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1. ABSTRACT 
 

Adult stem cells are set aside during development 
in order to provide a source for replenishment of tissue over 
time in response to damage or simply wear and tear.  The 
literature suggests that stem cells can be found in most 
major organ systems, and that they possess defining 
characteristics, namely the ability to both self-renew and 
differentiate down one or more specific lineages.  Many 
groups have sought to define stem cell specific physiology 
in a molecular fashion by identifying those genes 
specifically expressed in stem cells.  Although these data 
suggest that there are genes frequently found to be 
upregulated in stem cells from various tissues, they do not 
definitively demonstrate that these cells all function 
similarly.  There is also considerable data showing how 
various signaling pathways influence stem cell growth and 
differentiation.  A review of this literature suggests that 
many of the well-described pathways affect adult 
mammalian stem cells from different tissues similarly, and

 
 
 
 
 
 

that these effects are sometimes unique to stem cells as 
opposed to their progeny.  In this review we summarize the 
effects of well-known signaling pathways on several of the 
most well defined stem cells and argue that the similarity 
with which unique stem cells from different tissues respond 
to external stimuli suggests that they share functional 
mechanisms. 
 
2. INTRODUCTION 
 

For the most part, adult SCs are more quiescent 
than their progeny. How is this maintained? Most stem 
cells seem to have intrinsic mechanisms to maintain 
quiescence, and the growth and differentiation in these cells 
seems to be at the discretion of various signaling 
pathways. This review will focus on how various signaling 
pathways impinge on SCs in their niche. Specifically we 
try to address: Do different stem cells respond similarly to the
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Figure 1. Stem cells reside within most organs in adult 
mammals.  Here, we highlight four of the most well described 
adult stem cell niches.  The niches shown are found in the 
skin, intestine, brain (sub-ventricular zone), and the endosteal 
lining of the end of bone.   These niches are made up of 
several different types of cells that together allow for the 
proper regulation of stem cell fate decisions.  The effects of 
gain or loss of function of various signaling pathways are 
known and have been described in this review.  Less well 
understood is how multiple signaling pathways converge on 
stem cells in these niches to influence more subtle effects and 
maintain homeostasis.  These cartoons are meant to highlight 
the idea that stem cells are not solitary entities, but more 
likely send and receive signals from neighboring cells to 
function properly. 

 
same signal? Is this response shared by the progeny of the 
SCs? Is the different response a result of different target 
genes being turned on, or different amounts of the same 
targets? 
 

This survey of the current literature suggests that 
several signaling pathways exert the same effect on stem 
cells from different tissues.  We chose to look at four well 
described signaling pathways implicated in the growth and 
differentiation of not only stem cells, but also their 
progeny: Wnt, TGF-beta (including BMP), Notch, and Shh.  
These pathways are reviewed in the context of their effects 
on four different tissues: Intestine, Brain, Epidermis, and 
the Hematopoietic system.  These tissues all set aside and 
maintain a population of stem cells and the four signaling 
pathways have been implicated in the maintenance, self-

renewal, or differentiation of each population.  
Furthermore, these pathways also seem to influence cell 
fate decisions of lineage restricted cells within these same 
tissues.  Overall we find that each pathway seems to play a 
conserved role in stem cells from at least three of the four 
different tissues.  In addition, the effects of these pathways 
are frequently not conserved between stem cells and their 
progeny.   In essence, the literature suggests that stem cells 
from different tissues share common mechanisms for 
receiving and interpreting extrinsic signals. 
 
2.1. Intestinal Stem Cells (ISCs) 

The intestine is one of the most proliferative 
epithelia in mammals, repopulating itself every 5 days 
(1,2).  The basic architecture of this tissue includes an 
invaginated crypt from which cells grow upwards toward 
the villi, which takes nutrients from the interstitial surface 
epithelium (Figure 1). Intestinal stem cells were originally 
identified as slowly cycling cells near the base of the crypt.  
These cells are thought to give rise to all of the cells of the 
crypt and villi, including enterocyte, goblet, 
enteroendocrine, and paneth (3,4).  Unfortunately, no 
system has been developed to study the ability of purified 
ISCs to reconstitute the crypt and villi as of yet.  However, 
the stem cells were shown to be able to repopulate in the 
crypt and villi through experiments involving varying doses 
of irradiation in order to ablate enough cells so that single 
cells were then tracked for their ability to undergo a 
clonogenic reconstitution of the tissue (5,2).  These 
fascinating experiments suggested that the stem cells were 
more sensitive to irradiation, and more prone to undergoing 
apoptosis.  This finding becomes relevant for consideration 
of stem cells serving as a trigger for tumorigenesis, i.e. the 
cancer stem cell hypothesis.   

 
A number of proteins have been proposed to be 

faithful markers of the ISCs (6,7,8), but as of yet, there are 
no consensus candidates.  This makes drawing conclusions 
about the effects of various signaling cascades on these 
cells challenging.  The accumulated evidence currently 
suggests that the stem cells reside four to five cells up from 
the bottom of the crypt (9,5), though some groups have 
evidence for stem cell characteristics in other positions as 
well (10).  In order to uncover specific markers of ISCs, 
new approaches will have to be undertaken, such as laser 
capture microdissection.  This technique allows for the 
purification of tissue at single cell resolution.  This 
technique, when employed in conjunction with microarray 
expression profiling, has already begun to uncover the 
molecular identities of specific cells in many different 
tissues, including intestinal stem cells (11), and may be 
necessary for the isolation of others, such as Neural Stem 
Cells (NSCs). 
 
2.2. Neural Stem Cells (NSCs) 

Cell proliferation in the nervous system was 
thought for years to end pre-natally.  Seminal findings from 
Altman in the 1960s showed that in fact neurogenesis 
proceeds into adulthood (12,13,14).  More recently, two 
niches have been found that support adult neurogenesis and 
NSCs.  Both the subventricular zone of the lateral ventrical 
and the subgranular zone within the dentate gyrus are now 
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established sites for NSCs (Figure 1) (15,16,17,18).  It was 
proposed that new neurons formed at these sites are then 
thought to migrate in a rostral migratory stream to provide 
new neurons as needed to olfactory and hippocampal 
regions (19).  It is now thought that the newly generated 
neuroblasts migrate in parallel to the cerebrospinal fluid 
flowing through the ventricle (20).  Adult neurogenesis is 
thought to be influenced by many factors, including 
exercise, stress, and learning, and recently some of the 
signaling pathways influencing this process have been 
defined (21,22,23,24).   
 

