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1. ABSTRACT 
 
 Matrix metalloproteinases (MMPs), a family of 
Zn2+-dependent endopeptidases, mediate different 
physiological processes by digesting components of the 
extracellular matrix. Nevertheless, overexpression of 
MMPs is implicated in the pathogenesis of various 
diseases. Different MMPs and tissue inhibitors of MMPs 
(TIMPs) are expressed in bone cells, and their biosynthesis 
is regulated by local and systemic hormones and factors. 
The levels of enzymatically active MMPs in bone are 
further controlled by secretion, activation of proenzymes, 
inhibition by TIMPs, cellular uptake and degradation. 
Members of the cysteine and serine family of proteinases 
also coordinate some of the biological activities of MMPs 
in bone. The functions of MMPs and TIMPs in bone 
include regulation of processes, such as degradation of 
collagen and other components of the bone matrix, 
migration and survival of bone cells, endochondral bone 
formation and bone resorption. Abnormal expression of 
MMPs may lead to pathological conditions affecting bone 
and cartilage. Various pharmacological agents can inhibit 
MMPs, and some of these inhibitors may be potential 
therapeutic agents for certain bone diseases. This review 
briefly describes the regulation and functions of different 
MMPs and TIMPs in bone, and provides an insight into the 
role of MMPs in bone development, remodeling and 
pathology.  

 
 
 
 
2. INTRODUCTION 
 
 Matrix metalloproteinases (MMPs) are a family 
of Zn2+-dependent proteolytic enzymes that can collectively 
degrade all the components of the extra-cellular matrix (1-
4). About twenty five MMPs have been identified so far 
(2). Based on substrate specificity, MMPs can be 
categorized into collagenases, gelatinases, stromelysins and 
others. Collagenases can cleave intact collagen fibrils at 
physiological pH, whereas gelatinases can digest denatured 
collagens. Stromelysins are capable of breaking down a 
variety of extra-cellular components including gelatins. 
Although each MMP may have a preferred substrate, there 
is considerable overlap in substrate specificities of various 
MMPs. Most MMPs are secreted into the extra-cellular 
matrix (ECM), however, a few membrane-bound MMPs, 
designated as membrane-type MMPs (MT-MMPs), have 
been described. The major physiological functions of 
MMPs include modulation of embryonic development, 
angiogenesis, growth plate remodeling, wound healing, 
uterine involution and ovulation. However, MMPs have 
been implicated in the pathogenesis of diseases, such as 
neuroinflammation, atherosclerosis, cancer, arthritis, 
periodontal disease and others (5-12).  
 

MMP expression occurs in diverse cell types, and 
it is not limited to matrix-producing cells. MMP levels are 
regulated by multiple mechanisms and at multiple levels: 
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tissue specific expression, regulation by systemic and local 
hormones and factors, enzymatic activation of zymogens 
into active enzymes, cell and matrix localization, and 
inhibition. MMPs are synthesized as a proenzyme and 
subsequently activated by proteolytic cleavage. Serine 
proteases, such as plasminogen activator (PA), are shown 
to be potent activators of MMPs; however, some members 
of the MMP family can also activate other MMPs. In 
addition to enzymatic activators of MMPs, tissue inhibitors 
of MMPs (TIMPs) are critical mediators of MMP activity 
(13). Four TIMPs have been identified, and they inhibit 
MMP activity by binding mostly the active forms of 
MMPs. Expression of certain TIMPs is also modified by 
hormones and growth factors, thereby contributing to the 
complexity of MMP action.  

 
 Bone is a dynamic tissue undergoing continuous 
remodeling. Primarily, there are two types of bone cells: 
osteoblastic cells responsible for bone formation by 
synthesizing the components of the bone matrix and 
osteoclastic cells facilitating bone resorption by degrading 
bone matrix. Under normal physiological conditions of 
skeletal remodeling, the activities of osteoclasts and 
osteoblasts are coordinated such that bone resorption is 
balanced by bone formation. However, in pathological 
situations, such as osteoporosis or osteopetrosis, this 
balance between bone formation and resorption is shifted 
resulting in bone loss or excessive bone formation. 
Synthesis of different MMPs and TIMPs by bone cells is 
modulated by factors controlling remodeling, and several 
studies have suggested that MMPs may play a critical role 
in mediating skeletal development and remodeling (14, 15). 
Although normal expression of MMPs and their regulation 
by bone remodeling agents are essential for maintaining 
bone mass, overexpression of MMPs may be linked to 
pathologic bone loss.  

 
3. COLLAGENASES  
 

Collagenase was identified in the skeletal tissue 
of numerous species in 1960s and 70s (16-19). Later on, it 
was observed that isolated osteoblastic cells could 
synthesize and secrete collagenase in response to various 
bone resorbing stimuli (20-22). Whether collagenase is 
produced by osteoclasts remains controversial (23, 24). 
There are three types of collagenases, collagenase-1 
(MMP-1), -2 (MMP-8) and -3 (MMP-13), and all of them 
can be present in the bone microenvironment. Collagenase-
1 is also known as fibroblast collagenase or interstitial 
collagenase. The collagenase indicated in studies using 
human osteoblasts or osteosarcoma cell lines by Meikle et 
al., 1992, Rifas et al., 1994, Panagakos and Kumar, 1995, 
and DeBart et al., 1995, is likely to be collagenase-1 (25-
28). Collagenase-2, also known as polymorphonuclear 
collagenase, is synthesized by osteoblasts during bone 
formation (29, 30). A novel collagenase, collagenase-3, 
was first identified in human breast carcinomas in 1994 
(31). The collagenase, described as interstitial collagenase 
or collagenase-1 in some of the earlier studies, especially in 
rodent cells, is in fact collagenase-3. To date, collagenase-1 
expression has not been detected in rat or mouse cells. 
During human fetal bone development, collagenase-3 

expression can be detected in chondrocytes, osteoblasts and 
periosteal cells (32). This collagenase is present during 
intramembranous and endochondral ossification during 
gestation (32, 33). Collagenase-3 is now recognized as the 
major form of collagenase synthesized by osteoblasts of 
different species, including humans (31-34).  

