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1. ABSTRACT

Members of the protein 4.1 family of adapter
proteins are expressed in a broad panel of tissues including
various epithelia where they likely play an important role in
maintenance of cell architecture and polarity and in control
of cell proliferation. We have recently characterized the
structure and distribution of three members of the protein
4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We
describe here binding partners for renal 4.1 proteins,
identified through the screening of a rat kidney yeast two-
hybrid system cDNA library. The identification of putative
protein 4.1-based complexes enables us to envision
potential functions for 4.1 proteins in kidney: organization
of signaling complexes, response to osmotic stress, protein
trafficking, and control of cell proliferation. We discuss the
relevance of these protein 4.1-based interactions in kidney
physio-pathology in the context of their previously
identified functions in other cells and tissues. Specifically,
we will focus on renal 4.1 protein interactions with beta
amyloid precursor protein (beta-APP), 14-3-3 proteins, and
the cell swelling-activated chloride channel pICln. We also
discuss the functional relevance of another member of the
protein 4.1 superfamily, ezrin, in kidney physio-pathology.

2. INTRODUCTION

The cytoskeleton is composed of a complex
network of proteins that participates in maintenance of cell
architecture and polarity through proper sorting and
retention of transmembrane proteins. Thus, cytoskeletal
proteins 4.1 and ezrin act as scaffold proteins by bridging
an increasing list of transmembrane proteins to actin
filaments and specialized adapter and signaling molecules
(1-9). These cytoskeleton-based interactions are dynamic
and subject to regulation depending on cell activation and
cell environment. The key role of protein 4.1 in membrane
architecture and function is illustrated by the observation
that a dramatic decrease or loss in protein 4.1 expression
results in a concomitant decrease in the level of expression
and mislocalization of transmembrane and membrane-
associated proteins that normally interact with protein 4.1
(10-27). Members of the protein 4.1 superfamily have been
originally thought to play exclusively a structural role.
There is now strong evidence for their involvement in other
cellular functions, including cell polarity (3, 15, 28-31),
nuclear architecture and cell division (32-45), control of
cell volume in response to osmotic stress (46), and control
of cell proliferation (47-53). As detailed later in this
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Figure 1. Domain organization of 4.1 proteins. Alignment
of 4.1 proteins reveals the presence of three conserved
domains (FERM domain, spectrin-actin binding (SAB)
domain, and C-terminal domain (CTD)) highlighted in
shades of grey and of three unique regions (U1, U2, U3)
displayed as white boxes. Numbers in boxes refer to
percent of identity of a given conserved domain of 4.1G,
4.1N and 4.1B to the corresponding 4.1R domain. The 4.1R
map shows a unique region U3 that is only expressed in
epithelial tissues. Note that the SAB domain is not
conserved in 4.1N.

Figure 2. Mapping of the binding motifs for various
binding partners in protein 4.1 FERM domain. We have
highlighted known binding motifs for various binding
partners in protein 4.1 FERM domain to illustrate the close
proximity of these motifs and therefore the possibility of
steric competition depending on cellular context. A Glu-
Glu-Asp (EED) motif highlighted in red in exon 5-encoded
peptide mediates interaction with anion exchanger AE1
(95). A 47 mer peptide encoded by exon 8, highlighted in
purple, mediates 4.1 interaction with glycophorin C (24).
Exon 9- and 11-encoded peptides highlighted in green
mediates 4.1 interaction with calmodulin (111). Exon 10-
encoded peptide highlighted in blue mediates 4.1
interaction with tubulin (116) and with PDZ domain-
containing proteins p55 (111) and likely dlg (SAP 97) and
CASK. A large peptide encompassing exons 9-11
(underlined in the sequence) is necessary for 4.1 interaction
with pICln (46). The Tyr residue outlined in exon-11
encoded peptide in 4.1R corresponds to the location of the
Phe responsible for 4.1B, 4.1N and 4.1G interaction with
14-3-3 proteins (50). The loss of this Phe residue in 4.1R
explains the weak affinity of 4.1R for 14-3-3 proteins
compared to the three other 4.1 proteins.

review, the complex gene organization of the four members
of the protein 4.1 family likely plays a major role in tissue
and cellular specialization of 4.1 proteins.

In this review, we present evidence for potential
interactions of the three major kidney protein 4.1 gene
products with selected binding partners in an attempt to
delineate the functions that these cytoskeletal proteins may
play in kidney and in other epithelia. The potential
functional relevance of protein 4.1 interactions with beta
amyloid precursor protein (beta-APP), members of the 14-
3-3 family of proteins, and the cell-swelling activated
chloride channel pICln, will be explored. The involvement
of another member of the protein 4.1 superfamily, ezrin, in
kidney structure, function and pathology is also discussed
in detail. Renal ankyrins will be evoked briefly since they
are described in another chapter of this issue (see Mohler
and Bennett).

3. PROTEIN 4.1 STRUCTURE

Protein 4.1 belongs to the Ezrin/Radixin/Moesin
(ERM) superfamily of adapter proteins that bridge
membrane proteins and actin filaments (4, 54). Members of
the ERM family share a homologous region, referred to as
the FERM (Four.1/Ezrin/Radixin/Moesin) domain (55),
suggesting that they may associate with identical or related
membrane proteins. The family of 4.1 proteins is composed
of prototypical red blood cell 4.1R (56-59), and three
homologs, 4.1G (60, 61), 4.1N (62-65) and 4.1B (66-69).
Protein 4.1 genes differ in their expression pattern: 4.1R is
predominantly expressed in hematopoietic tissues, and in
regions of brain and kidney (66, 70, 71); 4.1G shows a
broad distribution (60, 61, 70) but, unlike the three other
4.1 proteins, it is not expressed in kidney (71, 72); 4.1N is
mostly neuron- and kidney- specific with low expression in
the retina and gastro-intestinal epithelium (62, 71); and
4.1B is present in regions of brain, thymus, liver, gastro-
intestinal tract, pancreas, kidney, and testis (53, 66, 71-75).
The four protein 4.1 genes have been mapped on both man
and mouse chromosomes (66, 69). They share a similar
organization characterized by the existence of multiple
initiation sites combined with a large number of alternative
exons. This results in the generation of a broad repertoire of
isoforms from each protein 4.1 gene (30, 34, 58, 59, 71, 76-
93).