As in the intestine, there are no well established 
molecular markers of the NSCs, but elegant work has 
defined their origin, location, and their identity (15). The 
radial glia were once thought to simply support NSCs, but 
the current consensus is that these cells are in fact the 
source of NSCs (25), as NSCs retain remnant radial glia 
attributes.  Another group argues that the ependymal cells 
lining the niche actually give rise to the stem cells, further 
complicating the issue (26).  More recently, the same group 
that identified radial glial cells as NSCs has proposed that 
the PDGF receptor represents a specific marker for NSCs 
(27).  If verified, this could represent an enormous leap 
forward in the NSC field and allow for the same kinds of 
experiments so readily exploited in other stem cell systems.  
In addition, the existence of fascinating interactions 
between NSCs and endothelial cells suggest that additional 
plasticity can be found in these niches.  Beginning with the 
finding that cell proliferation in the brain is accompanied 
by increased numbers of endothelial cells, one group 
showed that NSCs can give rise to endothelial cells, while 
another showed that endothelial cells provide critical 
support to NSC maintenance (28,29).   
 
2.3. Hematopoietic Stem Cells (HSCs) 

The stem cells responsible for populating the 
entire repertoire of the blood are the most well functionally 
characterized adult stem cells in the least well characterized 
niche. Early work fractionating the hematopoietic  system 
established the basis for experimental manipulation of stem 
cells and the concepts of self-renewal and differentiation 
(30,31,32,33).  More recently, single HSCs have been 
shown to be able to reconstitute the entire hematopoietic 
repertoire, firmly establishing them as stem cells (34,35).  
In addition, these reconstitution assays have been exploited 
to identify these cells on the basis of their cell surface 
markers.  The work of many labs has shown that these cells 
can now be purified by various combinations markers until 
the point that 1 in 3 cells transplanted into a depleted niche 
can repopulate the entire hematopoietic system (36,37).  
This suggests that various combinations of cells surface 
markers either can be used to purify cells to the point where 
only two or three different kinds of cells remain, or that 
technical limitations remain in the grafting protocol.    
 

These cells were originally thought to reside in 
the endosteal lining of the bone marrow cavity (38).  
Recently, a HSC niche was described more specifically by 
demonstrating the presence of label-retaining cells (LRCs) 
in the endosteal lining of the trabeculum at the end of the 
bone.  It was also shown that the LRCs were in intimate 

contact with osteoblastic cells (Figure 1).  Interestingly, the 
number of osteoblasts was directly related to the numbers 
of LRCs in this niche (39,40).  Another group compared the 
transcriptional profiles of purified long term (LT) and short 
term (ST) HSCs.  A new family of cell surface proteins 
emerged, which, when used in combination, demarcated 
LT-HSCs from their progeny.  Antibodies against these 
new markers were then used to illuminate the location of 
HSCs in their niche (41).  It is thought that HSCs mobilize 
in response to injury and repopulate any of the 
hematopoietic lineages as necessary (42).  Recent work has 
begun to elucidate the mechanisms behind this mobilization 
and the signaling pathways that control their growth and 
differentiation (43,44). HSCs were also shown to give rise 
to non-hematopoietic lineages in a process suggested to be 
transdifferentiation.  These controversial findings were 
found to be most likely be the result of cell fusion between 
different cell types (45,46).  Whether cell fusion occurs 
naturally and what role it might play in tissue repair is as of 
yet unclear. 
 
2.4. Hair Follicle Stem Cells (HFSCs) 

The epidermis and its hair follicle appendage is 
one of the best characterized models in stem cell biology.  
The follicle itself goes through cycles of growth, 
degeneration, and rest throughout the life of the animal, 
reaffirming each time the presence and capabilities of the 
stem cells therein (47,48).  Originally identified as label-
retaining cells, a group of cells residing in the hair follicle 
demonstrated the ability to regenerate the epidermis, hair 
follicle and sebaceous gland (49,50,51).  These stem cells 
reside in a niche called the bulge, and along with the 
sebaceous gland, represent the only permanent portions of 
the hair follicle (Figure 1).   More recently, several groups 
have shown that these cells can be isolated on the basis of 
either their slow-cycling nature, or cell surface markers.  
As with stem cells from other tissues, epidermal stem cells 
display a unique  transcriptional profile, which partially 
overlaps with that of other stem cells (49,50,52).  Within 
this niche, it has also been shown that there are at least two 
populations of cells with stem cell characteristics.  One of 
these is associated with the basal lamina surrounding the 
follicle, while the other is not associated (49).  The two 
populations share many characteristics, but have somewhat 
different transcriptional and cell cycle profiles.  Despite 
this, the purpose of having two populations is still unclear.  
Furthermore, we know that epidermal stem cells go through 
periods of quiescence and activation, but the signaling 
pathways involved in these transitions are only just 
beginning to be elucidated. 
 
2.5. Contribution of Stroma to stem cell biology 

There is ample evidence that the various cell 
types surrounding a stem cell niche make significant 
contributions to the maintenance, quiescence and activation 
of stem cells.  The niche cannot be thought of as simply the 
stem cells and their progeny.  Niches are frequently 
composed of many different cell types that can play roles in 
signaling to or preventing the signaling to stem cells 
(Figure 1).  Recent work from our group and others have 
begun to identify stromal factors with significant roles in 
the stem cell niche (39,90,28,40, 173).  These findings are
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Figure 2.  A schematic depicting the inactive state of the Wnt signaling pathway.  Left: in the absence of the Wnt ligand, a 
degradation machinery phosphorylates and targets beta-catenin for destruction.  In most cases, an absence of Wnt signaling leads 
to apoptosis or quiescence.  Right: when Wnt signaling is activated, beta-catenin is stabilized and accumulates in the cytoplasm, 
where a portion may then enter the nucleus and associate with a transcription factor, such as a member of the Lef/Tcf family.  
Nuclear beta-catenin and activation of Lef/Tcf is normally associated with self-renewal in stem cells, whereas lineage restricted 
cells also utilitze Wnt activation during differentiation. 
 
fascinating and critical to stem cell biology, but 
unfortunately, due to space constraints cannot be 
summarized in this review. 
 