 
3.1. Regulation 

Collagenase-1 expression has been reported to be 
stimulated by parathyroid hormone (PTH), tumor necrosis 
factor (TNF)-alpha and interleukin (IL)-1 alpha and 
inhibited by 17 beta-estradiol in human osteoblasts or 
osteosarcoma cells (25-28, 35). Although the mechanisms 
regulating the collagenase-1 gene in fibroblasts have been 
extensively studied, data regarding the molecular basis of 
collagenase-1 regulation in bone cells are limited. 
Collagenase-2 expression is shown to be differentially 
regulated during skeletal development; however, there is 
little information pertaining to the regulation of 
collagenase-2 by physiological agents in bone (29, 30).  

 
Most studies on regulation of collagenase in 

osteoblasts have been carried out using rodent cells, which 
express the collagenase-3 gene. Collagenase-3 level in bone 
is regulated by different mechanisms (Figure 1). 
Collagenase-3 is induced in osteoblasts by stimulators of 
bone resorption, including PTH, steroids, cytokines and 
various growth factors (Table 1). In contrast, stimulators of 
bone formation, such as insulin-like growth factors (IGFs) 
and members of the transforming growth factor (TGF)-beta 
superfamily, suppress collagenase-3 expression in 
osteoblasts (Table 1). Cells of the osteoblastic lineage 
synthesize collagenase-3 when exposed to mechanical 
strain, a major regulator of bone cell function (72). It seems 
that estrogen doesn’t affect collagenase-3 expression 
directly; however, increased collagenase-3 expression 
occurs in bone in ovariectomized rats suggesting that 
estrogen deficiency may promote collagenase-3 production 
in vivo indirectly (73). In addition to systemic or local 
physiological factors, collagenase-3 expression is affected 
by a variety of pharmacologic agents, including 
bisphosphonates and tetracyclines (regulation of various 
MMPs by different pharmacological agents is discussed in 
section 5 below) (74, 75). Expression of collagenase-3 also 
appears to be related to osteoblast differentiation, as there is 
a progressive increase in collagenase-3 levels in osteoblasts 
undergoing differentiation in vitro (76, 77). In addition, it 
seems that there are mechanistic differences in the 
regulation of collagenase-3 in primary and malignant 
osteoblasts. For instance, in primary osteoblastic cells, 
TGF-beta suppresses collagenase-3 expression, whereas, in 
an osteosarcoma cell line, UMR106, TGF-beta enhances 
collagenase-3 (64).  

 
The collagenase-3 gene is regulated by both 

transcriptional and post-transcriptional mechanisms. The 
collagenase-3 gene promoter contains binding sites for 
different nuclear transcription factors, such as Runx2, AP-
1, Ets-1 and others (36, 54, 78, 79). Runx2 is a critical 
transcription factor mediating the formation of osteoblasts 
from their precursors (80, 81). Targeted disruption of the
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Figure 1. A schematic representation of various mechanisms of collagenase-3 regulation in bone:  A, Transcriptional positive (+) 
or negative (-) regulation; B, post-transcriptional regulation by stabilization of mRNA; C, cleavage of procollagenase into active 
collagenase by MMPs/serine proteases; D, inhibition of collagenase by TIMPs; and E, cellular uptake of collagenase by a 
scavenger receptor.    
 

Runx2 gene results in a complete lack of bone formation 
(82, 83). Expression of Runx2 is found to be a prerequisite 
for collagenase-3 synthesis by osteoblasts (84). In addition, 
Runx2 is reported to be a mediator of collagenase-3 
induction by PTH (54). Interestingly, the suppression of the 
collagenase-3 gene by bone morphogenetic protein (BMP)-2 
is also found to be mediated through the Runx2 binding site 
(67). Therefore, it appears that Runx2 may serve as a 
molecular switch, critical for both positive and negative 
regulation. Protein modifications of Runx2 may impact 

collagenase-3 gene regulation; recent studies have shown 
that Runx2 can undergo phosphorylation in response to 
stimulation by various physiological agents, including PTH 
and BMPs (85-87). In addition, Runx2 may interact directly 
or indirectly with other transcription factors, such as the AP-
1 complex, CREB and Smads, in regulating collagenase-3 
gene expression (36, 54, 55, 64). Enhanced binding of the 
Jun and Fos, components of the AP-1 complex, to the 
collagenase-3 proximal promoter occurs during the 
activation of collagenase-3 gene transcription by
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Table 1. Regulation of collagenase-3 expression in bone 
Regulating agent Tissue/Cell type Reference Mechanism of gene expression Reference 
Stimulators 
Cyclic AMP Rat osteosarcoma cell line UMR 106 36, 37 Transcriptional activation, mediated through 

an AP-1 site 
36 

1, 25-Dihydroxyvitamin D3 Mouse calvaria and primary osteoblasts, 
mouse osteoblast-like cell line MC3T3, rat 
primary osteoblasts 

21, 38-41 Transcriptional activation, possibly mediated 
through an AP-1 site 

40 

Epidermal growth factor Rat primary osteoblasts, UMR 106 39, 42   
Fibroblast growth factor-2 Rat primary osteoblasts, MC3T3 43-45 Transcriptional activation, mediated through 

an AP-1 site 
44 

Glucocorticoids Rat primary osteoblasts  37, 46 mRNA stabilization , mediated through AU-
rich regions in the 3’-UTR 

37, 46 

Heparin Mouse calvaria  47   
Interleukin-1 Mouse calvaria, mouse and rat primary 

osteoblasts, MC3T3  
38, 39, 41, 
48, 49 

Transcriptional activation 49 

Interleukin-6 Rat primary osteoblasts  48, 50 Transcriptional activation  50 
Leukemia inhibitory factor Rat primary osteoblasts 51 Transcriptional and post-transcriptional 

regulation 
51 

Macrophage migration 
inhibitory factor 

Rat primary osteoblasts  52 Mediated by Src-related Tyr kinase-, Ras-, 
ERK1/2- and AP-1-dependent pathway 

52 

Oncostatin M Rat primary osteoblasts  51 Transcriptional and post-transcriptional 
regulation  

51 

Parathyroid hormone Mouse calvaria, mouse and rat primary 
osteoblasts, MC3T3 and UMR 106  

