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1. ABSTRACT

The occurrence of DNA fragmentation in
mammalian spermatozoa was identified in 1993. In human,
sperm DNA fragmentation is particularly relevant in
subfertile patients (i.e, those subjects more likely to be
treated by assisted reproductive techniques). Thus,
concerns have been raised about the possibility that sperm
with DNA fragmentation may be involved in the process of
fertilization, in particular when invasive techniques (such
as intracytoplasmatic sperm injection) are applied.
Knowledge of the mechanisms responsible for generation
of DNA strand breaks may thus help in disclosing and
possibly identifying new therapies for the treatment of male
infertility. However, the mechanisms involved in
generating sperm DNA anomalies are far from being
clarified. In this review, we summarize and critically
analyze the main current theories that explain generation of
DNA fragmentation in spermatozoa: abortive apoptosis
(anomalies in apoptosis that occur normally during
spermatogenesis), problems in packaging of chromatin
(mainly anomalies in histone to protamine substitution) and
generation of reactive oxygen species (that may occur at
any level during spermatogenesis, sperm maturation and
transit in the male genital tract).

2. INTRODUCTORY REMARKS: WHY STUDY
SPERM DNA INTEGRITY?

Sperm DNA fragmentation is a genomic anomaly
frequently detected in subfertile patients.  Since the first
reports on this particular type of sperm damage (1, 2),
many studies were published on this topic. There are two
main reasons as to why researchers have focused their
attention on sperm DNA fragmentation. The first reason is
related to the demonstration that the incidence of DNA
fragmentation is particularly high in men with poor quality
semen (3, 4 and 5). For these patients, assisted reproductive
techniques (ART) are often the only therapeutical option to
treat their infertility problem. Since protocols of assisted
reproduction imply the overriding of several natural
barriers to fertilization (if not all, as in the case of
intracytoplasmatic sperm injection - ICSI), concerns have
been raised about the possibility that a DNA fragmented
sperm might participate in the fertilization process and the
consequences of such an event for the ensuing conceptus
(6). Indeed, increased DNA fragmentation has been related
to lower fertilization (3, 7), blastocyst (8) and pregnancy
(9) rates after in vitro fertilization (IVF), although these
data were not confirmed in a different  group of patients
(10). Since the outcome of IVF is dependent on several
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variables, including quality of oocytes and maternal age, it
appears clear that large-scale studies are needed to define the
impact of sperm DNA fragmentation in IVF outcome.

Secondly, andrologists are presently searching for
semen parameters able to predict fertilization potential,
clinically and statistically more relevant than those presently
available after a routine semen analysis, such as that
recommended by WHO. In this respect, sperm DNA
fragmentation might represent a good option. Indeed, its
occurrence in high levels in subfertile men reflects, although
not exactly overlaps, the extent of poor quality sperm (reduced
count and motility, abnormal morphology) in semen (3, 4 and
5). In addition, as mentioned above, the percentages of DNA
fragmented sperm negatively correlate with the outcome of in
vitro fertilization (3, 7-9) and a threshold value of DNA
fragmentation seems to exist over which the probability of
pregnancy is dramatically reduced (11).