Well-defined structural domains have been
delineated within the protein 4.1 coding region (Figure 1)
(94). As illustrated in Figure 2, the 30kD FERM domain,
also referred to as MBD domain, mediates interaction of
4.1R and/or its homologs with numerous binding partners
including various transmembrane proteins such as the anion
exchanger AE1 (or band 3) (95-97), glycophorin C (25, 98-
105), CD44 (23), nectin (106) and Neurexins such as
Paranodin (107-110), PDZ domain-containing proteins p55
(12, 19, 111), discs large (Dlg) protein, also referred to as
synapse-associated protein 97 (SAP97) (31, 112, 113), and
CASK (29, 114), cytoskeletal protein tubulin (115, 116), a
swelling-activated chloride channel (46), and signaling
molecules including 14-3-3 proteins (50, 117) and
calmodulin (111). The FERM domain also mediates
interaction of 4.1R with phosphatidylserine (118) and, by
analogy with other members of the ERM superfamily,
likely with phosphatidylinositol 4,5-bisphosphate (PIP2)
(119). Importantly, several studies have established that
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Figure 3. Conservation of the major PKC-dependent
phosphorylation site in all four protein 4.1 members.
Alignment of the amino acid sequences of the four mouse
4.1 proteins in the region subjected to PKC-dependent
phosphorylation shows conservation of the key
phosphorylatable Ser312 residue (in larger font and shown in
blue) and of an upstream Arg309 residue (shown in red).
These two residues are components of the canonical PKC
phosphorylation site K/R-X-X-S/T previously described in
glycogen synthase (288).

interactions of ERM proteins with PIP2 play a key role in
their proper membrane targeting (120, 121). The mapping
of most of the interactions described above and the
crystallization of 4.1R FERM domain (122, 123) has
unveiled the complex structure of protein scaffolds
organized around this key functional domain. A 10kD
domain, which mediates 4.1R interaction with spectrin and
actin, is referred to as spectrin-actin binding (SAB) domain
(16, 124-129). Unlike 4.1R, 4.1G and 4.1B, 4.1N is unable
to form a ternary complex with spectrin and actin due to the
poor conservation of its SAB domain (130). The SAB
domain harbors also a nuclear localization signal (35, 131)
whose activity is modulated by the FERM domain and the
unique region U1 (34, 35, 132-134). The 22-24kD C-
terminal domain (CTD) interacts with various proteins
including receptors (13, 14, 17, 18, 20, 26, 27), tight
junction proteins (135) and the nuclear mitotic apparatus-
associated protein NuMA (36, 42). The four protein 4.1
genes show high homology in their FERM, SAB (except
for 4.1N), and CTD domains (Figure 1), suggesting that
they may share common functions.

In contrast, the unique regions U1, U2 and U3,
interspersed between the conserved domains, may confer
specific regulatory functions upon each 4.1 protein (Figure
1). The unique region U1 has been shown to modulate 4.1R
nuclear translocation (34, 35, 134). This region also
interacts with calmodulin in a calcium-dependent manner
(136) and with a centrosomal-associated protein (38). The
unique region U1 also harbors a phosphorylation site for
the cyclin-dependent cdc2 kinase (37), the level of
phosphorylation of 4.1R varying during the cell cycle. No
binding partners for the U2 and U3 unique regions have
been identified so far. The unique region U2 contains a key
Ser residue that is the primary substrate for protein kinase
C (PKC)-dependent phosphorylation of 4.1R (137).
Importantly, phosphorylation of this Ser residue leads to a
decrease in 4.1R interaction with transmembrane protein
glycophorin C and with spectrin and actin. Given the
conservation of this Ser residue and of the surrounding
amino acids in all four 4.1 proteins (Figure 3), one may
anticipate that PKC-dependent phosphorylation will play a
key role in regulation of 4.1G, 4.1N and 4.1B function as

well. Importantly, the U2 region has been recently shown
to confer upon 4.1B its anti-proliferative properties through
a still unknown mechanism (51). No function has been
assigned to the U3 region yet. Of particular note, inclusion
or exclusion of this alternative U3 region is a hallmark of
epithelial 4.1R and 4.1N, respectively (30, 71). This
intriguing feature likely reflects unique properties assigned
to each of these protein 4.1 gene products in epithelia,
including kidney. The emerging concept is that the unique
regions act as modulators of protein 4.1 interactions
mediated by the conserved domains and that tissue- and
cell-specific splicing patterns in those regions confer upon
each protein isoform unique characteristics.

4. CYTOSKELETON AND KIDNEY
ARCHITECTURE AND FUNCTION

The nephron is composed of a monolayer of
highly polarized epithelial cells that are uniquely suited to
perform specific transport functions. The nonrandom
distribution of membrane proteins reflects the vectorial
transport functions performed by these cells (41-43), and
the key role played by the cytoskeleton in targeting and
positioning membrane proteins in these cells (7, 138-144).
Importantly, while such protein complexes exist as soluble
cytoplasmic scaffolds in non-confluent cells, they are
targeted to cell-cell contact regions of the membrane in
confluent cells, namely the lateral domain in the kidney
epithelium, under the control of cell adhesion molecules
(145-150). The apical membrane of the kidney epithelium
is also divided into microdomains in which proteins
segregate, also through interactions with the cytoskeleton
(151-158). Those general concepts are likely to be
applicable to most epithelia.

4.1. Renal 4.1 proteins
We have recently established that three members

of the protein 4.1 family, i.e 4.1B, 4.1R and 4.1N, are
expressed in mouse kidney (71). We have extensively
characterized the kidney-specific splicing events in each
protein 4.1 gene and the consequences of these splicing
events on the structure of kidney protein 4.1 isoforms.
Thus, compared to the full length proteins displayed in
Figure 1, kidney 4.1B and kidney 4.1R both lack the U1
region. In addition, all three proteins lack small regions at
the boundary of the U2 region and the SAB domain.
Moreover, kidney 4.1B lacks a small N-terminal peptide in
the U3 region and kidney 4.1N lacks most of the U3 region.
Lastly, kidney 4.1B bears a truncation of the very end of
the C-terminal domain (66, 71, 88). The absence of defined
domains in renal 4.1 proteins likely confers upon their
structure specific features that meet functional requirements
in the context of the kidney epithelium. Indeed, we and
others have gathered evidence for some of these kidney-
specific splicing events either impairing or facilitating
interactions of protein 4.1 isoforms with specific binding
partners. For example, the major isoform of kidney 4.1R
lacks a small peptide encoded by exon 16. Since this
peptide contains a spectrin-binding motif (93, 129, 159,
160) and a nuclear localization signal (32, 33, 131, 161),
we predict that this kidney 4.1R isoform will interact
weakly with spectrin and will show low level of nuclear
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Figure 4. Distinct distribution of protein 4.1B and ezrin or
NHERF-1 in mouse kidney proximal convoluted tubules.
Staining of paraformaldehyde-fixed mouse kidney sections
was performed as previously described (71) using a goat
polyclonal anti 4.1B antibody (66) diluted at 3
micrograms/ml in conjunction with either a rabbit
polyclonal anti-ezrin antibody (Upstate USA. Inc.,
Charlottesville, VA) or a rabbit polyclonal anti-NHERF-1
antibody kindly provided by Dr. Stephen Lambert
(University of Massachussetts, Worcester, MA) both
diluted at 4  micrograms/ml. Primary antibodies were
detected using anti-goat IgGs coupled to fluorescein
isothiocyanate and anti-rabbit IgGs coupled to Texas Red.
As previously reported, protein 4.1B shows exclusive
basolateral distribution in proximal convoluted tubules (71)
while ezrin and NHERF-1 are both expressed at the apical
pole of the tubules. The tubules lacking 4.1B expression
but stained with anti ezrin and anti-NHERF-1 antibodies
correspond to other regions of the nephron.