3. The Wnt signaling pathway 

The term Wnt originally derives from a fusion of 
two well described biological phenomena.  The Int locus 
was identified as a MMTV viral integration site in murine 
breast tumors, which led to activation of the Int gene 
product (54).  The Drosophila Int gene (Dint) was then 
shown to be identical to the locus mutated in the Wingless 
phenotype (55).   The Dint/Wingless gene was then 
renamed Wnt, and the literature exploded with data relating 
to the subsequently described Wnt signaling cascade which 
was shown to be critically involved in both development 
and tumorigenesis.  The Wnt gene product serves as a 
ligand for a serpentine receptor with seven transmembrane 
domains first identified in drosophila called Frizzled (56).  
While it remains unclear as to whether this receptor directly 
couples to heterotrimeric G-proteins (57,58), it is certain 
that activation of this receptor leads to cytosolic 
stabilization of its critical intracellular mediator, beta-
catenin.  Beta-catenin is most often associated with 
cadherins in the cell adhesion machinery, but when 
stabilized, it accumulates in the cytoplasm, translocates to 
the nucleus, associates with transcription factors and 
activates or suppresses target gene expression (Figure 2).  
Cytoplasmic beta-catenin is normally degraded by a 
complex machinery involving Dsh, Gsk3beta, Axin, and 
APC, which collaborate to phosphorylate beta-catenin, 
targeting it for ubiquination and subsequent degradation.  
Upon receipt of the Wnt signal, Dsh is activated, beta-
catenin is displaced from the degradation machinery, 
accumulates, and translocates to the nucleus to influence 
gene expression through either Lef/Tcf or Sox transcription 

factors (Figure 2)(59,60).  These transcriptional complexes 
have been shown to either stimulate or inhibit expression of 
a great many target genes 
(http://www.stanford.edu/~rnusse/pathways/targets.html).  
Recently, a large number of other players in this signaling 
cascade have been identified and shown to play critical 
modulatory roles in this pathway, however this work will 
not be described here (61,62,63,64,65). 
 

The Wingless pathway has been implicated in 
a myriad of developmental paradigms.  The role of Wnt 
signaling in adult stem cells has only more recently been 
described, owing to the development of novel 
techniques for specifically characterizing stem cells and 
the impact of this pathway.  Furthermore, the wingless 
genes were first described as oncogenes, and this 
pathway has been shown to play specific roles in tumor 
formation.  A connection between SC biology, the 
wingless pathway, and tumor formation lies at the heart 
of many theories for “cancer stem cells”.  While these 
theories will not be discussed in this review, it is worth 
noting that many of the gain of function paradigms 
generated for the Wnt pathway in stem cells lead to 
tumor formation.  It remains to be determined if tumor 
formation is caused by aberrant activation of this 
pathway in stem cells, or in their progeny, or both. 
 
3.1. Wnt in the intestine 

The Wnt signaling cascade has been proposed to 
be the dominant force in growth and differentiation in the 
intestinal crypt (66,67,68).  The first evidence for this idea 
came from the understanding of a human disorder Familial 
Adenomatous Polyopsis (FAP).  Patients with this disease 
present with aberrant growths which seem to be linked to 
inactivating mutations in the APC gene.  A fraction of these 
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polyps are known to transform into tumors with metastatic 
potential.  As APC is required for cytoplasmic degradation 
of beta-catenin, this mutation mimics a hyperactive Wnt 
signal, resulting in aberrant nuclear beta-catenin and 
hyperplasia (69,70).   
 

More recently, diverse roles for Wnt in the 
intestine have been clarified.  In the ISCs, which normally 
display nuclear beta-catenin, expression of Wnt ligand and 
canonical pathway inhibitor Dkk1 blocks proliferation in 
the crypt (67).  In addition, in mice lacking Tcf4, a critical 
downstream effector of the Wnt signal, proliferation in the 
base of the crypt is blocked (71,72). On the other hand, 
expression of a beta-catenin-Lef fusion protein induced 
apoptosis in ISCs (73).  However this fusion protein was 
expressed mosaically during development of the 
intestine and those cells expressing the transgene were 
eliminated by apoptosis, so the functional result of 
expression of beta-catenin-Lef in adult ISCs could not 
be ascertained.  Hyperactivation of beta-catenin, due to 
the inactivation of APC, leads to premature 
differentiation of ISCs and enhanced proliferation of 
cells not normally receiving a Wnt signal such as mid-
crypt progenitors (74).  Essentially, in ISCs which are 
normally receiving a Wnt signal and cycling (though 
more slowly than their immediate progeny), a loss of 
function for the Wnt cascade seems to lead towards a 
block in proliferation or even apoptosis, whereas 
stimulating the Wnt cascade in these cells leads to 
terminal differentiation.  Activation of beta-catenin in 
the more differentiated cells of the villi which are 
normally not receiving the Wnt signal instead leads to 
massive proliferation and eventually tumor formation 
(70, 74). 
 
3.2. Wnt in the nervous system 

In the nervous system the Wnt pathway has been 
implicated in numerous developmental contexts.  In the 
adult brain, Wnt was first shown to drive proliferation in 
neural precursors by expression of truncated, and therefore 
non-degradable beta-catenin.  In these gain of function 
mice, neural progenitors were expanded at the expense of 
other cell types (75,76).  Recently, Lie et al nicely showed 
that elevated expression of Wnt3a in regions of the brain 
where NSCs are thought to reside led to increased 
neurogenesis (77).  This was a result of proliferation of the 
neuroblast pool which eventually generated differentiated 
neurons.  The authors also used a dominant negative 
molecule to block the Wnt cascade and showed that 
neurogenesis was blocked.  These data provided the first 
clue about a role for Wnt in driving cell fate in the adult 
brain, but the effect on the stem cells which give rise to the 
neuroblasts was not clearly elaborated.  Either the NSCs are 
not responsive to the Wnt signal or the transgene was not 
expressed in those cells.  On the other hand, in more 
lineage restricted neural cells there is a great deal of 
evidence that Wnt plays a role in promoting the 
differentiation down various lineages both in vivo and in 
vitro (78,79,80).  While the role for Wnt in quiescent NSCs 
remains unclear because of the difficulty of describing 
these cells in vivo, this pathway certainly can drive either 

neurogenesis or terminal differentiation of more lineage 
restricted cell types depending on the context. 
 