20, 21, 36, 
38, 39, 41, 
42, 53-56 

Transcriptional activation, mediated via AP-
1, Runx2 and Ets-1 binding sites  

36, 53-56 

Phorbol esters Rat primary osteoblasts, UMR 106 and 
ROS 17/2.8   

37, 55, 57 Transcriptional activation  37, 55 

Platelet-derived growth factor 
BB 

Rat primary osteoblasts 58, 59 Transcriptional and post-transcriptional 
mechanisms; transcription mediated through 
an AP-1 site  

58, 59 

Prostaglandins (PG) Mouse calvaria, mouse and rat primary 
osteoblasts, MC3T3 and UMR 106 

21, 38, 39, 
41, 42, 60 

PGE2  stimulates transcription  60 

Retinoids Mouse calvaria, rat primary osteoblasts, 
UMR106  

38, 61, 62 Transcriptional activation 62 

Thyroid hormone MC3T3 63 Transcriptional activation  63 
Transforming growth factor-
beta 

UMR 106  64 Transcriptional activation, needs Smad and 
MAP kinase signaling pathways and Runx2  

64 

Tumor necrosis factor-alpha Mouse calvaria, mouse and rat primary 
osteoblasts, MC3T3 

38, 39, 41   

Inhibitors 
Bone morphogenetic proteins 
(BMPs) 

Rat primary osteoblasts  65-67 Inhibition of transcription, effect of BMP-2 is 
mediated through a Runx2 site  

65-67 

Insulin-like growth factor I & II Rat primary osteoblasts  68, 69 Transcriptional inhibition  69 
Interferon-gamma Rat primary osteoblasts 39   
Transforming growth factor-
beta 

Rat primary osteoblasts 67, 70, 71 Transcriptional and post-transcriptional 
mechanisms 

67, 71 

 
PTH, fibroblast growth factor (FGF) -2 and platelet-derived 
growth factor BB (44, 59, 88). The DNA response elements 
mediating collagenase-3 gene expression by many other 
bone regulatory agents, particularly steroids and cytokines, 
are not yet defined. Further, a number of factors regulate 
collagenase-3 expression at the post-transcriptional level, 
by altering mRNA stability (Table 1). Glucocorticoids 
increase collagenase-3 by post-transcriptional mechanisms, 
and studies revealed that the AU-rich elements in the 3’-
UTR mediate the stability of collagenase-3 mRNA (46). 
Basal collagenase-3 levels and their regulation by several 
physiological agents are also found to be dependent on de 
novo protein synthesis suggesting that collagenase-3 
expression is mediated by cellular factors of short half-life 
(37, 43, 58, 61, 63, 68, 89). The identity of these labile 
factors, most likely transcription factors or RNA binding 
proteins, remains to be established.  

 
Newly synthesized procollagenases are secreted 

into the bone matrix. Procollagenases are converted into 
active enzymes by cleavage of the prodomain by serine 
proteinases and other MMPs, which in turn are regulated by 

 
different hormones and growth factors (90-92). The major 
activators of procollagenase-3 in bone may be other MMPs, 
such as stromelysin-1, 72 kDa gelatinase and membrane-
type 1-MMP (MT1-MMP), present in the bone 
microenvironment (92).  

 
Collagenase-3 activity in bone can be inhibited 

by TIMPs. TIMP-1,-2 and -3 are present in bone, and 
the biosynthesis of TIMPs, particularly that of TIMP-1 
and-3, is stimulated by different bone remodeling 
agents, including growth factors and cytokines (27, 28, 
43, 51, 65, 70, 71). Consequently, the availability of 
active collagenase-3 to degrade the bone matrix is 
further modulated by different hormones and factors that 
can alter the MMP:TIMP ratio. Although several 
inducers of collagenase-3 also stimulate TIMP 
expression, the potent stimulators of bone formation, 
such as BMPs and TGF-beta, differentially regulate the 
expression of collagenase-3, and TIMP-1 and -3; it 
suggests that a decrease in collagenase-3 along with an 
increase in TIMPs may promote bone formation (65, 70, 
71).  
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In addition to the regulation of collagenase-3 at 
the level of biosynthesis, activation and complex formation 
with TIMPs, recent studies have shown that collagenase-3 
levels in the matrix are also regulated by receptor-mediated 
uptake and intracellular degradation by endosomes and 
lysosomes (93-95). Collagenase-3 binds to a specific cell 
surface receptor and then internalized in participation with 
the low density lipoprotein receptor-related protein (95). 
The abundance and function of the collagenase-3 receptor, 
and the intracellular degradation of collagenase-3 are 
regulated by PTH, and possibly by other physiological 
agents (94).  
 
3.2. Functions 

Collagenases can initiate the degradation of 
interstitial collagens, type I, II and III collagens, at 
physiological pH. All collagenases cleave collagen fibrils 
primarily at a unique helical locus three-fourth of the way 
from the N-terminus generating one-quarter and three-
quarter length fragments. However, collagenase-3 has been 
shown to cleave type I and II helical collagens at additional 
loci (96-98). The cleavage of collagen triple helix is critical 
for the initiation of fibrilar collagen degradation. The non-
helical collagen fragments, generated by the initial 
collagenase cleavage, are further digested by other MMPs, 
particularly gelatinases. Among collagenases, collagenase-
3 also possesses high gelatinase activity, and therefore, it 
may also contribute to further degradation of denatured 
collagen fragments (96).  

Collagenase activity is critical for endochondral 
bone formation. Collagenase-3 is expressed at high levels 
in chondrocytes, and it is regarded as the major enzyme 
involved in the degradation of type II collagen, the 
predominant form of collagen in cartilage (32, 98, 99). In 
fact, collagenase-3 cleaves type II collagen more efficiently 
than type I collagen (96, 98). During endochondral bone 
formation, cartilage matrix is degraded and then replaced 
with bone. Therefore, this enzyme appears to be a major 
player in collagen turnover during endochondral bone 
formation. Collagenase-3 may also participate in the ECM 
remodeling during intramembraneous ossification (100).  