localization. A smaller pool of kidney 4.1R containing this
peptide is expected to be targeted to unique cellular
compartments and/or to interact with unique binding
partners. In a similar fashion, the absence of the exon 21-
encoded peptide in kidney 4.1B is expected to impair
kidney 4.1B interaction with proteins such as NuMA (36,
42). We are currently gathering evidence for the U1 region
modulating the binding affinity of protein 4.1 FERM
domains for selected transmembrane or membrane-
associated proteins (our unpublished data). We also
anticipate that inclusion of exon 17B-encoded peptide in
the major kidney 4.1R isoform and exclusion of exon 17D-
encoded peptide in kidney 4.1N (those peptides accounting
for most of the U3 region in these two 4.1 proteins,
respectively) may either promote or inhibit 4.1R and 4.1N
interaction with selected renal binding partners.

An intriguing feature of renal 4.1 proteins is their
mutually exclusive expression along the nephron: 4.1B is
primarily expressed in the proximal convoluted tubule
(PCT) and the glomerulus, while 4.1R is detected in the
thick ascending limb (TAL) of the loop of Henle, and 4.1N
in the thin limb of the loop of Henle, the distal convoluted
tubule (DCT) and all regions of the collecting duct (71, 72).
At the cellular level, all 4.1 proteins are detected in the
basolateral region of the kidney epithelium. Given the
extensive knowledge of transport functions dedicated to
each segment of the nephron, these observations strongly
suggest that each 4.1 protein is likely involved in the
organization of region-specific protein scaffolds and
therefore likely plays unique functions in kidney.

Interestingly, 4.1R null mice display not only the
expected hematopoietic phenotype (chronic hemolytic
anemia, splenomegaly, spherocytosis and reticulocytosis;
(162)) but also neuro-behavioral deficits, likely resulting
from the lack of 4.1R expression in cerebellum, dentate
gyrus and hippocampus (70), and a renal phenotype (our
unpublished data). Indeed, 4.1R null mice present with a
slight urine acidification and alterations in Na/K balance
upon water deprivation. More recently, we have reported
that 4.1R null red blood cells display hyperactivity of the
sodium-proton exchanger NHE1 (163), of the “Gardos
channel” calcium-gated potassium channel (163, 164) and
of a potassium-chloride co-transporter (163). Terada et al.
have also suggested an interaction between 4.1B and the
sodium bicarbonate co-transporter NBC1 in the PCT based
on electron microscopy analysis of kidney sections
showing co-localization of the two proteins (72). Taken
together, these recent findings provide us with interesting
leads as for identifying additional ion transporters
interacting with 4.1 proteins in the kidney epithelium.

4.2. Renal ezrin
A member of the protein 4.1 superfamily, ezrin,

is expressed at high levels at the apical pole of epithelia
including kidney (158) (Figure 4). Up-regulation of ezrin
expression is a hallmark of major kidney diseases such as
polycystic kidney disease (165) and nephrogenic diabetes
insipidus (166). Ezrin, in association with PDZ domain
containing protein sodium-proton exchanger regulatory
factor 2 (NHERF-2), bridges the cytoskeleton and the
integral membrane protein podocalyxin in podocytes (167),
disorganization of this link leading to a dramatic loss in
glomerular foot processes (168) . A NHERF-2/podocalyxin
complex has also been recently characterized in the apical
region of MDCK cells undergoing polarization (169). In a
similar fashion, in concert with PDZ domain-containing
protein NHERF-1, ezrin has been shown to regulate sodium
and phosphate reabsorption and proton secretion at the
apical pole of the proximal convoluted tubule through its
interaction with the sodium/phosphate co-transporter Npt2
and the sodium proton exchanger NHE3, respectively (170,
171). Thus, ezrin binds to the cytoplasmic domain of NHE3
but recruits also adapter and signaling molecules, i.e.
NHERF-1 and cyclic AMP-dependent protein kinase
(PKA) (172-174). Recruitment of PKA in the vicinity of
NHE3 represents a key event in the regulation of NHE3
exchanger activity. Alterations in ezrin expression and
PKA signaling have been observed in polycystic kidney
disease (165).

Co-staining of mouse kidney with an anti 4.1B
antibody and either an anti-ezrin or an anti-NHERF-1
antibody illustrates the mutually exclusive expression of
renal 4.1 proteins and ezrin or NHERF-1 at the basolateral
and apical pole of the kidney epithelium, respectively
(Figure 4). This specialized epithelial organization may
play an important role in coordination of ion transport.
Indeed the level of activity of NHE3 at the apical pole of
the TAL epithelium has been demonstrated to depend on
the level of activity of NHE1 at the basolateral pole (175-
177), the integrity of the cytoskeleton being required for
this functional link to operate (178). The potential
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Table 1. Potential binding partners for renal 4.1 proteins in kidney
Baits Preys Number of clones Site of interaction

14-3-3theta  13/32 FERM
14-3-3zeta 7/32 FERM
14-3-3beta 7/32 FERM

kidney 4.1B

pICln 5/32 FERM
LRP16 6/16 CTD
14-3-3beta 2/16 FERM
14-3-3theta 1/16 FERM
SEC14L1 1/16 not determined
Rab-GDIalpha 2/16 not determined
beta-Amyloid Precursor Protein 1/16 CTD
Elongation Initiation Factor 1alpha 2/16 CTD

kidney 4.1R

Tumor suppressor TMEM24 1/16 not determined
alphaB-crystallin 4/8 CTD
LRP16 2/8 CTD

CTD 4.1R

Elongation Initiation Factor 1alpha 2/8 CTD
14-3-3beta 12/17 FERM
14-3-3theta 3/17 FERM

kidney 4.1N

14-3-3zeta 2/17 FERM
The number of clones refers to the number of clones corresponding to the prey of interest relative to the total number of relevant
clones pulled out with the bait. A total of 8 106, 33 106 and 27 106 Trp (+) Leu (+) yeast clones were obtained for kidney 4.1B,
kidney 4.1R and kidney 4.1N baits, respectively. Among those, 237, 578 and 415 clones were β-galactosidase (+) Trp (+) Leu (+)
His (+), respectively. We have screened so far 74, 100 and 65 clones, respectively. Prior to screening of the library, we
ascertained that none of the baits was able by itself to confer upon yeast beta-galactosidase activity and growth in absence of
tryptophane, leucine and histidine. CTD: C-terminal domain; FERM: Four 4.1/Ezrin/Radixin/Moesin.

relevance of this intriguing distribution in control of cell
proliferation will be discussed later in this chapter.