3.3. Wnt in the Hematopoietic System 

The role for Wnt in hematopoietic stem cells has 
been described both in vivo and in vitro, but is still 
somewhat controversial.  While gain of function 
experiments clearly show that Wnt can promote 
proliferation of HSCs, it is unclear whether this 
proliferation represents self-renewal and whether this effect 
is physiological.  It has been estimated that 75% of HSCs 
are quiescent (81).  These LT-HSCs are thought to be 
responsible for replenishing the supply of ST-HSCs which 
can quickly reconstitute the entire hematopoietic system.  It 
was first shown in vitro that HSCs can be expanded in 
culture only in the presence of Wnts (82,83).  A loss of 
function experiment with ectopic expression of Axin 
showed that HSC growth is impaired when stabilization of 
beta-catenin is blocked.   In addition, a reporter mouse for 
Tcf/Lef activation demonstrated that Wnt signaling was 
active in LT-HSCs in vivo.  Furthermore, another group 
used in vivo administration of a GSK3beta inhibitor to 
augment the reconstitution capability of human HSCs in a 
mouse recipient, suggesting a role for active beta-catenin in 
HSC self-renewal (84).  Two studies also employed 
expression of constitutively active beta-catenin as a model 
for Wnt activation in the hematopoietic system (85,86).  
These groups showed that constitutive beta-catenin 
signaling led to aberrant proliferation of HSCs at the 
expense of multilineage differentiation.  Eventually, the 
HSC pool was depleted, suggesting that this proliferation 
was not self-renewal, but probably generation of transit-
amplifying cells. 
 

The fly in the ointment seems to be data derived 
from a conditional knockout mouse for beta-catenin which 
has a completely normal hematopoietic system (87).  
Perhaps the discrepancy can be explained by a 
complementation in these mice by plakoglobin, an isoform 
of beta-catenin, or perhaps the Wnt cascade plays an 
insignificant role in HSCs, unless present at high doses.  It 
is also possible that stressing the system, such as in a 
wounding model may reveal a role for the canonical Wnt 
pathway, as the authors only looked for a phenotype during 
normal homeostasis. Conversely, gain of function 
experiments highlight a role for Wnt in HSCs.   The issue 
of why gain and loss of function experiments for the Wnt 
pathway in HSCs do not agree will persist until more is 
learned about how beta-catenin acts through Lef/Tcfs to 
mediate responses.  
 

In lineage restricted cells of the hematopoietic 
system, it seems as though the Wnt cascade can drive cell 
fate.  Wnt has been shown to be able to drive terminal 
differentiation down several lineages (88,89,90).  In one 
study, expression of constitutively active beta-catenin in 
lymphoid and myeloid progenitors led to an expansion of 
these cells and reduced lineage restriction (91).  In essence, 
ectopic activation of beta-catenin drove the cells to become 
more stem-like, perhaps analogous to the effect of beta-
catenin gain of function on lineage restricted intestinal cells 
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as mentioned previously and also with interfollicular 
epidermis as will be discussed below. 
 
3.4. Wnt in the Epidermis 

A role for Wnt in the epidermis became clear 
years ago with the development of transgenic animals 
expressing Lef or Tcf, critical mediators of the canonical 
pathway (92,93).  A role in proliferation and 
morphogenesis of the epidermis was highlighted by 
expressing constitutively active beta-catenin (94).  These 
mice developed normally but during adulthood formed de 
novo hair follicles and eventually developed tumors (94).  
It was suggested that the interfollicular de novo follicles 
were the result of activation of an existing stem cell, or 
dedifferentiation of a lineage restricted cell.  At least a part 
of this phenotype corresponded to a precocious activation 
of stem cells, but without methods for isolating these cells, 
definitive claims were elusive.  The role of Wnt in the 
epidermis was first demonstrated by the identification of 
nuclear beta-catenin in the terminally differentiating cells 
of the hair cortex (92,95).  Our group generated a Tcf/Lef 
reporter mouse and showed that canonical Wnt signaling is 
indeed found in the hair cortex, but also to a lesser degree 
in the stem cell niche during the transition period of the 
hair cycle where the niche goes from a quiescent to a 
proliferative state (96).  More recently, our lab and others 
have developed new techniques with which to characterize 
the HFSCs (49,50,97,52).  Armed with these new methods 
we re-visited the gain of function model for beta-catenin 
signaling and found that, indeed, elevation of this pathway 
leads to activation of the stem cell compartment as 
witnessed by nuclear beta-catenin, proliferation (BrdU, 
Ki67) and an altered cell cycle profile (47).  In the face of 
the elevated beta-catenin signal, the stem cells retained all 
of their signature markers and homeostasis of the niche was 
maintained i.e. the niche did not become swollen with extra 
SCs (47).   
 

These data demonstrated that the Wnt cascade 
can promote proliferation, leading to one daughter cell 
remaining in the niche while the other exits.  The exiting 
cells remain proliferative and form the hair germ, which 
then goes on to remake the entire hair.  The gain of 
function experiment was informative, but in order to 
demonstrate whether this result was physiologically 
relevant, we asked whether canonical Wnt signaling was 
required for SC activation in the epidermis.  A conditional 
knockout of beta-catenin during development suggested 
that beta-catenin was required for maintenance of hair 
follicles (99).  To characterize the role for beta-catenin in 
the mature HFSCs, we created an inducible knockout to 
monitor the effect of the loss of beta-catenin during 
adulthood.  We found that beta-catenin is required for not 
only SC activation, but maintenance of the follicular nature 
of the SCs (47).  Without beta-catenin, the hair follicle stem 
cells quickly adopted a more epidermal nature and 
eventually the entire follicle converted into epidermis.  
While it seems clear that the Wnt pathway plays a role in 
activation of ESCs, data from the TOPGAL reporter mouse 
suggests that the highest Wnt activity in the epidermis is 
found in the terminally differentiating cells of the hair 
follicle, suggesting that either Wnt plays opposing roles in 

different cell types in the epidermis depending on how 
primitive the cell is, or that simply the dose of the Wnt 
signal determines the outcome. 
 

A role for Tcf3 in stem cells of the epidermis and 
hair follicle has been assumed for years based on its 
specific expression in the most primitive epidermis during 
development and in the bulge of the adult follicle.  A new 
study employing an inducible Tcf3 transgenic has 
illuminated the role of the transcription factor in stem cell 
biology.  In relatively mature stratified epidermis, induction 
of Tcf3 forces all of the cells adopt a more primitive fate 
reminiscent of more rudimentary single layer epidermis 
(100).  In the follicle, induction of Tcf3 also drove a 
reversion to a more primitive, undifferentiated state (100).  
These data argue that, in the adult bulge, Tcf3 expression 
acts to maintain a somewhat primitive state to avoid 
premature differentiation. 
 