In addition to enabling collagen breakdown 
during bone formation, collagenases regulate collagen 
turnover during bone remodeling. Type I collagen, the 
major organic component of the bone matrix, is the primary 
target of collagenases in bone. Involvement of 
collagenases, induced by bone remodeling agents, in the 
breakdown of bone collagen has been implicated by the 
inhibition of collagen degradation following the addition of 
recombinant TIMPs into bone cultures (91). Furthermore, 
stimulation of collagenase by bone remodeling agents has 
been demonstrated in several studies by measuring the 
degradation of radiolabeled-type I collagen fibrils or by 
assaying for hydroxyproline, an end product of collagen 
breakdown, in bone cell and explant cultures (21, 38, 39).  
 

Bone collagen breakdown by collagenases is 
linked to the survival of cells of osteoblastic lineage. In 
transgenic mice resistant to cleavage of type I helical 
collagen, there is altered skeletal remodeling with a 

significant increase in apoptosis of osteoblasts and 
osteocytes (101). Surprisingly, these animals appear to 
have developed normally; it has been suggested that the 
cleavage of collagen at a non-helical N-telopeptide site is 
sufficient to support collagen degradation associated with 
bone formation (102). Also, mice resistant to cleavage of 
helical collagen have increased bone deposition, caused by 
the activation of bone-forming surfaces. It has been shown 
that collagen degradation products may generate 
antiapoptotic signals via integrin-dependent anchorage to 
the cell surface (103) 

 
Collagenase activity is associated with bone 

resorption. Most inducers of collagenase-3 are also 
stimulators of bone resorption (15). It has been 
hypothesized that collagenase is responsible for the 
removal of osteoid, a thin layer of non-mineralized matrix 
on bone surface, so that osteoclastic cells can be recruited 
to the mineralized bone surface to resorb bone (104). 
However, an in vitro study by Holliday et al. has shown 
that there is no significant difference in the attachment of 
osteoclasts to bone slices in the presence or absence of 
MMP inhibitors (105). This study has also demonstrated 
that the inhibition of collagenase-3 activity, using specific 
antibody against this enzyme, in bone cultures, blocked 
osteoclastic bone resorption. Therefore, it has been 
suggested that collagen fragments, generated by 
collagenases, stimulate osteoclastic cells to resorb bone. 
The role of collagenase activity in bone resorption has been 
further illustrated by in vivo studies by Zhao et al., showing 
that PTH-stimulated bone resorption, as measured by Ca2+ 
release into serum, is diminished in transgenic mice 
engineered to synthesize collagenase-resistant type I 
collagen (102). Furthermore, a study by Chiusaroli et al. 
has showed that collagen degradation by activated 
collagenase is necessary for basal and PTH-receptor 
induced osteoclast activation and consequently, bone 
resorption (106). 

 
In addition to interstitial collagens, collagenase-3 

may target other ECM proteins in bone and cartilage. In 
different in vitro studies, collagenase-3 has been shown to 
degrade a variety of ECM components including type IV, 
IX, X, and XIV collagens, aggrecan, tenascin C, 
fibronection and fibrilin (107). Further, collagenase-3 can 
activate latent TGF-beta 3, an anabolic agent for bone 
(108). Collagenase-3 may also contribute to increased 
availability of active IGFs, potent stimulators of bone 
growth, by degrading IGF binding protein (IGFBP) -5 in 
bone (109). Importantly, degradation of bone matrix 
components by collagenase-3 may lead to the release of 
growth factors stored in the matrix, including IGFs, TGF-
beta and FGF-2. Thus, collagenase-3 activation may 
directly or indirectly cause an increase in the levels of 
active growth factors in the bone microenvironment. 
Increased bioavailability of growth factors may serve as a 
mechanism to signal bone formation following bone matrix 
degradation, a mechanism for coupling bone formation to 
resorption. 

 
Recently, the skeletal phenotype of the 

collagenase-3 null mice has been characterized. Studies by 



Matrix metalloproteinases in bone   

2954 

Stickens et al. in collagenase-3 deficient mice revealed that 
this proteinase is essential for normal endochondral bone 
development (110). Absence of collagenase-3 leads to 
alterations in growth plate architecture and an increase in 
trabecular bone during endochondral bone formation. 
Nevertheless, cortical bone is unaffected by collagenase-3 
deficiency, suggesting that other MMPs may contribute to 
cortical bone remodeling. A parallel study by Inada et al. 
has also identified defects in the development of growth 
plate cartilage and endochondral ossification in animals 
with collagenase-3 deficiency (111). Conditional 
inactivation of collagenase-3 in bone has resulted in an 
increase in trabecular bone volume, however, maintained a 
normal zone of hypertropic cartilage (110). Adult mice 
with collagenase-3 deficiency have developed a form of 
chondrodysplasia, characterized by increased length of 
growth plates, and increased number and distorted 
alignment of chondrocytes (111). In humans, a 
chondrodysplasia with similar characteristics, the Missouri 
variant of spondyloepimetaphyseal dysplasia, is caused by 
a mutation in the collagenase-3 gene (112).  

 
4. MMPs OTHER THAN COLLAGENASES 

 
In addition to collagenases, bone cells also 

express other MMPs including gelatinases, stromelysins 
and MT-MMPs. These MMPs contribute to different 
aspects of bone development and remodeling. Because 
bone matrix has a very complex biochemical and structural 
composition, concerted actions of different MMPs are 
required to fully degrade all the components of the bone 
matrix during bone modeling and remodeling.  

 
4.1. Gelatinases 

Gelatinase A or 72 kDa gelatinase (MMP-2) and 
gelatinase B or 92 kDa gelatinase (MMP-9) are synthesized 
by osteoblasts (25, 27, 48, 50, 63, 70, 113, 114). Expression 
of gelatinase A is stimulated by IL-1, IL-6, TGF-beta and 
TNF-alpha in osteoblasts (27, 48, 50, 70, 113). Gelatinase 
B expression is stimulated in cells of osteoblastic lineage 
by PTH, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), IL-1, 
TNF-alpha and thyroid hormone (25, 48, 63, 113). 
Expression of gelatinase B is also observed in osteoclasts, 
and it is enhanced by the chemokine, CXCL12, and 
receptor activator of NF-kappa B ligand (RANKL), a 
major stimulator of osteoclast formation and function (115-
119).  