4.3. Renal ankyrins
Structure and function of renal ankyrins are

discussed in another chapter of this issue. We  will only
emphasize here that, like renal 4.1 proteins: i) renal
ankyrins are expressed as products of distinct ankyrin genes
at the basolateral pole of the kidney epithelium; ii) these
ankyrin gene products actually correspond to various
isoforms generated by tissue-specific pre-mRNA splicing
events; iii) renal ankyrins show mutually exclusive
expression along the nephron; and iv) renal ankyrins
mediate proper anchorage of key ion transporters and cell
adhesion molecules in the basolateral plasma membrane of
the kidney epithelium.

5. POTENTIAL FUNCTIONS FOR RENAL 4.1
PROTEINS

As a first step to decipher the roles of 4.1 proteins
in kidney structure and function, we have begun to identify
potential binding partners for kidney 4.1B, kidney 4.1R and
kidney 4.1N, through the screening of a rat kidney yeast
two-hybrid system cDNA library with full length renal 4.1
proteins (71) and 4.1R CTD baits.

5.1. Methodology
A rat kidney yeast two-hybrid system cDNA

library, cloned into the GAL4 activation domain vector
pGAD3S-2X (179, 180), was screened for binding partners
using baits corresponding to cDNAs encoding full length
coding regions of the major kidney-specific isoforms of
mouse 4.1N, 4.1R and 4.1B (71), or the C-terminal domain

of mouse 4.1R. Baits were cloned into the LexA DNA
binding domain vector pLEX12 (179, 180) and used for
yeast transformation. Yeast transformed with each pLEX12
bait cDNA, was selected in absence of Tryptophane, then
transformed with the pGAD3S-2X rat kidney cDNA library
conferring upon yeast growth in absence of Leucine. Yeast
was grown on triple selection plates lacking Tryptophane,
Leucine and Histidine in order to select clones in which the
bait of interest and putative preys interacted with each
other. Such protein-protein interactions restore a fully
active GAL4 transcription factor and drive the expression
of histidine selection and btea-galactosidase reporter genes.
Selected clones were further screened for prey interaction
with kidney 4.1 protein baits based on standard X-galactose
filter assay (179, 180). beta-galactosidase positive clones
were then characterized by DNA sequencing using a
forward pGAD3S-2X vector specific primer. Interactions
were re-confirmed in yeast co-transformed with cDNAs
coding for the bait and the prey of interest. Further
mapping of the regions in 4.1 proteins responsible for the
identified interactions was determined after probing preys
with various truncated variants of protein 4.1 FERM and
CTD domains. Only relevant clones (i.e. with prey coding
sequences in frame) are presented below.

5.2. Identification of binding partners for renal 4.1
proteins

The results of our screen to date are summarized
in Table 1. The predominant binding partners for kidney
4.1B (27/32 clones) and exclusive binding partners for
kidney 4.1N (17/17 clones) correspond to three members of
the 14-3-3 family of proteins: 14-3-3theta,  14-3-3zeta, and
14-3-3beta. In contrast, these proteins represent a minor
category of binding partners for kidney 4.1R (3/16 clones).
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Another binding partner for kidney 4.1B (5/32 clones) is
pICln, a cell swelling-activated chloride channel previously
reported to interact with 4.1R (46). Additional potential
binding partners for kidney 4.1R include: a putative
phosphatase suspected to promote cell proliferation, LRP16
(6/16 clones) (181, 182); two proteins involved in
trafficking, SEC14L1 (1/16 clones), a mammalian homolog
of yeast phosphatidylinositol/ phosphatidylcholine transfer
protein SEC14 (183) and the Rab GDP-dissociation
inhibitor (GDI) Rab-GDIalpha (2/16 clones), a regulatory
protein for small GTP-binding Rab proteins that regulates
vesicle-mediated cellular transport through control of Rab
GDP/GTP exchange reaction and translocation of Rab
proteins between the cytosol and cell membranes (184-
190). Of particular note, a small GTPase of the Rab family
has been recently shown to regulate postsynaptic terminal
trafficking of AMPA receptors (191), a class of receptors
that has been  reported to interact with 4.1N and PDZ
domain-containing protein SAP 97 (20). Another 4.1R
binding partner identified is the beta -Amyloid Precursor
Protein (beta-APP) (1/16 clones), a key protein in
Alzheimer's disease (AD) pathogenesis (192). 4.1R may
also potentially bind to a component of the protein
translation machinery involved in cytoskeleton
reorganization and cell transformation, i.e. elongation
initiation factor 1alpha (2/16 clones) (193, 194). Lastly, we
identified the putative tumor suppressor TMEM24 (195)
(1/16 clones), a gene present in the 11q23.3 locus and
frequently deleted in neuroblastomas, as a potential binding
partner for 4.1R.

While it will be important to confirm the various
protein-protein interactions identified by other
methodological approaches, some of them have been
previously documented in the literature. As such, we will
focus our discussion on the following three classes of
binding partners: beta-APP, 14-3-3 proteins, and the cell
swelling-activated chloride channel pICln.

5.3. β-Amyloid Precursor Protein: a key element in
progression of neuropathies and potentially
epitheliopathies
    Progressive cerebral deposition of the amyloid
beta-peptide (A-beta peptide) is an early and invariant
feature of Alzheimer's disease (196). This peptide
originates from proteolytic cleavage of the very C-terminal
region of the beta-amyloid precursor protein (beta-APP), a
widely expressed membrane-spanning glycoprotein.
Normal secretion of beta-APP involves proteolytic
cleavage, releasing the soluble extramembranous portion
and retaining a 10kD C-terminal fragment in the
membrane. Another proteolytic processing pathway
involves reinternalization of mature beta-APP from the cell
surface and its targeting to endosomes/lysosomes.
Subsequent proteolytic cleavage of mature beta-APP in the
late Golgi and/or endosomal compartment leads to
secretion of small peptides, including the 4kD A-
beta  peptide, into the extracellular milieu. Mutations in
beta-APP have been shown to promote its proteolysis,
resulting in the hypersecretion of A-beta  peptide by cells, a
pre-symptomatic event in AD pathogenesis.