3. THEORIES ON THE ORIGIN OF SPERM DNA
FRAGMENTATION IN EJACULATES

Several techniques have been used to reveal DNA
fragmentation in sperm, including TUNEL (Terminal
deoxynucleotidildyl transferase (TdT)-mediated dUTP Nick
end Labelling, 3, 5), single cell gel electrophoresis (comet
assay, 4), and the SCSA (Sperm Chromatin Structure Assay,
11). Due to the ease and rapidity of executing the assay,
TUNEL is one of the more widely used methods to study
sperm DNA fragmentation. In somatic cells, the TUNEL assay
is considered specific for apoptosis (12-14). Indeed, it has been
reported that the template and primer-independent TdT is quite
selective in detecting apoptotic DNA degradation whereas
template and primer-dependent DNA polymerases preferentially
label DNA breaks with other origin, including necrosis and
irradiation. Such a difference is explained by the fact that the
DNA polymerase template and primer-independent TdT is able
to label both single and double stranded fragments at the
hydroxylated 3’ ends (including blunt-ended or 5’ recessed DNA
fragments) at variance with DNA polymerases template and
primer-dependent which labels single strand breaks only (15).
Thus, TdT is more suitable to detect the highly frequent double-
strand DNA breaks occurring in apoptosis. Detecting DNA
fragmentation in spermatozoa with both types of assays (i.e.
using template, primer dependent DNA polymerases and
template, primer independent TdT) did not yield to any
difference in sperm labelling (15). This result, which could be
explained by considering the different chromatin packaging
between histone-linked and protamin-linked DNA (15),
demonstrated that TUNEL positivity in sperm cannot be
considered, by itself, an index of apoptosis (15) and that there is
the possibility that other mechanisms exist that lead to sperm
DNA breaks revealed by TUNEL (see below). On the other
hand, although apoptosis-like features have been detected in
sperm (16-18), a clear demonstration of an association between
sperm DNA fragmentation, as detected by TUNEL, and these
features is lacking (5). Nonetheless in literature, TUNEL
positivity is often considered as a sign of sperm apoptosis,
generating some confusion.

Knowledge of the mechanism involved in the
development of sperm DNA fragmentation in human could

favour the design of new therapies for subfertile patients
and of treatments for sperm populations used in ARTs.
However, up to now, the origin and the cause of the
phenomenon are far from being clarified, despite the
multitude of studies in the last decade.

In the literature, several theories about the origin
of DNA fragmentation have been proposed. The first
theory originates from studies obtained in rodent models
(19, 20) and then also confirmed in human (21). These
studies (19-21) reported that DNA breaks occur and later
on disappear, during the spermiogenesis. The enzyme
topoisomerase II might be involved in the re-ligation of the
DNA nicks (22) and the transient DNA breaks might have
an important role in  chromatin remodelling (21) as
suggested by the temporal coincidence between the
appearance of DNA breaks and  the occurrence of  histone
H4 hyperacetylation (21). Based on these observations, the
DNA fragmented spermatozoa present in ejaculates could
be interpreted as cells that failed to complete maturation
and in particular to complete the correct packaging of
chromatin. Some findings support this speculation: i) a
close correlation has been reported between DNA breakage
and both poorly protaminated chromatin (15) and increased
sensitivity of DNA to denaturation (an index of less stable
and resistant chromatin) (23) and ii) DNA fragmented
sperm often display persistent cytoplasmic residues, as
detected by electron microscopy (5).