4. The TGF-beta signaling pathway 

Another pathway known to play various roles in 
many developmental contexts is the TGF-beta signaling 
pathway.  This superfamily of signaling molecules is 
divided into two major categories: TGF-beta and Bone 
Morphogenic Protein (BMP).   Both families of ligand bind 
to a receptor tyrosine kinase to stimulate downstream 
effectors.  The TFbeta ligand and their receptors signal 
through SMADs 2 and 3, whereas BMP ligands signal 
through SMAD 1,5,7.  These two different SMAD 
pathways lead to activation of distinct transcriptional target 
genes, thus distinguishing the effects of TGF-beta from 
BMP (Figure 3).  These two signaling cascades are 
modulated by many different intracellular interactions, but 
the most robust modulation comes from a large number of 
proteins that bind TGF-beta superfamily ligands to prevent 
their interaction with the receptor.  Both TGF-beta and 
BMP ligands have specific inhibitors such as Noggin, 
Follistatin, Gremlin, Chordin.  Interestingly, Noggin was 
identified as the gene responsible for a null mutation 
leading to the absence of neuroectoderm (101). It was later 
shown that BMP inhibition was required for development 
of the central nervous system (102).   
 
4.1. TGF-beta in the Intestine 

In the intestine, BMP signaling has been shown 
to be strongest in the more differentiated cells of the colon 
(103).  In mice lacking the BMPR1a receptor, ISC self-
renewal is induced (6).  The authors argue that BMP 
actually inhibits Wnt signaling in order to maintain a 
proper balance of self-renewal versus differentiation.   
These mice had five times the normal number of ISCs, and 
eventually developed polyps and supernumerary crypts.  
Mice overexpressing Noggin under control of a villi-
specific promoter, also formed ectopic crypts with 
excessive branching and budding (104).  In addition, 
ablation of SMAD4, a co-SMAD active in transducing both 
TGF-beta and BMP signals, also led to aberrant crypt 
formation and lack of control of ISC proliferation.  Finally, 
inactivating mutations for some of the key molecules in the 
BMP pathway have been found in human patients with 
Juvenile Polyopsis (JP), suggesting that BMP plays similar 
roles in ISCs in both murine and human models (105).  All
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Figure 3.  In the absence of ligand engagement, the Notch receptor remains at the membrane.   Upon binding of a ligand such as 
Delta, the Notch receptor undergoes a series of cleavage events leading to an accumulation of soluble, cytoplasmic protein.  
Truncated Notch can then enter the nucleus where is binds to RBP-J (Csl) to drive transcription of target genes.  In most stem 
cells, at least some activity of this pathway is required for the maintenance of self-renewal, whereas this pathway is also exploited 
to drive differentiation in stem cell progeny. 
 
these data are consistent with the notion that BMP 
signaling is important in maintaining proper self-renewal of 
ISCs.  TGF-beta, on the other hand, seems to be active in 
all cell types of the villi (106).  SMAD2 takes advantage of 
ELF, an adaptor protein to transduce the TGF-beta signal.  
Animals lacking ELF display a distinctive pattern of 
flattened gut epithelia and a loss of entire villi, 
demonstrating that this pathway is critical to all the cells of 
the intestine (107,108,109). 
 
4.2. TGF-beta in the Brain 

In the neural progenitors of the olfactory 
epithelium, GDF11, a TGF-beta family member, drives cell 
cycle arrest, whereas Follistatin an inhibitor of GDF11 was 
shown to drive neurogenesis (110).  This pathway was 
shown to function in an autocrine manner, as the neurons 
seem to be regulating their own numbers by secreting 
GDF11.  The TGF-beta pathway seems to be involved in 
neurogenesis in the olfactory bulb as it is required for the 
FGF2 pathway (111).  Conversely, in the ELF mutant mice, 
proliferation is unabated and differentiation impaired (108).  
As SMAD is thought to act as a mediator for both TGFb 
and BMP pathways, ablation of this gene should mimic a 
block of both arms of the TGF-beta superfamily pathway.  
Mice lacking SMAD4 show increased numbers of neurons 
at the expense of other fates (112Zhou 2003).   
 
The BMP pathway has also been show to act in the brain to 
drive NSCs to a glial fate (113,114Hsieh 2004), and can 
also drive glial progenitors down astrocytic lineages 
(115,116). Consistent with these findings, is the idea that 
inhibition of this pathway drives neurogenic development, 
as expression of Noggin can drive neurogenin expression 
and neural fate in the spinal cord (117).  In neurons, the 
BMP pathway can promote astrocytic fate and inhibit 
oligodendrocyte fate (118). In vitro, BMP can direct Neural 
Crest Stem Cells (NCSCs) to undergo neurogenesis by 

inducing MASH1 eventually creating neurons with 
characteristics of the autonomic nervous system (119Shah 
1999).   As SMAD is thought to act as a mediator for both 
TGFb and BMP pathways, ablation of this gene should 
mimic a block of both arms of the TGFb superfamily 
pathway.  Mice lacking SMAD4 show increased numbers 
of neurons at the expense of other fates (112.).   
 
4.3. TGF-beta in Blood 

A role for BMP signaling in HSCs was first 
uncovered by Bhatia et al 1999 (120).  The authors showed 
that BMP4 can promote the ability of the HSCs to 
reconstitute the hematopoietic system.  Several years later, 
it was shown that BMP signaling is essential to maintain 
the size of the HSC niche.  In fact, the defects seen in the 
BMPR1A knockout mouse led to the discovery of the niche 
itself.  In the absensce of BMP signaling, the niche was 
small and poorly maintained, leading to fewer numbers of 
LRCs (39,40).  These data showed that BMP seems to have 
an indirect role in HSC maintenance.  In fact, BMP 
determined the number of osteoblastic cells making up the 
HSC niche which, in turn, affected the number of LRCs.  
Similarly, quantitative trait analysis in TgfB2 knockout 
mice demonstrated a positive role for TGFB2 in regulating 
the number of HSCs both in vitro and in vivo (121).  Unlike 
the other adult SCs, both arms of the TGF-beta pathway 
seem to be required for HSC maintenance, and stimulation 
of this pathway in vitro even seems to promote self-
renewal. 
 