Accumulation of the A-beta  peptide occurs not
only in the brain but also in the abluminal basement
membrane of brain microvessels (197) and, potentially, in
epithelia, such as kidney. Indeed, the Madin Darby canine
kidney (MDCK) cell line has been used to study beta-APP
sorting and processing (196-199). A Tyr residue (Tyr653)
and the immediately adjacent residues (654-664) in the C-
terminal region of beta-APP have been shown to dictate
proper basolateral sorting of the protein and secretion of the
A-beta peptide in MDCK cells. Importantly, basolateral
secretion of A-beta peptide in MDCK cells is disturbed by
alterations of intracellular pH and by the introduction of a
mutation in beta-APP associated with familial Alzheimer's
disease. However, the impact of the accumulation of the A-
beta  peptide in the basement membrane of epithelia,
including the kidney epithelium, of AD patients has not
been fully evaluated.

Interestingly, 4.1R has been previously reported
to co-localize with neurofibrillary tangles in brain lesions
of patients presenting with AD (200). It must be
emphasized that, at the time of this discovery, none of the
three protein 4.1 homologs were characterized and that the
antibody used in this study may have possibly cross-reacted
with other 4.1 homologs, since all four 4.1 proteins are
expressed in brain (66, 70). Moreover, neurofibrillary
tangles have been reported to be enriched in 14-3-3zeta
(201), one of the 14-3-3 isoform identified as a binding
partner for kidney 4.1B and 4.1N in our screening (Table
1). The observation that 4.1R null mice display some
neuro-behavioral deficits (70) highlights the importance of
4.1 proteins in brain physio-pathology.

Our yeast two-hybrid screening has identified the
very last nine C-terminal amino acids of beta-APP
(Y687KFFEQMQN) as the binding motif for 4.1R.
Although this motif is located downstream of the region
required for proper sorting of beta-APP and secretion of the
A-beta peptide, one may speculate that 4.1R, and/or its
homologs, could facilitate beta-APP anchorage in the
basolateral membrane of various epithelia, including
kidney. One may also speculate a role for 4.1R in
basolateral secretion of the A-beta  peptide since there is
now clear evidence for the presence of a cytoskeletal
network, including protein 4.1 homologs, on the
cytoplasmic face of the Golgi apparatus and intracellular
vesicles (4, 60-62, 202, 203).

Lastly, it is worth highlighting that beta-APP
metabolism is stimulated by metabotropic glutamate
receptors (204)  and that its processing is regulated by these
receptors in hippocampal neurons (205), a region of the
brain where several protein 4.1 homologs are detected (66).
Strikingly, metabotropic glutamate receptors have been
recently reported to interact with 4.1G (17) and may
potentially interact with other protein 4.1 homologs as well.
Further studies are needed to determine whether protein 4.1
plays an important role in beta-APP metabolism and cell
sorting in brain as well as in epithelia, and whether
alterations in protein 4.1 expression either facilitate or
impair the progression of beta-APP-related pathologies
such as AD.
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5.4. Cell signaling: importance of 14-3-3 proteins    
As detailed earlier, several protein-protein

interactions involving protein 4.1 FERM domain have now
been extensively documented (Figure 2). The recent
characterization of an interaction between 4.1B FERM
domain and members of the family of 14-3-3 proteins
adds to the diversity of protein complexes organized
around the FERM domain (117). Interestingly, 4.1R
FERM domain appears to interact weakly with 14-3-3
proteins compared to 4.1B and 4.1G FERM domains. A
Phe residue (Glu-Gln-Phe359-Glu) is necessary for 4.1B
FERM domain interaction with 14-3-3epsilon,  14-3-
3eta and 14-3-3gamma  (50). Alignment of the four 4.1
protein FERM domains revealed that this Phe residue is
conserved in 4.1B, 4.1G and 4.1N but not in 4.1R where
it is replaced by a Tyr residue (Figure 2). Importantly, a
Phe359->Tyr mutation in 4.1B FERM domain impairs its
interaction with 14-3-3 proteins, providing a mechanistic
explanation for the weak interaction of 4.1R with 14-3-3
proteins.

Our yeast two-hybrid system screening showed
that 14-3-3 proteins are major binding partners for 4.1N.
The conservation of the key Phe359 residue in 4.1N FERM
domain supports further the likeliness of interactions
between 4.1N and 14-3-3 proteins in vivo. Interestingly, the
repartition of 14-3-3 clones differs between kidney 4.1N
and kidney 4.1B. Indeed, 14-3-3 beta appears as the major
binding partner for kidney 4.1N, while 14-3-3theta is the
predominant binding partner for kidney 4.1B (Table 1). It is
likely that variations in amino acids surrounding the
canonical Phe359 residue account for preferential
interactions between specific 14-3-3 and protein 4.1
isoforms. It should be noted that the subset of 14-3-3
protein isoforms (14-3-3beta, theta and zeta) that we
identified to interact with 4.1 proteins are different from
those identified by Yu et al. (117) , i.e. 14-3-3 epsilon, eta
and gamma. This may reflect tissue-specific expression of
subsets of 14-3-3 isoforms. The observations emphasized
above, i.e. distinct proportion of 14-3-3 clones among
binding partners for each renal 4.1 protein and distinct
repartition of the 14-3-3 isoform species interacting with
kidney 4.1N and 4.1B, illustrate the functional
specialization of 4.1 proteins despite the high level of
conservation of key functional domains.

The defining of an interaction between 4.1B
FERM domain and a member of the 14-3-3 family of
proteins, 14-3-3epsilon (117), provides an important clue to
deciphering novel mechanisms by which protein 4.1 may
control cell signaling and cell proliferation. The 14-3-3
family of proteins consists of adapter proteins with multiple
functions (206): regulation of cell cycle (207, 208), cell
growth (209), apoptosis (210), transcription, nuclear
trafficking (211), protein sorting (212, 213), signal
transduction (214-219), cell polarity (220-223) and
cytoskeletal structure (224-226). As disruption of
interaction of some 14-3-3 proteins with 4.1B FERM
domain does not impair 4.1B anti-proliferative properties
(50), the precise function(s) of protein 4.1 interactions with
14-3-3 proteins still remain(s) to be defined.

For example, protein 4.1-dependent recruitment
of 14-3-3 proteins could participate in regulation of
activities of transmembrane proteins such as ion channels
and calcium pumps (227). A recent study has unveiled a
novel role for 14-3-3 proteins in mediating downregulation
of Na,K-ATPase activity upon stimulation of kidney cells
by dopamine, 14-3-3 proteins recruiting PI3-kinase to the
site of Na,K-ATPAse endocytosis (228). The location of
the 14-3-3 binding motif in 4.1 FERM domain suggests
potential binding competition of 14-3-3 proteins with
neighboring binding partners of 4.1 FERM domain, such as
calmodulin or PDZ domain-containing proteins (12, 19, 31,
111), depending on the cell context (Figure 2). Some of
these dynamic interactions could be either favored or
inhibited upon cell activation. Indeed, cell activation leads
to an increase in cytosolic calcium concentration and in
changes in protein phosphorylation levels, both events
modulating protein 4.1 interactions with its binding
partners (1, 24, 37, 111, 137, 229-232). Finally, interactions
of selected 4.1 proteins with 14-3-3 isoforms could
participate in the organization of other protein complexes
located in cellular compartments other than the plasma
membrane (233). One of those components could be the
centrosome where protein 4.1 and 14-3-3 homologs have
been detected (38, 39, 42, 45, 233, 234).