In 1999 Sakkas reported the occurrence of a high
amount of sperm expressing FAS receptor in ejaculates,
especially those from patients with abnormal semen
parameters (25). In a similar group of patients, the presence
of ultrastructural features resembling somatic apoptosis
(16-18) has been reported in ejaculated sperm and such an
occurrence appears to be partially reversed by a short term
treatment with FSH (17). The occurrence of both
ultrastructural apoptotic signs and Fas expression in
spermatozoa from subfertile patients, prompted Sakkas et
al (26) to hypothesize that the presence of DNA
fragmented sperm in human ejaculates could be explained
by the occurrence of a phenomenon denominated by
Sakkas et al as “abortive apoptosis” (26). Abortive
apoptosis is an apoptotic process that begins in the testis
but fails to be completed because of an impairment in the
program of cell death or mismatching with
spermatogenesis. Thus cells committed to death cannot be
completely deleted and can be observed in the semen
together with other abnormal sperm (26). In the period in
which the “abortive apoptosis” theory was proposed, it was
widely used to summarize and integrate most of the finding
reported until then. Indeed, apoptosis had been observed in
human and animal testis (27-29), where it seems to have
the important role of matching the number of germ cells
with the amount of the supportive Sertoli cells (26) and of
deleting injured cells (30-32). In addition, at the time that
this theory was developed, germ cell apoptosis was
considered to be triggered by an interaction between FAS
receptor (expressed in germ cells surface) and Fas ligand
(secreted by Sertoli cells) (29, 33), although, more recently,
it has been demonstrated that this may not be the case (34,
35). Moreover, many studies have shown that apoptosis in
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seminiferous epithelium is controlled by hormones, in
particular FSH (27, 28), consistent with the partial
reversion of apoptosis-like ultrastructures in ejaculates of
patients after short term treatment with this hormone (17).
Data supporting the occurrence of abortive apoptosis have
been implemented after the time of first report (26). Other
signs of apoptosis (as found in somatic cells) have been
detected in ejaculates of subfertile patients, including the
expression of the apoptotic markers p53 and bcl-x (36) and
the occurrence of caspases (key apoptotic enzymes, 37-39).
Caspases are members of a family of aspartic acid-directed
cysteine proteases that act either as initiators (caspases 8, 9
and 10) or as effectors (caspases 3, 6 and 7) in apoptosis
(40-42). Both types of caspase have been described in
human sperm (37). In addition, our laboratory has recently
described the occurrence in human ejaculates of round
bodies, virtually devoid of chromatin material, that
resemble somatic apoptotic bodies (43). Such bodies are
stainable with merocyanine 540 (a probe that detects
apoptosis in somatic cells, 44) and are present in high
amount in ejaculates of oligoasthenoteratozoospermic
patients (43), the same category of subjects in which
Sakkas et al (25) found a high expression of FAS.

Another hallmark of somatic apoptosis is the
translocation of the membrane phospholipid
phosphatydilserine (PS) from the inner to the outer leaflet
of the plasma membrane. Many papers report the
occurrence of variable amounts of live PS exposing
spermatozoa in human ejaculates (37, 45, 46). This feature
has been considered as evidence of (abortive) apoptosis of
germ cells. However the meaning of PS externalization in
live sperm is still controversial. De Vries et al (47),
reported that translocation of PS is a physiological
membrane modification occurring during human sperm
capacitation, similarly to other mammalian species (48). In
addition, it is known that PS exposure in live sperm can be
induced by different noxious stimuli, including ROS (49).
However, in contrast to somatic cells (50), the noxious
action of ROS does not seem to act via an apoptotic
program in sperm, at least it does not involve or only
partially involves caspase activation (51, 52). Furthermore,
our group has shown that although spontaneous PS
exposure in live sperm is linked to the development of in
vitro DNA fragmentation, the mechanism of DNA cleavage
does not appear to involve a nuclease activity (53). Indeed,
treatment with a wide spectrum nuclease inhibitor, such as
auryltricarboxilic acid, does not prevent the development of
DNA damage in vitro (53).

Even if abortive apoptosis actually seems to
occur in the testis in certain conditions, whether such
phenomenon is the cause of DNA fragmentation in
ejaculated sperm is not yet univocally demonstrated.
Simultaneous detection of DNA fragmentation and the
hallmarks of apoptosis, revealed that only a weak
overlapping is present between DNA fragmented sperm
and sperm exhibiting p53, bcl-x and FAS expression (36).
Furthermore, no association has been detected between
apoptosis-like ultrastructures and the amount of sperm
DNA fragmentation (5). On the contrary, levels of sperm
caspases seem to overlap the distribution of DNA

fragmentation. Indeed, expression of these enzymes are
higher in subfertile patients than in healthy donors (54) and
in immature sperm fractions than in mature ones (55, 56).
Studies on the relationship between caspases and DNA
fragmentation in sperm are very important since apoptotic
DNA degradation is dependent from their activation in
many somatic cell types (57) . However a clear cause-effect
relationship between caspase activity and sperm DNA
fragmentation has not been clearly demonstrated so far. For
instance, Weng et al (37), showed that a positive
correlation occurs between the active form of caspase-3
(the main apoptotic executor) and the amount of DNA
fragmentation. However, the percentage of sperm expressing
the enzyme (up to 5%) resulted much lower than that of DNA
fragmented sperm (up to 35%). Hence, the authors concluded
that it cannot be ruled out that sperm DNA fragmentation is a
caspase-3 independent process. Alternatively, they proposed
the involvement of other types of caspases or a temporal
dissociation between caspase activation and DNA degradation
(37). Taylor et al (52) showed recently that caspase activation
in ejaculated sperm is not associated to other hallmarks of
apoptosis (such as for instance PS externalization), suggesting
that, in ejaculated sperm, caspases may serve functions
different from apoptosis (52).