4.4. TGF-beta in the Epidermis 

Our own lab has studied BMP signaling during 
hair follicle development and found that this signaling 
cascade is required to maintain the proper balance of 
growth and proliferation.  Without the BMPR1A receptor, 
hair follicles become cysts and terminal differentiation is 
disrupted (122,123,124).  In addition, it was shown that
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Figure 4.  Tgf-beta family receptors are tyrosine kinases that form dimers and cross-phosphroylate each other to activate 
downstream cascades.  Without this phosphorylation, inhibitory factors (SMAD 6/7) block downstream signaling.  Upon ligand 
engagement and receptor phosphorylation, activating factors (SMAD 1/5/8 for BMP, SMAD 2/3 for Tgf-beta) can enter the 
nucleus and drive transcription of target genes.  The majority of stem cells studied to date are thought to be driven by Tgf-beta to 
enter quiescence or differentiate. 
 
both Wnt signaling and inhibition of BMP are required for 
proper downgrowth of follicles during development 
because of a collaborative effort through Lef to 
downregulate E-cadherin (125).  Neither of these studies, 
however, demonstrated a role for BMP signaling in the 
maintenance or growth of adult follicles.  The first evidence 
for a role for BMP signaling in adult HFSCs came from 
microarray profiling that suggested the presence of a 
gradient of BMP signaling in the quiescent cells of the 
epidermal stem cell niche.  The most quiescent cells in this 
niche expressed BMP6, and when HFSCs were treated in 
vitro with purified BMP6, their growth was impaired 
without inducing differentiation (49).  This suggested that 
BMP6 is exploited by the HFSCs to maintain their 
quiescence until the next hair cycle when they could be re-
activated, perhaps in a similar manner to GDF11 in 
neurogenesis.   
 

The most definitive evidence to date for a role of 
the BMP pathway in the HFSCs comes from recent work 
employing an inducible ablation of the BMPR1a receptor in 
fully mature hair follicles.  In this model, the normally 
quiescent stem cells immediately became activated and 
proliferated (126).  These findings, coupled with the data 
on BMP6, convincingly argue that the BMP pathway is 
required to maintain quiescence in this niche, similar to its 
role in other SC models. 
 
TGF-beta signaling components were also shown to be 
upregulated in the quiescent bulge by gene expression 
profiling (52).  In addition, the TGF-beta pathway was 
shown to be active in this compartment by an activity 
dependant antibody for SMAD2/3 of the TGF pathway.  
Recently, another group created mice lacking SMAD4, and 
although an analysis of a specific role for SMAD4 in the 
HFSCs was not performed, these mice showed a defect in 

the hair cycle and increased proliferation throughout the 
epidermis and hair follicle (127).  The TGF-beta pathway 
has also been implicated in epidermal maintenance because 
of its clear role in carcinogenesis in this tissue (128). 
 
5. The Notch signaling pathway 

The Notch receptor and its ligand Delta were first 
described in C. Elegans and Drosophila Melanogaster as 
signaling molecules important for lateral inhibition of cell 
fate.  That is, a cell whose fate has been determined signals 
to surrounding cells thereby inhibiting them from adopting 
the same fate (129,130).  The mechanism for this pathway 
has been worked out in great detail first in Drosophila and 
later in mice, but briefly, upon receipt of the ligand (delta 
or jagged), the Notch receptor undergoes a series of 
proteolytic cleavages to produce a soluble cytoplasmic 
domain (NICD).  The final cleavage is performed by 
gamma-secretase.  Gamma-secretase inhibitors were 
developed for potential therapeutic application in 
Alzheimer’s disease, but have proved to be quite useful for 
blocking the Notch pathway in many different cell types 
(131).  Truncated Notch protein can enter the nucleus and 
bind to a protein, which in Drosophila is called suppressor 
of hairless (RBPsuh, RBPkj, Csl or Cbf in mice).  This 
protein is normally a suppressor of the hairy enhancer of 
split genes (Hes, Hey), but upon binding to the NICD 
molecule, transforms into a potent stimulator of an ever 
expanding list of target genes (Figure 4).  Most of these 
target genes, such as Hairy enhancer of split, are actually 
transcriptional repressors, thereby suppressing cell fate 
choice in lateral inhibition.  The Notch pathway has been 
shown to be active and important in almost every 
developmental context, and in stem cells in particular.  The 
canonical pathway is dependent on the RBP-J, a 
transcription factor.  Notch has been shown in lower 
organisms to have unique effects during development that 
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are independent of RBP-J, but similar findings in 
mammalian systems are more controversial.  For now, it is 
assumed in mammals that the majority of Notch signaling 
observed is dependent on the RBP-J target genes of the 
Hairy Enhancer of Split (Hes) family.  While gain and loss 
of function studies have begun to uncover roles for Notch 
in SCs, it is less clear how Hes family members mediate the 
effects of Notch signaling in SCs. 
 
5.1. Notch in the Intestine 

In the intestine, Notch signaling seems to play a 
role in every cell type.  Expression of a constitutively 
active NICD molecule leads to an increased number of 
progenitors in the crypt and a suppression of differentiation 
(132).  This phenotype was ascribed to increased 
expression of Notch target gene Hes1, which is known to 
suppress Math1, a critical transcription factor in intestinal 
differentiation.   In a mouse model lacking Math1, goblet, 
paneth, and enterocyte lineages are all depleted (133).  In 
mice with reduced Hes activity, Math1 is induced and cells 
are driven down goblet and enteroendocrine lineages (134).  
In Hes1 knockout mice, the intestine and gut displayed 
increased differentiation of endocrine lineages (135).  Mice 
treated with gamma-secretase inhibitors show a lack of 
proliferation in the ISCs and marked increase in the 
production of Goblet cells (134).  Mice can only survive for 
a few days of Notch pathway ablation with this inhibitor, 
suggesting that replenishment of the crypts and villi by  
ISCs is vital to the ability of this organ to function.  It has 
been postulated that gamma-secretase inhibitors, on the 
basis of their ability to suppress ISC proliferation, might be 
useful as therapeutics in cancers of the gastrointestinal tract 
(131). 
 