5.5.. Regulation of cell volume in response to osmotic
stress: role of the cell swelling-activated chloride
channel pICln
5.5.1. Mechanisms of regulation of cell volume

Regulation of cell volume is a critical function in
kidney where the epithelium environment is characterized
by very different ionic compositions, depending on the
segment of the nephron (235). Defective cell volume
regulation leads to major nephropathies (236, 237).
Changes in cell volume are accompanied by a
reorganization of the actin cytoskeleton which is associated
with membrane ion transporters, the cytoskeleton acting as
both a structural network and a sensor for cell volume
changes. Cells maintain a constant volume despite
variations in concentrations of salts in their surroundings
through either Regulatory Volume Increase (RVI),
activated when cells shrink, or Regulatory Volume
Decrease (RVD), activated when cells swell.

Two types of transporters mediate RVI, the
Na,K,2Cl co-transporter BSC1 and the sodium proton
exchangers NHE1, NHE2 and NHE4 (238-240). The
reorganization of the actin cytoskeleton plays an important
role in NaCl entry into the cell through activation of these
membrane channels (241-243). In an hypotonic
environment, cells undergo RVD as a result of a loss of K
and Cl, mediated by activation of a K,Cl co-transporter
(244). This ion efflux drives an outward movement of
water molecules and subsequently a decrease in cell
volume. An outward current of chloride involving also
other osmolytes, known as Iswell, is involved in RVD as
well (245). Several cell swelling-activated proteins have
been proposed to account for the Iswell current: chloride
channels C1C-2 and C1C-3, P-glycoprotein, and,
importantly in the context of this review, the chloride
channel pICln.
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Figure 5. Mapping of the region responsible for mouse renal 4.1 protein interaction with rat pICln. Yeast strain L40 was co-
transformed with cDNAs encoding full length rat pICln and various mouse 4.1 constructs. Panel A: 1: full length kidney 4.1R, 2:
4.1R FERM domain, 3: 4.1R CTD domain, 4: full length kidney 4.1B, 5: 4.1B FERM domain, 6: 4.1G FERM domain. Panel B:
1: full length kidney 4.1N, 2: 4.1N FERM domain, 3: 4.1N FERM domain ∆281-297, 4: 4.1N FERM domain ∆270-297, 5: 4.1N
FERM domain aa128-280, 6: 4.1N FERM domain aa162-280, 7: 4.1N FERM domain aa183-280. Protein-protein interaction was
monitored using a standard X-Gal filter assay. +++: very strong interaction, ++: strong interaction, -: no interaction.

5.5.2. Properties of the cell swelling-activated chloride
channel pICln
5.5.2.1. pICln: a versatile protein

pICln is an ubiquitous protein essential for cell
viability (246). Its over-expression results in an increase in
an outward Cl conductance, while its down-regulation leads
to a delay and decrease in RVD (247-250). pICln therefore
plays a critical role in RVD, a function that is altered in
major nephropathies. pICln has been identified in
reticulocytes and in young red blood cells where it
accumulates in the plasma membrane through an
interaction with the actin cytoskeleton (251). In platelets,
pICln associates with the alpha2-beta3 integrin and
regulates platelet function (252). In kidney, pICln is
detected predominantly in the cytosol of all regions of the
nephron (253). In addition, it is detected at the apical pole
of the epithelium in the cortex, and at both basolateral and
apical poles in the medulla (253). While it is primarily
present in the cytosol of resting cells, it is targeted to and
inserted into plasma membrane in response to cell swelling
and to diuretics (253, 254). Once inserted into the
membrane, pICln forms a channel-like structure enabling
efflux of Cl and other osmolytes, and therefore RVD.

The mechanism by which pICln is targeted to the
membrane is still unknown (253). However, the carboxyl
terminus of pICln has been shown to bind to 4.1R FERM
domain, suggesting a potential involvement of 4.1R in
regulation of cell volume through proper membrane
anchorage of pICln (46). Moreover, pICln binds to actin
(251), to a non-muscle isoform of myosin light chain (255),
and to a mammalian homolog of yeast Skb1 (256).
Importantly, Skb1 has been shown to control cell volume in
yeast (257), through cytoskeletal rearrangement mediated

by its interaction with the p21Cdc42/Rac activated protein
kinase Shk1(258). In summary, pICln is involved in distinct
cellular processes including regulation of cell volume, cell
morphology, cytoskeleton architecture, cell cycle and RNA
processing. Thus defining of the functional relevance of
pICln/4.1 interaction in various cellular structures is an
important goal of future studies.

5.5.2.2. Characterization of pICln/4.1 interaction
Protein pICln has been previously reported to

interact in vitro and in vivo with 4.1R FERM domain (46).
However, the recent characterization of pICln distribution
in rat kidney suggests that pICln may interact with other
4.1 proteins since it is expressed in regions of the nephron
where 4.1 proteins other than 4.1R are present (71).

Interestingly, we identified pICln as a binding
partner for kidney 4.1B (Table 1). As shown in Figure 5,
additional binding assays performed in yeast revealed that
full length kidney 4.1R (panel A1), kidney 4.1B (panel
A4), kidney 4.1N (panel B1), their respective FERM
domains (panels A2, A5 and B2), as well as 4.1G FERM
domain (panel A6) all interact strongly with pICln. pICln
interaction with each renal 4.1 protein may be therefore
functionally relevant. Moreover, serial truncations of 4.1N
FERM domain (panels B3-B6) enabled us to narrow down
the minimal region in 4.1N FERM domain required for
interaction with pICln to a peptide encompassing amino
acids 162-280. A previous study reported that a slightly
larger region of 4.1R FERM domain encompassing amino
acids 136-283 was necessary for interaction with pICln
(46). This region corresponds to the C-terminal half of the
FERM domain. As proposed earlier for 14-3-3 proteins, the
regulation of pICln binding to protein 4.1 FERM domain
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may also depend on the dynamic regulation of interactions
of neighboring binding partners, in particular PDZ domain
containing proteins and calmodulin (Figure 2).

Validation of the novel protein 4.1-mediated
protein-protein interactions described above in vivo will
rely primarily on: i) investigation of the phenotypes
resulting from protein 4.1 gene silencing in relevant kidney
epithelial cells, cells down-regulated for protein 4.1
expression being expected to display mis-localization of
binding partners, impact on 14-3-3-mediated cell signaling,
metabolism of beta-APP and cell response to osmotic
stress; ii) confirmation of the phenotypes unveiled through
this cell based-strategy in mouse knock out models for each
protein 4.1 gene as they will become available to us.
Deciphering such phenotypes will be greatly facilitated by
the rapid progress in microarray-based renal systems
biology (259). Such an approach will enable us defining
signatures as for alterations in transcriptional activity and in
transduction pathways in cell lines subjected to protein 4.1
gene silencing and in protein 4.1 null mouse kidneys.