 
The primary substrate of gelatinases is denatured 

collagens (4, 90), and therefore, collagen fragments, 
generated by collagenases in bone, are thought to be further 
degraded by gelatinases. In addition, gelatinases may have 
other important functions in bone; for example, gelatinase 
A may activate procollagenase-3, and gelatinase B may 
regulate migration of osteoclasts (120, 121). Gelatinase A 
and B have been shown to degrade IGFBP-3 and -1, 
respectively, in other cell types; it is possible that these 
proteinases may also affect the availability of IGFs in bone 
by processing these IGFBPs (122, 123). Gelatinase A null 
mice develop without major bone abnormalities (124). 
However, a human mutation, resulting in the absence of 
active gelatinase A, leads to an autosomal recessive form of 

multicentric osteolysis, a rare disease leading to destruction 
and resorption of the affected bones (125). Based on the 
function of gelatinase A in degrading denatured collagen, 
an osteopetrotic phenotype can be expected from gelatinase 
A deficiency. However, the osteolytic phenotype in humans 
may have resulted from an imbalance in coupling between 
bone resorption and formation, a possible outcome of 
incomplete matrix degradation in the absence of gelatinase 
A. Mice with null mutation in gelatinase B gene develop an 
abnormal pattern of skeletal growth plate vascularization 
and ossification suggesting that gelatinase B activity is 
necessary for normal bone development (126). In addition, 
mice lacking gelatinase B exhibit a delay in osteoclast 
recruitment into developing long bones (127). 

 
4.2. Stromelysins 

Stromelysin-1 (MMP-3) is synthesized by cells of 
osteoblastic lineage (25, 49, 90, 128, 129). Stromelysin-1 
expression is augmented in estrogen deficiency (129). 
Active stromelysin-1 is observed in osteocytes and in 
matrix surrounding osteocytic lacunae, while stromelysin-2 
(MMP-10) is expressed at high levels in osteoclasts (128). 
Stromelysin-3 (MMP-11) is expressed in osteoblastic cells, 
and its expression is regulated by FGF-2 and TGF-beta 
(130, 131). Although the specific functions of stromelysins 
in bone are poorly understood, it is likely that they act in 
concert with other MMPs to promote activation of 
proenzymes and the degradation of non-collagenous matrix 
components, such as proteoglycans (96, 132). Stromelysin-
1 may enhance the bioavailability of IGFs in bone by 
degrading IGFBP-1 and -3, as shown in other cell types 
(122, 123, 133). 

 
4.3. Membrane-type MMPs 

Six MT-MMPs have been described (4). MT1-
MMP (MMP-14) is synthesized by mature osteoblasts and 
osteoclasts (134, 135). It has been demonstrated that the 
expression of MT1-MMP in osteoblastic cells is stimulated 
by estrogen, progesterone and 1,25(OH)2D3 (136-138). 
However, PTH has been shown to inhibit MT1-MMP 
expression in osteoblast-like cells (139). MT1-MMP 
expression varies during osteoblast differentiation, and it 
peaks in mature nodule forming osteoblasts (135). There is 
limited information regarding the expression of other MT-
MMPs, known as MT2-MMP (MMP-15), MT3-MMP 
(MMP-16), MT4-MMP (MMP-17), MT5-MMP (MMP-24) 
and MT6-MMP (MMP-25), in bone.  

 
MT1-MMP activates procollagenase-3 and 

progelatinase A, and therefore, it may coordinate actions of 
other MMPs in the skeletal tissue regulating collagen 
degradation (120, 140). MT1-MMP deficiency impairs 
collagenolytic activity and osteogenic potential of 
osteoblastic cells and disrupts both intramembranous and 
endochondral ossification (141). MT1-MMP is an activator 
of the latent form of TGF-beta, a regulator of osteoblast 
survival during transdifferntiation into osteocytes (142). 
Lack of MT1-MMP causes increased apoptosis of 
osteocytes (141, 143). In addition, disruption of collagen 
cleavage in MT1-MMP null mice interferes with normal 
development and maintenance of osteocyte processes 
(144). Mice lacking MT1-MMP develop severe connective 
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tissue growth and remodeling abnormalities, such as 
dwarfism, osteopenia, fibrosis of soft tissue, arthritis and 
skeletal dysplasia (141). Adult MT1-MMP deficient mice 
have increased bone resorption leading to progressive 
osteopenia. These observations prove that MT1-MMP is an 
essential enzyme for normal bone development and 
remodeling.  

 
4.4. Other MMPs 

Elastase (MMP-12) has been found to be 
expressed in osteoclasts (145). Elastase can cleave 
osteopontin and bone sialoprotein, two important bone 
matrix proteins, and therefore, it may participate in bone 
matrix degradation along with other MMPs expressed in 
bone. There is little information about the expression of 
other MMPs, such as matrilysin 1 (MMP-7), matrilysin 2 
(MMP-26), enamelysin (MM-20), epilysin (MMP-28), 
MMP-19 and MMP-23, in bone cells.  

 
5. INHIBITORS OF MMPs 
 
 A variety of natural and synthetic inhibitors of 
MMPs are known. As indicated earlier, the major peptide 
inhibitors of MMPs are TIMPs. MMPs are also inhibited by 
pharmacological agents, such as bisphosphonates and 
derivatives of tetracycline. In addition, a number of 
synthetic drugs that compete for the binding of MMPs to 
collagens have been developed and tested by different 
pharmaceutical companies for the treatment of diseases 
associated with an increase in MMP activity.  
 
5.1. TIMPs  

Four TIMPs, TIMP-1, -2, -3 and -4, have been 
identified in vertebrates. TIMP-1, -2 and -3 are synthesized 
by osteoblasts and osteocytes (30, 43). In osteoblasts, 
expression of TIMP-1 is enhanced by physiological stimuli, 
including IL-1, TNF-alpha, FGF-2, BMP-2, TGF-beta, 
1,25(OH)2D3, thyroid hormone and retinoic acid (27, 28, 
43, 51, 63, 65, 70, 71, 146-149). TIMP-3 expression in 
osteoblasts is shown to be stimulated by IL-1, TNF-alpha, 
FGF-2, TGF-beta and BMP-2 (43, 65, 71, 146). Unlike 
TIMP-1 and -3, expression of TIMP-2 is not regulated by 
most bone remodeling agents, however, a modest 
stimulation by PTH and TGF-beta has been observed (71, 
150). In addition to regulation by endocrine and paracrine 
agents, TIMP-1 and -2 levels depend on the maturation 
state of osteoblasts, and they may vary during different 
stages of osteogenesis (135). TIMP-1 is also found to be 
produced by osteoclastic cells, and its expression in 
osteoclasts is inhibited by RANKL as expected for cells 
that are stimulated to resorb bone matrix (120, 151-153).  