5.2. Notch in the Brain 

The Notch pathway was originally discovered to 
be critical for lateral inhibition and cell fate decisions in the 
Drosophila nervous system. While not nearly as well 
defined, multiple roles for Notch in the murine nervous 
system have been elucidated.  Notch seems to play a 
critical role in NSCs by inhibiting premature differentiation 
(136).   Several groups have shown Notch signaling to be 
essential for proper self-renewal of NSCs by both gain and 
loss of function studies (137,138).  More recently, another 
group showed that Notch is required for maintenance of 
NSCs not only in the adult, but also during neuronal 
development by using the neurosphere formation to assay 
for stemness (139).  The gain of function Notch led to an 
accumulation of NSCs in the subventricular zone at the 
expense of neurogenesis (140).  In vitro it was suggested 
that endothelial cells can promote self-renewal of NSCs by 
secreting some soluble factor.  Two groups suggest that this 
phenomenon is due to a signal emanating from endothelial 
cells that activates the Notch pathway (28,29).   In neural 
crest stem cells (NCSCs) during development, a transient 
gain of function of Notch led to glial specification.  This 
was also suggested to be the case for neuroblast cell fate 
decisions (141).  Essentially, it seems clear that Notch 
activity is required for general maintenance and self-
renewal of adult NSCs, however, this pathway plays 
distinct roles in the more specified lineages. In glial 
progenitors, Notch has been shown to promote astrocytic 

fate, while also blocking the final steps of oligodendrocyte 
differentiation in lower mammals, which is also thought to 
hold true in mouse models. (142). 
 
5.3. Notch in the Blood 

Using a Notch reporter mouse, it was shown that 
the Notch pathway is active in HSCs in vivo and is 
downregulated as cells differentiate (143).  Then, using 
either gamma-secretase inhibitors or expression of a 
dominant negative Csl construct, it was demonstrated that 
suppression of Notch led to differentiation.  This effect 
could perhaps be ascribed to the role of Hes1, a Notch 
target gene that was recently described to be upregulated in 
vivo in HSCs relative to their progeny (144).  These data 
were consistent with previously published work which 
showed that induction of Notch in hematopoietic 
progenitors can promote multipotency while inhibiting 
differentiation down granulocyte lineages (145).  On the 
other hand, the most well-defined role for Notch in the 
hematopoietic system is in lineage determination in 
immune cell precursors.  Notch is required for the B versus 
T cell lineage as shown by both gain and loss of function in 
the hematopoietic system (146,147,148,149).   
 
5.4. Notch in the Epidermis 

The role of the notch pathway in HFSCs remains 
unclear.  An epidermal knockout model for Notch1 
displayed a marked defect in differentiation of the 
epidermis.  In addition, it was argued that Notch can 
actually act as tumor suppressor in this system – a unique 
role for notch specific to the epidermis (150).  The idea that 
Notch functions as a tumor suppressor in the epidermis 
while acting as a proliferative agent in most other systems, 
was called into question by recent findings describing the 
loss of function of RBP-J and gain of function of Notch1 in 
the embryonic epidermis (151).  These more recent data 
argued that Notch’s role in the epidermis is probably 
consistent with that in other developmental paradigms.  
Gain or loss of function of the Notch pathway in the 
specified cells of hair follicles led to dramatic defects in 
follicular differentiation, but as of now, no one has 
identified a role for Notch in adult HFSCs (152,153).  
Another loss of function study for RBP-J was done 
specifically in the hair follicle, but the dramatic loss of 
follicular integrity did not allow for a detailed examination 
of the SC niche (154).  The RBP-J knockout animal 
eventually lost all its hair and formed cysts with epidermal 
markers, suggesting that the Notch pathway is required for 
maintenance of follicular fate.  In vitro, the gain of function 
NICD protein induced differentiation into a spinous layer 
fate (155), and proliferation was thought to be impaired by 
upregulation of cell cycle inhibitor p21.   Now that stem 
cell specific gain and loss of function methods for Notch 
have been developed, perhaps we will soon know what 
role, if any, Notch plays in the SC niche. 
 
6.  The Sonic hedgehog pathway 

Hedgehog was first described in drosophila as a 
mutant in segment polarity (156).  A murine homolog was 
soon cloned and renamed sonic hedgehog (157).  Soon 
after, it was shown that sonic hedgehog is a ligand for a 
receptor called patched.  This receptor acts as an inhibitor
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Figure 5.  Activation of the Shh pathway in adult contexts most frequently leads to proliferation, as opposed to its role in 
development as a morphogenic determinant.  Blockade of this pathway usually results in impaired growth, frequently leading to 
differentiation. 
 
of another transmembrane protein called smoothened.  The 
Shh signal actually inhibits patched which then ceases to 
inhibit smoothened, leaving smoothened free to stimulate a 
distinct set of transcription factors called Gli.  Activated 
Glis enter the nucleus and drive expression of many newly 
identified genes (Figure 5).  The sonic hedgehog pathway 
has been implicated in most developmental contexts, most 
frequently as a potent stimulator of proliferation.  This 
pathway was also identified to be blocked in the 
phenomenon of cyclopia.  This occurs frequently in bovine 
animals who happen to eat plants with high Cyclopamine 
content.  This naturally made poison blocks the Shh 
pathway, leading to abnormal neural tube defects, where in 
the most severe cases only a single eye is formed during 
development.  Many groups now take advantage of this 
toxin to specifically block the pathway in the study of 
tumorigenesis and development.  In addition, many groups 
argue that the Shh pathway is subordinate to the Wnt 
cascade (94,158).  
 
6.1. Shh in the Intestine 

A definitive role for the hedgehog pathway in the 
intestine was first defined in Indian Hedgehog null mice.  
These mice had impaired ISC proliferation and smaller that 
normal villi (159).  Another group used a blocking antibody 
for Shh to show that this pathway is important to maintain 
integrity of the tissue and in the organization of the villi.  
More recently, it was shown that intake of cyclopamine can 
block terminal differentiation of some lineages but drive 
almost all cells to a goblet cell fate (160).  As evidence for 
crosstalk between the Wnt and Shh pathways, this group 
also showed that some well established Wnt target genes 
were upregulated upon cyclopamine intake. 
 