6. PROTEIN 4.1 AND EZRIN: KEY PLAYERS IN
CONTROL OF CELL PROLIFERATION

As described earlier in this review, major kidney
pathologies have been linked to ezrin over-expression. To
date, none have been related to alterations in levels of
protein 4.1 expression despite the presence of several
members of the protein 4.1 family in the nephron. We
anticipate that protein 4.1-related kidney diseases, resulting
from protein 4.1-dependent defects in membrane anchorage
and/or protein processing as suggested here for AD, will be
characterized in the near future. Such kidney diseases will
very likely include proliferative diseases. Indeed, anti-
proliferative properties have been extensively documented
for 4.1B (51, 53), and to a lesser extent for 4.1R (48, 49)
and 4.1N (260-262). Loss of heterozygosity (LOH) of 4.1B
and 4.1R genes has been implicated in progression of
subsets of ependymomas and meningiomas (48, 49). Some
lung and breast carcinomas are also characterized by LOH
and/or hypermethylation of the 4.1B gene (263). Protein
4.1B could exert its anti-proliferative effect through
inhibition of protein arginine N-methyltransferase 3 activity
(52). Importantly, 4.1B over-expression in proliferative
neuronal cells blocks their growth (264). In a similar
fashion, we have recently established that over-expression
of a kidney-specific isoform of 4.1N, in a kidney epithelial
cell line that normally expresses this isoform, leads to cell
arrest (260). Two reports have described a concomitant loss
of 4.1B and E-cadherin in cell-cell contact regions upon
transition from adenoma to carcinoma in pancreas and colon
epithelia (53, 73). We therefore predict that the loss of
expression of renal 4.1 proteins could lead to proliferative
diseases affecting primarily regions of the nephron where each
4.1 protein is solely expressed, i.e. PCT upon loss of 4.1B
expression, TAL upon loss of 4.1R expression and DCT and
collecting duct upon loss of 4.1N expression.

Several proteins that have been previously
described as binding partners for 4.1 proteins, and other

potential binding partners that co-distribute with 4.1
proteins in the lateral domain of epithelial cells, likely
participate in the formation of elaborate protein complexes
responsible for cell-cell adhesion and contact inhibition.
They include i) cell adhesion molecules CD44, TSLC1 and
the E-cadherin/beta-catenin/alpha-catenin complex (23,
147, 265, 266); ii) the sodium-proton exchanger NHE1
(267); iii) PDZ-domain containing proteins dlg (SAP 97)
and CASK (29, 31); and iv) cytoskeletal proteins such as
spectrin elf (268). Alterations in activities of the small
GTP-binding proteins Rac and RhoA have been proposed
to initiate the disorganization of actin filaments observed in
proliferative epithelia (269). Alterations in the actin
cytoskeleton would in turn lead to the loss of adhesive
protein complexes responsible for epithelial cell interactions
through their lateral domains. It remains to be established
whether the depolymerization of actin filaments is sufficient to
induce disorganization of cell adhesion protein complexes or
whether the loss of protein 4.1 in plasma membrane represents
a key event in triggering such a disorganization.

The concept that the Four.1/Ezrin/Radixin/Moesin
(FERM) domain, a highly conserved peptide among
members of the protein 4.1 superfamily, mediates
regulation of cell proliferation (270), has been recently
challenged. Indeed, a recent study has established that the
unique region U2 of 4.1B is actually responsible for
inhibition of cell growth, the FERM domain-dependent
anchorage of the U2 region to the plasma membrane
representing a necessary event for inhibition of cell
proliferation (51). Other mechanisms of control of cell
proliferation mediated by protein 4.1 have been proposed.
Thus, 4.1N nuclear translocation, occurring upon rat
pheochromocytoma PC12 cell differentiation induced by
nerve growth factor (261), has been shown to block cell
proliferation through interaction of 4.1N CTD with the
phosphatidylinositol-3 (PI-3) kinase enhancer PIKE, this
interaction resulting in an inhibition of PIKE (262). A
similar inhibition of PI-3 kinase through interaction of the
tumor suppressor merlin with PIKE has been recently
reported (271). It is likely that the FERM domain, the
unique region U2 and the CTD domain of 4.1 proteins
fulfill complementary functions in control of cell
proliferation. In contrast with the loss of protein 4.1
expression observed in proliferative tissues, ezrin has been
shown to be rather over-expressed upon tumorigenesis
(272, 273). Furthermore, ezrin has been proposed to
facilitate cell invasiveness and consequently to play a
crucial role in metastasis (274-276). Ezrin metastatic
property could result from its ability to activate the PI-3
kinase/AKT survival pathway (277), Rac1- and Ras-
dependent pathways (278, 279) and the TOR/S6
kinase/4EB1 pathway (280).

An intriguing observation is the dramatic change
in activities of signaling molecules such as RhoA and Rac,
and of adhesion molecules such as CD44 or NHE1,
depending on the cell context, i.e. arrested vs. proliferative
cells. This so-called cell context would actually depend in a
large part on the cross-talk between the extracellular matrix
and the cell (281), this cross-talk having a big impact on the
characteristics of plasma membrane protein complexes
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interacting with the cytoskeleton. Indeed, the proliferative
cellular microenvironment mimics a serum deprivation that
confers increased cell motility and invasion in breast cancer
cells by activating NHE1 (282). NHE1 activation and the
subsequent invasive phenotype of metastatic human breast
cells appears to be coordinated by a sequential
RhoA/p160ROCK/p38MAPK signaling pathway gated by
direct PKA-dependent phosphorylation and inhibition of
RhoA. The authors suggest that serum deprivation
dynamically remodels the cell and compartmentalizes the
signal module described above in leading-edge pseudopodia
suggesting a topographic relationship between key signaling
protein complexes and an invasion-specific cell structure.

The disorganization of physiological protein 4.1-
based cytoskeletal complexes and the resulting formation of
pathological ezrin-based cytoskeletal complexes (283) could
play a key role in cell proliferation and invasiveness, by
altering irreversibly key signaling cues such as the PKA-gated
RhoA/p160ROCK/p38MAPK signaling pathway. In support
of this hypothesis, a member of the protein 4.1 superfamily,
moesin, has been recently shown to participate in epithelial
organization and regulation of cell proliferation through
inhibition of Rho activity, thus promoting actin polymerization
(284). Other pathways could be involved as well. Thus, the
Drosophila protein 4.1 homolog, coracle, has been initially
discovered as a dominant suppressor of the Drosophila EGF
receptor homolog (28). The concept that cytoskeletal proteins
can have a direct impact on cell signaling has been reinforced
by an elegant study establishing a crucial role for spectrin elf,
an homolog of red cell beta-spectrin, in regulation of the
Transforming Growth Factor-beta signaling pathway, through
proper sorting of two key transducers of this pathway, Smad3
and Smad4 (268). These findings challenge the paradigm that
members of the protein 4.1 superfamily act primarily as
structural proteins by providing increasing evidence for a
key role of these proteins in cell signaling through proper
positioning of regulatory molecules.