 
The major function of TIMPs in bone appears to 

be the modulation of MMP activities. Collagen 
degradation, mediated by 1,25(OH)2D3, is inhibited by 
treatment of bone cultures with inducers of TIMP 
expression (148). When recombinant TIMPs are added to 
cultures of bone explants, PTH- and 1,25(OH)2D3-induced 
bone resorption is blunted (117, 154). Recently, transgenic 
mice over-expressing TIMP-1 in osteoblasts are shown to 
have decreased bone resorption and increased bone mineral 
density (155). It is likely that a higher concentration of 

TIMPs, relative to active MMPs, is partly responsible for 
minimizing bone matrix breakdown and resorption in bone 
segments not undergoing active remodeling. However, the 
balance between active MMPs and TIMPs seems to be 
shifted by increased production and activation of MMPs in 
the presence of bone resorbing agents leading to matrix 
degradation and resorption during remodeling. TIMPs have 
differential binding affinities toward individual MMPs; 
thus, they exhibit varying degrees of MMP binding 
specificity. TIMPs inhibit MMPs by complexing with them 
in a 1:1 stoichiometry. TIMP-1 is known to bind and 
inactivate most MMPs; however, it is a relatively poor 
inhibitor of MT-MMPs, particularly MT1-MMP (4, 156, 
157). TIMP-2 appears to be the natural inhibitor of MT1-
MMP (158). In fact, TIMP-2 and MT1-MMP complex acts 
as a receptor for progelatinase A, allowing the 
procollagenase to localize and become activated in the 
pericellular region. Unlike TIMP-1 and -2, TIMP-3 can 
inhibit some members of the ADAM family of 
metalloproteinases, a novel family of membrane proteins 
containing a disintegrin and metalloprotease domain, along 
with MMPs (157).  

 
Apart from inhibiting metalloproteinases, TIMPs 

have additional functions which include regulation of cell 
growth and apoptosis (157). In bone cells, TIMP-1 and -2 
at low doses can directly stimulate bone resorbing activity 
independent of their ability to inhibit MMPs (159). Some of 
these unique functions of TIMPs, unrelated to the inhibition 
of MMPs, may also contribute to regulation of bone 
formation and remodeling. Although mice with null 
mutations in TIMP-1, -2 and -3 have been described, no 
major bone defects have been reported. It is likely that the 
biological functions of TIMPs in the skeletal tissue are 
redundant so that the lack of one of the TIMPs in 
transgenic animals may be compensated by others. 
Alternatively, a remodeling stress or challenge in addition 
to the depletion of TIMP is necessary to uncover the bone 
phenotype.  

 
5.2. Bisphosphonates  

 A number of recent studies have indicated that 
bisphosphates are potent inhibitors of MMPs. 
Bisphosphonates, analogues of inorganic pyrophosphates, 
are extensively used for the treatment of different bone 
disorders, particularly osteoporosis (160, 161). These drugs 
inhibit bone resorption by suppressing osteoclast formation 
and activity, and promoting osteoclast apoptosis (162-164). 
They also interfere with the formation of calcium phosphate 
crystals and mineralization (165, 166). Bisphosphonates, 
such as alendronate, clodronate, pamidronate, tiludronate 
and zolendronate, inhibit the enzymatic activity of different 
purified MMPs (Table 2). The inhibitory effect of 
bisphosphonates on MMP activity is likely to be caused by 
their ability to chelate Zn2+ (179). Some of the 
bisphosphonates have also been shown to directly inhibit or 
stimulate the biosynthesis and secretion of certain MMPs 
(Table 2). Despite the stimulation of MMPs in some cases, 
the net effect of bisphosphonates on MMPs appears to be a 
reduction in active MMP levels in tissues or circulation 
(180-182). Because of their ability to inhibit MMPs, 
bisphosphonates have been used to prevent
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Table 2. Regulation of MMPs by bisphosphonates 
Bisphosphonate Regulation  Reference 
Alendronate Inhibits enzymatic activity of MMP-1, -2, -3, -8, -9, -12, -13 and -20  

Inhibits MMP-2 synthesis and secretion 
Inhibits MMP-2 and -9 secretion 
Stimulates MMP-13 synthesis  

167, 168 
169 
170, 171 
74 

Clodronate Inhibits enzymatic activity of MMP-1, -2, -8, -9, -13 and -14  
Inhibits MMP-14 synthesis  

167, 168, 172, 173 
174 

Pamidronate Inhibits enzymatic activity of MMP-1, -2, -3, -8, -9, -12, -13 and -20  
Stimulates MMP-2 and 9 secretion  

167, 168 
175, 176 

Tiludronate Inhibits MMP-1 and -3 activity  167, 177 
Zolendronate Inhibits enzymatic activity of MMP-3, -12, -13, and -20  

Inhibits MMP-9 synthesis and activity 
Stimulates MMP-2 secretion  

167, 168 
178 
176 

 
tumor cell metastasis to bone (179, 183). The effectiveness 
of bisphosphonates in the treatment of osteoporosis and 
other bone disorders may also be partly due to their ability 
to inhibit MMP activity in bone. Lately, bisphosphonates 
are used not only to treat bone disorders, but also 
considered for the treatment of different non-bone diseases, 
including periodontal disease, dental caries and arthritis 
(184-187).  