6.2. Shh in the Brain 

Shh was originally implicated in NSCs by the 
apparent expression of Gli factors in the NSC niche 
(162,163).  Several groups have shown that Shh signaling 

is required for maintenance of NSCs in both the SGZ and 
the SVZ (164,165,162). Using a reporter sensitive to Shh 
target Gli1, another group recently demonstrated the in vivo 
role of Shh in maintenance of NSCs and their role in 
neurogeneis (166).  In addition, a gain of function for Shh 
expressed by adenoviral transduction demonstrated that this 
pathway promotes proliferation in this niche.  Conversely, 
cyclopamine, the Shh inhibitor, blocks proliferation 
(164,165).  In vitro, the Shh pathway seems to play a 
critical role in neurosphere formation arguing either that 
proliferation is blocked or that no neurosphere forming 
cells are found in the absence of the Shh pathway (167).   
Interestingly, the Shh pathway, which is normally 
implicated in rapid proliferation also seems to be capable of 
more measured response such as that seen in NSCs.  In 
addition, the Shh pathway acts as a morphogen during 
spinal cord development, and we could therefore speculate 
that Shh acts as more than simply a proliferation factor in 
adult stem cells (168).  
 
6.3. Shh in the Blood 

There is scant evidence for a role of Shh in HSC 
function. One report, however, showed that Shh can 
promote the repopulating efficiency of these cells in a 
reconstitution assay that apparently depended on a 
downstream BMP signal (169). This was presumably a 
result of increased proliferation of LT-HSCs, driving the 
production of progenitors for each of the various lineages.  
 
6.4. Shh in the Epidermis 

While much is understood about the role Shh 
plays in the epidermis, very little is actually known about 
whether this pathway affects adult HFSCs.  Gain of 
function analysis has shown that Shh can drive the 
formation of basal cell carcinomas (170  This pathway is 
also known to be very active during initial hair follicle 
formation and in driving proliferation in the hair matrix 
(171). A recent study concluded that Shh does play a role in 
the adult HFSC niche (172).  This group used a gain of 
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function model to show that Shh can drive proliferation in 
the niche, as well as throughout the epidermis.  These mice 
displayed an expansion of all basal layer epidermis to such 
an extent that some mice actually had extra skin.  
Interestingly, other mice with the same transgene had a 
very different phenotype, where the skin was taught and 
translucent.  The authors suggested that the same transgene 
could either induce p63 leading to a wrinkled phenotype or 
suppress p63 in the translucent phenotype.  In the end, it 
was unclear whether either of these phenotypes were 
suggestive of a role for Shh in the follicular HFSCs.  More 
likely, Shh simply acted as a general proliferative signal as 
it has in most other tissues.  Years ago, our lab showed the 
Shh pathway was activated in the epidermis downstream of 
Wnt activation in the hair matrix (94).  More recently, our 
study on elevated Wnt signaling in the HFSC niche 
demonstrated that in fact Shh is not induced in the niche in 
response to Wnt, but is induced later in the nascent hair 
germ (47).  These data suggested the Shh might not 
normally play a role in the quiescent stem cell niche, but 
certainly is important in proliferation of the hair germ, a 
progenitor of the hair matrix, and certainly in the hair 
matrix itself. 
 
7. PROSPECTIVE 
 

The accumulated literature suggests that many of the 
known signaling pathways affect most adult stem cells in a 
similar manner.  For instance, active Wnt signaling drives 
growth in ISCs, Neuroblasts, HFSCs, and ESCs.  Interestingly, 
in intestine and epidermis, the cell division is asymmetric, as 
each division driven by nuclear beta-catenin creates both a self 
and a more differentiated daughter cell.  On the other hand, in 
more lineage restricted/differentiated progeny, elevation of the 
Wnt signal drives terminal differentiation in intestine, brain, 
blood, and epidermis. This suggests that the response to the 
Wnt signal, although shared amongst stem cells, is different in 
their progeny.  This conservation of response also holds true to 
some extent with regards to BMP signaling.  In 3 out of 4 stem 
cells studied, inhibition of BMP drives proliferation, whereas 
stimulation of BMP promotes differentiation of both stem cells 
and more differentiated progeny.  For the Notch pathway, clear 
data on adult stem cells only exists for ISCs, NSCs, and HSCs, 
but in each case Notch signaling is required for proliferation of 
progenitors. In the absence of Notch, these adult stem cells are 
thought to undergo apoptosis or differentiate.  Lineage 
restricted cells, on the other hand, differentiate in the presence 
of the Notch pathway.  Not surprisingly, the Shh pathway 
seems to drive proliferation in almost all cell types without 
regard to whether the cell is primitive or not. 
 

The similarity with which adult stem cells from 
different tissues respond to various signals suggests that 
these cells share common physiological mechanisms for 
responding to these pathways.  If that is the case, then 
perhaps these cells share other characteristics that make 
them uniquely stem cells.  For instance, all stem cells can 
undergo self-renewal to create an exact duplicate daughter 
cell, but do they all use the same physiological mechanisms 
to achieve that end?  Some groups have argued that 
overlapping gene expression profiles demonstrate that stem 
cells from different tissues share a “stemness” quality, but 

until the functions of these genes are rigorously tested, the 
answer will remain elusive.  Given that the niche is 
composed of many different cell types, perhaps identifying 
the genes commonly found upregulated in the niche, as 
opposed to just stem cells, would shed more light on the 
possibility of a common physiology amongst stem cells.  
On the other hand, a look at the existing data in the 
literature on signaling pathways suggests that different 
stem cells do share a common interpretation of an 
extracellular signal, and that they do so differently from 
their more differentiated progeny.   

 
Finally, the data discussed in this review 

describes the role of extracellular signals received in 
different contexts leading to different outcomes between 
stem cells and their progeny.  In fact, this interpretation of 
the data ignores the idea that different doses of these 
signals might lead to different outcomes.  None of the 
experiments outlined here described systems where each 
different cell type receives the same amount of signal.  The 
possibility exists that the outcome of signaling is more a 
matter of signaling dose rather than the identity of the 
receiving cell.  For instance, in the epidermis both the 
differentiated cells of the hair follicle and the 
undifferentiated cells of the bulge receive and respond to a 
Wnt signal.  In the follicle, the Wnt signal is required for 
differentiation, while in the bulge the same signal drives 
proliferation.  Is this discrepancy due to the context of the 
signal, or to the fact that the follicle cells sense a much 
higher dose of the signal?  The next frontier in signaling in 
stem cells should include a more detailed examination of 
all signaling pathways with respect to any relation between 
dose, context and physiological response.  Even more 
intriguing is the probability that we currently only 
understand the roles individual signaling pathways have on 
these cells, when, in fact, these cells are constantly sending 
and receiving signals to and from surrounding cells.  
Presumably, stem cells must integrate all these signals into 
a coherent response.  This suggests that we will not be able 
to accurately predict or manage stem cell behavior until we 
understand how all the known and unknown signaling 
pathways act in concert in stem cells.   
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