Recently Sakkas et al (58) proposed a
modification of the abortive apoptosis theory, according to
which, the lack of a sharp association between DNA
fragmentation and apoptotic markers in ejaculated sperm
(5, 36) might be due to the fact that DNA damage and
persistence of apoptosis markers are generated by
independent, albeit interacting processes. Apoptotic
features as the FAS receptor, bcl-x and p 53 expression
found in ejaculates, would be the result of a failure of the
testis apoptosis triggered before the intensive nuclear and
cytoplasmatic remodelling of spermatids (58). Presence of
DNA nicks would be the result of the failure of re-ligation
normally occurring during the nucleus remodelling in
spermiogenesis. However, nuclear and cytoplasmic
remodelling might derail the normal course of apoptosis
and thus provoke the escaping of apoptotic cells from their
elimination (58). On the other hand, executing the apoptotic
process might impair the re-ligation of DNA nicks. The net
result would be a heterogeneous sperm population in
which, besides normal cells, DNA nicks and apoptotic
markers can or cannot coexist (Figure 1, 58).

Another proposed cause of DNA strand breakage
in human ejaculates is oxidative stress. A large variety of
semen factors are known to generate ROS, including
spermatozoa themselves (59). Small and time regulated
ROS production by sperm has an important role in sperm
capacitation and the acrosome reaction processes (59).
However, an excessive level of these aggressive
compounds may be responsible for cellular damage and, in
particular, DNA damage (59, 60). Endogenous (61) and
exogenous (62) free radicals are known to attack sperm
DNA. A high amount of ROS in seminal plasma has been
associated with poor sperm parameters (63, 64) and
infertile patients show increased amounts of 8-hydroxy-
deoxy-guanosine (a biomarker of oxidative DNA damage)
(65). Moreover, a positive correlation has been reported
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Figure 1. Hypothetical model explaining the association between cell immaturity, apoptotic marker proteins and DNA damage in
human sperm. Modified from Sakkas et al, 2004 (58).

between sperm DNA breakage and sperm ROS generation
(66). Importantly, in vivo studies have shown that treatment
with antioxidants diminishes sperm DNA damage (revised
in 67). Excessive ROS production by sperm is associated to
a decreased degree of cell maturity, in particular to an
abnormal retention of cytoplasm (68) and thus of the
cytosolic enzymes responsible for production of free
radicals, such as glucose-6-phosphate deydrogenase and a
putative NADPH oxidase (69). In turn, immaturity is
associated to abnormal morphology (70, 71), consistent
with the reported negative relationship between DNA
fragmentation and poor seminal morphology (3-5).

One of the main differences between the ROS
theory and others, is the site of the origin of DNA
fragmentation. Both DNA degradation in abortive
apoptosis and the failure of DNA breaks to re-ligate would
originate in the testis, whereas oxidative DNA damage
could originate in testicular as well as post testicular sites
(Figure 2). Our group has demonstrated that spontaneous
DNA fragmentation in sperm continues after ejaculation
(53), indicating that the cause of the phenomenon is not
necessarily located in the testis. Accordingly, data from
these studies suggest that endogenous ROS production
from sperm is responsible for the development of de novo
DNA damage (53). In particular, the finding that de novo
DNA fragmentation develops mainly in morphologically
abnormal sperm (53), is in agreement with the association
between abnormal morphology, immaturity and excessive

ROS production of these cells (68, 70, 71). Interestingly,
development of de novo DNA fragmentation in ejaculated
sperm does not occur in spermatozoa from healthy donors
(72).