 
5.3. Tetracyclines 

Tetracycline derivatives inhibit the production 
and activity of different MMPs, including collagenases, 
gelatinases and MT1-MMP (75, 188-190). These 
therapeutic agents include the classic antimicrobial 
tetracyclines, such as tetracycline, doxycycline and 
minocycline, and the chemically modified tetracycline 
derivatives that lack the antimicrobial properties (188). 
Tetracycline derivatives are potential therapeutic agents for 
cancer metastasis and different forms of arthritis, because 
of their inhibitory effects on MMPs (188-193). Tetracycline 
derivatives have been used for the treatment of periodontal 
disease, and the antimicrobial and MMP inhibitory 
properties of these drugs have contributed to their efficacy 
(194, 195). To a lesser extent, tetracyclines have been 
useful in treating rheumatoid arthritis (196). Consistent 
with the ability to inhibit various MMPs, tetracycline 
derivatives modify bone resorption and reduce bone loss in 
different disease models; for example, tetracyclines inhibit 
bone loss associated with periodontal disease (197, 198), 
diabetics (199) and ovariectomy (200, 201).  

 
5.4. Other MMP inhibitors  

In addition to TIMPs, a few proteins with modest 
inhibitory effects on MMPs are known; however, their 
involvement in regulating MMP activity in bone remains to 
be established. Tissue factor pathway inhibitor 2, 
thrombospondin-1 and -2, and alpha 2-macroglobulin can 
interact with and inhibit MMPs (4, 157). Proteins 
containing some sequence similarity with the N-terminal 
sequence of TIMPs, such as netrins, secreted frizzled-
related proteins and type I collagen C-proteinase enhancer 
protein, may act as MMP inhibitors (184). Reversion-
inducing cysteine-rich protein with Kazal motifs, also 
known as RECK, is a membrane-anchored glycoprotein 
that can negatively regulate MMP functions, and inhibit 
tumor invasion and angiogenesis (187, 202). It is possible 
that some of these natural MMP inhibitors are functional in 
bone.  

 

Different MMPs are inhibited by aspirin, 
neovastat (an extract from shark cartilage), and catechins 
and theaflavins found in tea (203-205); some of these 
agents are also found to be useful for inhibiting 
angiogenesis and tumor invasion. A number of collagen 
peptidomimetic and nonpeptidomimetic inhibitors of 
MMPs have been developed recently by different 
pharmaceutical companies and tested for their potential 
therapeutic use in diseases, such as cancer, arthritis, 
periodontal disease, atherosclerosis, chronic obstructive 
pulmonary disease, and inflammation (191, 206-208). The 
collagen peptidomimetic inhibitors are designed to mimic 
the structure of collagen at the MMP binding site, and the 
nonpeptidic MMP inhibitors have been engineered on the 
basis of structural conformation of MMP active sites. 
Although some of these compounds have been effective in 
preventing various diseases in experimental models, there 
has been limited success in identifying appropriate 
candidates for treating human diseases because of various 
adverse effects, including less selectivity, metabolic 
instability, reduced bioavailability, lack of efficacy, and 
toxicity, observed during clinical trials. These problems can 
possibly be resolved in future by developing and testing 
new classes of MMP inhibitors. To date, most of the 
clinical studies using synthetic MMP inhibitors have 
focused on diseases other than bone disorders, and the 
potential use of synthetic MMP inhibitors in treating bone 
disorders remains to be evaluated.  

 
6. MMPs AND OTHER PROTEINASES   
 
 The biological functions of MMPs in bone are 
closely linked to other proteolytic enzymes, particularly 
members of the cysteine and serine proteinases. Cathepsins, 
a group of cysteine proteinases, and members of the 
PA/plasmin family of serine proteinases participate with 
MMPs to degrade bone matrix.  
 
6.1. Cathepsins 

Cathepsins mediate matrix degradation by 
breaking down collagen and other matrix components most 
effectively at acidic pH. Cathepsin K is the most abundant 
form of cathepsin synthesized by osteoclasts, and it is 
considered to be the major enzymatic tool used by 
osteoclasts to degrade bone collagen and other matrix 
components within the resorption hemivacuole, the unit of 
osteoclastic resorption (209, 210). Targeted disruption of 
cathepsin K gene in mice leads to osteopetrosis (211), and 
mutations in the cathepsin K gene cause pycnodysostosis, 
an autosomal recessive disease characterized by 
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osteopetrosis and short stature (211, 213). Other cathepsins, 
such as cathepsin B, H, L and S, may also be involved in 
the degradation of bone matrix, as suggested by their 
expression in osteoclasts and osteoblasts during the 
remodeling of bone fractures (214). MMPs and cathepsins 
play different coordinated roles in matrix degradation and 
bone resorption. Complete degradation of bone collagen 
leads to the formation of modified collagen peptide 
fragments, ICTP and CTX, which can be measured in 
serum or urine as markers of bone resorption. Recent 
studies have shown that MMPs are responsible for 
producing ICTP, whereas cathepsins, primarily cathepsin 
K, are generating CTX (215); nevertheless, inhibition of 
MMPs blunts the release of both ICTP and CTX fragments 
consistent with the idea that MMPs, rather than cathepsins, 
are instrumental in initiating resorption. MMPs and 
cathepsins may co-operate in degrading some of matrix 
macromolecules in a step-by-step manner, as suggested by 
the observation that complete degradation of type X 
collagen requires initial digestion by collagenase followed 
by subsequent degradation by cathepsin B (216). Site 
specific functional differences, based on MMP and 
cathepsin activities, seem to exist in osteoclasts; for 
instance, osteoclastic resorption of the calvarial bones is 
dependent on MMPs and cathepsins whereas that of long 
bones is primarily dependent on cathepsins (217). It is 
possible that cathepsins may regulate the enzymatic activity 
of MMPs in bone by altering TIMP levels, as demonstrated 
by the ability of cathepsin B to degrade TIMP-1 and -2 and 
consequently, inhibit angiogenesis by elevating active 
MMP levels (218). Thus, cathepsins can participate with 
MMPs in regulating bone matrix turnover by multiple 
mechanisms.  
 