The role of 4.1 proteins as tumor suppressors may
also result from the ability of these proteins to maintain proper
cell volume and intracellular homeostasis through the
regulation of ion transporters they interact with, i.e. NHE1 and
pICln. Indeed, there is now clear evidence that proliferative
cells display an increase in cell volume and intracellular
alkalinization (285, 286). The loss in protein 4.1 expression
observed upon epithelial tumor progression, could lead to mis-
localization and/or deregulation of key ion transporters that
normally interact with protein 4.1. Thus, NHE1 could become
hyperactive in absence of protein 4.1, resulting in an increase
in NaCl reabsorption and in proton secretion, i.e. intracellular
alkalinization. Such an hypothesis is supported by a recent
observation highlighting NHE1 hyperactivity in 4.1R null red
blood cells (163). Although the functional relevance of an
interaction between another member of the protein 4.1
superfamily, ezrin, and NHE1 has been extensively
documented in fibroblasts, the occurrence of this interaction in
normal epithelia is unlikely given the mutually exclusive
expression of NHE1 and ezrin, at the basolateral and apical
poles, respectively (165, 267). Based on protein 4.1 and
NHE1 co-distribution in the lateral domain of epithelia, on
the presence of a potential juxta-membrane protein 4.1

binding motif (VKKKQ) in NHE1 cytoplasmic domain and
on functional alterations of NHE1 in 4.1R null red blood
cells (163), we are currently investigating whether 4.1R and
its homologs are indeed relevant binding partners for NHE1
in kidney epithelium. We speculate that, upon loss of cell
polarity and loss of protein 4.1 expression, an interaction
between NHE1 and ezrin would be favored and could
potentially participate in tumor progression (Figure 6).
Dissecting the protein complexes organized around ezrin
and transmembrane proteins NHE1 and CD44 would likely
lead to an understanding of how ezrin promotes cell
motility (287). A major challenge will be to understand the
mechanisms governing distinct cellular distribution and
opposite effects on cell proliferation for protein 4.1 and
ezrin, despite some structural and functional homology of
these two cytoskeletal proteins.

7. CONCLUSION

Much remains to be done to define the actual
involvement of cytoskeletal protein 4.1- and ezrin-based
networks in kidney function and the mechanisms by which
they fulfill these functions in various parts of the nephron.
In particular, we need to further our understanding of the
relationships between cytoskeleton-dependent positioning
of key transmembrane and adapter proteins and cell
signaling wiring and of the consequences of alterations of
the cytoskeleton on those processes. The generation of
mouse knock out models for each of the four protein 4.1
genes will be instrumental in evaluating the impact of a
selective loss of protein 4.1 expression in vivo and in
assessing the occurrence of compensatory mechanisms
through up-regulation of non targeted 4.1 proteins and/or
other members of the protein 4.1 superfamily, such as the
ERM proteins.

A major challenge of future investigation will be to
decipher the mechanisms responsible for the highly
selective expression of spliceforms arising from closely
related cytoskeletal protein genes in specialized regions of
a given tissue and to evaluate the physiological
implications of such an elaborate sorting. Such mechanisms
likely involve a well orchestrated network of tissue- and
cell-specific transcriptional and signaling events. Their
characterization will represent a breakthrough in the
cytoskeleton field and will without a doubt further our
understanding of the functional links between tissue
architecture and physiology. As emphasized by Mohler and
Bennett in the chapter related to ankyrins, it will be crucial
in that respect to choose appropriate cell and animal models
to decipher this fascinating machinery.
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Figure 6. Reorganization of plasma membrane protein complexes upon epithelial cell proliferation. In a normal polarized
epithelial cell, CD44, and potentially NHE1, are anchored in the lateral domain through their interaction with 4.1 proteins and the
actin cytoskeleton. PDZ domain-containing proteins, such as dlg and/or CASK, would be also recruited in such complexes
through interactions with 4.1 proteins (left panel). Ezrin interacts with apical transmembrane proteins such as NHE3 and recruits
PDZ domain-containing proteins such as NHERF-1. Ezrin is therefore unable to interact with CD44 and NHE1 due to the
mutually exclusive expression of those proteins in a different cell compartment, i.e apical pole vs. basolateral pole. Upon
tumorigenesis, protein 4.1 is lost leading to disorganization of protein complexes present in lateral cell-cell contact regions and
loss of cell polarity. In contrast, ezrin and its binding partner NHERF-1 become overexpressed and can now associate with CD44
and NHE1 since the localization of these proteins is no longer mutually exclusive within the plasma membrane (right panel). The
formation of these novel interactions, in concert with alterations in cell microenvironment, would result in alterations of CD44
and NHE1 properties (as illustrated by changes in color patterns of those proteins between the left and the right panels) and in the
formation of protein complexes that would promote cell proliferation and cell invasiveness. We speculate that a similar
mechanism would occur in most proliferative epithelia, and in particular in kidney.
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amyloid precursor protein; CD44: cluster of differentiation
44; CTD: C-terminal domain; DCT: distal convoluted
tubule; ERM: Ezrin/Radixin/Moesin; FERM:
Four.1/Ezrin/Radixin/Moesin; GTP: guanosine tri-
phosphate; His: histidine; Leu: leucine; LOH: loss of
heterozygosity; MBD: membrane binding domain; MDCK:
Madin Darby canine kidney cells; NF2: neurofibromatosis
2; NHE1: sodium-proton exchanger isoform 1; NHE3:
sodium-proton exchanger isoform 3; NHERF: sodium-
proton exchanger regulatory factor; Npt2:
sodium/phosphate co-transporter type II; PCT: proximal
convoluted tubule; PDZ: Post Synaptic Density Protein
95kD / Drosophila Disc large / Zonula Occludens-1; PI-3:
phosphatidylinositol-3 phosphate; PIKE:
phosphatidylinositol-3 kinase enhancer; PKA: cyclic AMP-
dependent protein kinase; PKC: protein kinase C; RVD:
regulatory volume decrease; RVI: regulatory volume
increase; SAB: spectrin-actin binding; TAL: thick
ascending limb; TGF-beta: Transforming Growth Factor-
beta; Trp: tryptophane; TSLC1: tumor suppressor in lung
cancer 1.
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