4. ARE MATURE SPERMATOZOA ABLE TO
UNDERGO APOPTOSIS?

It is important to stress that abortive apoptosis is
a theory which attempted to explain the occurrence of
sperm DNA fragmentation in semen but it does not give
any information about the possible occurrence of a putative
apoptosis in fully mature sperm. The latter process implies
a different site of origin and possibly different pathways of
signalling and execution. So far, it has not been
demonstrated that mature sperm are able to die via
apoptosis. However, a nuclease activity in ejaculated
mammalian sperm, cleaving chromatin at the bases of DNA
loop domains into large fragments (about 50 kb) has been
shown (73) and speculation about the occurrence of
apoptosis in fully mature sperm is attractive. Apoptosis is a
ubiquitous mechanism of death in mammalian cells.
Several examples show that its physiological meaning is to
massively delete damaged or useless cells and/or to
regulate tissue homeostasis without provoking
inflammation. Hence, it is reasonable to speculate that a
similar mechanism could be involved in the elimination,
after fertilization, of the many sperm deposed in female
genital tracts of which only one is committed to fertilize the
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Figure 2. Putative different sites of origin of DNA damage in sperm according to the different theories on the origin of sperm
DNA fragmentation. According to the theory attributing DNA fragmentation to impaired testis processes, sperm DNA damage
can originate only in  the testis. According the “ROS theory”, DNA damage may originate in the testis as well as in post testicular
sites.

oocyte. At the same time, apoptosis in post testicular sperm
might represent a route to eliminate damaged cells and to
regulate the homeostasis of the number of sperm in the
male genital tract.

Whether mature male gametes retain the
machinery of apoptosis has not been verified up to now.
The finding that apoptotic markers are associated with
characteristics of immaturity, including high levels of
Creatinine Phosphokinase and low levels of Heat Shock
Protein A2 (74), suggested that the apoptotic machinery is
committed to be lost as a consequence of sperm maturation.
Accordingly, Blanco-Rodriguez and Martinez-Garcia (75)
showed that, in rat spermatids, the apoptotic signalling
molecules are restricted to a specific cytoplasmic region,
detaching from the cell as residual bodies. However, it
cannot be excluded that unique cells, such as mature sperm,
may have a program of apoptosis different from both
somatic and testis germ cells.

Treatment of ejaculated spermatozoa with stimuli
able to induce apoptosis in somatic cells does not
univocally trigger activation of the apoptotic pathways as it
occurs in the latter. Taylor et al (52) demonstrated that
treatment with staurosporine increases caspase activity in

high motile sperm without inducing PS externalization in
live sperm. On the contrary, the treatment with Fas ligand
or hydrogen peroxide does not activate caspases but
increases PS exposure (52). Similarly, betulinic acid (a pro-
apoptotic signal transduction molecule acting on
mitochondria) induces caspase activation in mature
spermatozoa, while FAS ligand does not (76).

5. CONCLUSIONS AND FUTURE PERSPECTIVES

In conclusion, the two main theories about the
origin of sperm DNA fragmentation, (one pointing to
impaired testis processes and the other one to the
oxidative stress) lead to the same sperm trait, that is the
presence of immature abnormal sperm (in variable
amounts) in human ejaculates. In this context, it cannot
be excluded that both mechanisms are, to a varying
extent, responsible for sperm DNA damage. Based on
this consideration, the research on the causes of sperm
DNA fragmentation should naturally shift to address
why, in certain subjects, the process of spermiogenesis
and /or maturation derails and yields to fractions of
sperm characterized by abnormal cytoplasmic and/or
nuclear remodelling as well as persistence of features of
cells committed to die.
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Concerning the putative occurrence of apoptosis in mature
spermatozoa, as possible cause of sperm DNA
fragmentation, studies published so far suggest that, if any
apoptosis occurs, it is executed by a different mechanism in
respect to somatic cells.
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