver (126). In SHRSP rats, 
PPARgamma activation by pioglitazone attenuates cardiac 
inflammation which may participate in the prevention of 
cardiac hypertrophy (128). Moreover, oral administration 
of troglitazone to WHHL rabbits after balloon injury 
suppresses acute recruitment of monocytes/macrophages 
and accelerates re-endothelialization, suggesting that TZDs 
have additional therapeutic potential for the treatment of 
diabetic vascular complications (129). Very recently, the 
role of PPARbeta/delta in regulating glucose metabolism 
and insulin sensitivity has been demonstrated by testing its 
agonist, GW501516, in db/db mice, pointing out potential 
contributions of both hepatic and peripheral actions of this 
receptor (125). Moreover, acute treatment of db/db mice 
with the same activator depletes lipid accumulation in liver 
and fat, identifying PPARbeta/delta as a potential target in 
the treatment of obesity (95). Among mouse models that 
are generated by genetic manipulation (gene targeted 
deletion or replacement), LDLR- or apoE-deficient mice 
are the most widely used models to test the activity of 
PPAR agonists on atherosclerosis. Table 5 summarizes the 
use of both models and the consequences of the activation 
of the different PPAR subtypes on metabolic abnormalities 
predisposing to atherosclerosis or CVDs.  

 
Although both genetic modification of a PPAR-

subtype or the pharmacological activity of PPAR ligands 
unquestionably provide data supporting the 
pathophysiological functions of PPARs in atherosclerosis, 
apparently conflicting data can be observed depending on 
the experimental approach that is employed. For instance, 
while an atheroprotective effect of PPARalpha activation 
by fenofibrate was reported in apoE-deficient mice (130), 
PPARalpha deficiency in the same mouse model confers 
protection against atherosclerosis (131). This discordance 
may be explained by the fact that both approaches are not 
totally comparable and that PPARalpha deficiency does not 
necessarily lead to the opposite phenotype as that resulting 
from PPARalpha activation by its ligand.  
 
6. CONCLUSION AND PERSPECTIVES 

 
Over the past decade, gene technology has been 

used to create experimental animal models which have 
remarkably increased our understanding of the interaction 
between genetic and environmental factors in the 
development, prevention and treatment of atherosclerosis. 
How accurately these models mimic the process in humans 
is difficult to ascertain considering relevant species 
differences, including dissimilarities in metabolic pathways 
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that are involved in the pathogenesis of the disease, in 
cardiovascular physiology, and in plaque morphology, 
particularly the relative lack of lesion progression 
leading to thrombotic occlusion or plaque rupture in the 
mouse. Finally, it is important to emphasize that the 
experiments using targeted deficient mice are the 
genetic equivalent of recessively inherited conditions in 
humans due to the loss of gene function, a condition 
only representing a small proportion of the 
atherosclerosis cases. As a consequence, studying mice 
in the heterozygous state may be more appropriate with 
respect to the relevance for atherosclerosis susceptibility 
in humans. The ideal model could be defined as an 
animal that displays metabolic abnormalities 
predisposing to atherosclerosis, that spontaneously 
develops atherosclerotic lesions, that is not a 
homozygous deficient model, that develops similar 
responses to environmental factors and that is 
humanized through gene replacement technology. 

 
It is now clear that acting on metabolic 

perturbations predisposing to atherosclerosis is a crucial 
step to limit its development and associated cardiovascular 
diseases. Important research programs have been 
undertaken to identify novel therapeutic pathways 
involving the modulation of the expression of target genes 
following the activation of nuclear receptors using specific 
activators. Preclinical development of these activators 
included the analysis of their effects in animal models, and 
this review attempted to highlight the importance of 
genetically-engineered mouse models for that purpose. 
Among these activators, some are used clinically in 
humans. They concern PPARalpha and PPARgamma 
activators, indicated respectively for treating dyslipidemia 
(fibrates) and diabetes (TZDs) in patients which have an 
extremely high risk of developing CVDs. Results of 
angiographic studies and CVD prevention trials in diabetic 
patients indicate that fibrate treatment decreases the risk 
of CVD in patients with type 2 diabetes without pre-
existing CVD or metabolic syndrome (132, 133), and 
TZDs improve cardiovascular outcomes in secondary 
prevention (134). Unarguably these results demonstrate 
that PPARalpha and PPARgamma activators are 
interesting therapeutic targets for CVDs, despite the fact 
that some of them may present side effects (such as 
weight gain, oedema and fluid retention for 
PPARgamma). At present, research on other PPAR 
activators, including PPARbeta/delta activators, are in 
development, aiming to identify more specific and 
active molecules with high safety margins. Moreover, 
current strategies concern the development of dual 
PPARalpha/gamma activators, pan-activators or even 
more promising, based on the selective modulator 
concept, compounds that would be devoid of adverse 
effects while maintaining the desirable biological 
efficacy (135, 136). 
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