6.2. PA/plasmin family of proteinases 

PA/plasmin family of serine proteinases mediates 
different functions in bone (219). PAs convert plasminogen 
into plasmin, a serine proteinase that can degrade a number 
of matrix components. Urokinase-type PA (uPA), tissue-
type PA (tPA), PA inhibitor types 1 and 2, and type 1 
receptor for uPA are expressed in osteoblasts and 
osteoclasts (220, 221). Moreover, biosynthesis of the PAs 
is augmented in osteoblasts by stimulators of bone 
resorption suggesting that these enzymes may play a 
critical role in bone matrix degradation (222). Using cells 
from uPA and tPA null mice, it has been demonstrated that 
the lack of PAs reduces the degradation of non-collagenous 
components in the bone matrix (223). Although inhibition 
of serine proteinases in calvarial explants diminishes 
calcium release, PA/plasmin system may not directly affect 
osteoclastic bone resorption (220, 223). In addition to 
mediating matrix degradation, serine proteinases may 
stimulate bone cell proliferation and migration (224, 225). 
As indicated earlier, serine proteinases can convert 
different pro-MMPs into active forms; activation of MMPs 
is regarded as the major mechanism by which these 
proteinases mediate MMP actions in bone. Apart from 
activating MMPs, serine proteinases may affect MMP 
activity in bone indirectly via mediating the release of 
growth factor regulators of MMPs, such as TGF-beta and 
IGF-1, from the bone matix (226, 227). Serine proteinases 
may also regulate the levels of some MMPs by 

inactivation; free MMP-2, not complexed with TIMP-2, has 
been shown to be degraded into inactive fragments by 
plasmin (228). Therefore, like cathepsins, serine 
proteinases can mediate MMP actions in bone.  
   
7. PERSPECTIVE 
 

Various studies described above, particularly the 
observations made in MMP deficient animal models, 
support the conclusion that MMPs are critical for normal 
bone formation and remodeling. During bone formation, 
MMPs, particularly collagenase-3 derived from 
chondrocytes, degrade cartilage matrix, allowing 
osteoblasts to lay down bone matrix. MMPs produced by 
osteoblasts and osteoclasts play a role in all aspects of bone 
remodeling, from initiation to resorption and the coupling 
of resorption to formation.  

 
Although there is considerable information 

pertaining to the regulation and functions of some of the 
MMPs, particularly of collagenase-3, our current 
knowledge of the role of other MMPs and their regulation 
in skeleton remains limited. Additional studies, focusing on 
the regulation and functions of MMPs other than 
collagenases in bone cells, are needed to generate a 
complete understanding of the role of this family of 
proteinases in bone. It is not known how different MMPs 
interact and orchestrate the matrix degradation process in a 
regulated manner. MMPs are interdependent proteinases - 
some MMPs require others for activation and to complete 
the degradation of large substrates like collagen fibrils. 
Therefore, it appears that there is a cascade of MMP-
mediated proteolytic events occurring during bone 
formation or remodeling in response to various 
physiological stimuli. Further, non-MMP proteolytic 
enzymes, such as serine proteases and cathepsins, and their 
regulators, also affect matrix breakdown during bone 
formation and remodeling. Thus, appropriate matrix 
degradation is an enormously complex process requiring 
temporal and spatial coordination of various molecular 
events mediated by numerous proteolytic enzymes and 
their inhibitors. This complexity reflects the molecular 
complexity of the bone matrix itself. In future, studies 
should be designed to elucidate the complex interactions 
among the various participants involved in ECM turnover.  

 
Although major substrates of MMPs in bone are 

presumed to be structural components of the ECM, MMPs 
may also process different types of non-structural proteins 
(229). Based on studies in non-bone cells, MMPs are 
capable of regulating cell proliferation, migration and 
signaling by altering the bioavailability of different growth 
factors, cytokines and chemokines. As indicated earlier, 
MMPs may regulate the availability of potent skeletal 
growth factors, such as IGFs and TGF-beta, in bone. Other 
cytokines and growth factors affected directly or indirectly 
by MMPs in different tissues include interferon-beta, 
connective tissue growth factor, vascular endothelial factor, 
epidermal growth factors, FGFs, TNF-alpha and IL-1 beta 
(229-231). In addition, MMPs modulate the levels of 
different chemokines, such as monocyte chemoattractant 
protein-1, -2, -3 and -4, and CXCL1, -5, -8 and -11 (230, 
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232). MMPs may also be involved in mediating cell 
signaling through integrins, cell surface receptors of 
collagens and other ECM molecules (233). At present, 
there is limited information pertaining to the possible 
MMP-modulation of the bioavailability and signaling of 
different cytokines and chemokines in bone. The skeletal 
system is influenced by changes in the immune system, 
particularly inflammation, and future studies to uncover the 
role of MMPs in regulating cytokines, chemokines and 
their signal transduction in bone may contribute to our 
understanding of bone loss associated with inflammatory 
diseases.  
 
 Are MMPs involved in the pathogenesis of 
common bone diseases, such as osteoporosis?  
Osteoporosis results from an imbalance between bone 
formation and resorption; a disruption in the balance 
between MMPs and their inhibitors may play a role in the 
pathophysiology of osteoporosis. Several lines of evidence 
suggest this possibility: first, various stimulators of bone 
resorption increase the levels of active collagenase-3 in 
bone; secondly, bone resorption is inhibited by TIMPs and 
other MMP inhibitors; thirdly, bone resorption is reduced 
in transgenic animals resistant to collagen degradation by 
collagenases; and finally, the targeted disruption different 
MMP genes in mice cause bone defects. Thus, collagenase-
3 and other MMPs can be potential targets for the 
therapeutic intervention of bone loss. A number of 
chemical and peptide inhibitors of MMPs are currently 
available, and the possibility of preventing or treating 
osteopenia should be explored.  
 
 Increased biosynthesis of MMP family members 
is also associated with diseases that affect bone indirectly. 
Induction of collagenase-1 and -3 by proinflammatory 
cytokines and prostaglandins in synovial fibroblasts and 
chondrocytes has been implicated in the pathogenesis of 
arthritis and localized osteopenia associated with arthritic 
lesions (7, 11). Overexpression of MMPs in tumor cells has 
been considered to be a major factor in the migration and 
bone metastasis of tumor cells (234, 235). Skeletal growth 
factors, such as TGF-beta, released by the degradation of 
bone matrix by MMPs, can promote the proliferation and 
activity of tumor cells in bone (236). Thus, MMPs impact 
the health of the skeletal tissue in multiple ways, and 
developing therapeutic strategies to control the expression 
of MMPs in different tissues may also help to prevent 
diseases that may indirectly affect bone health.  
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