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1. ABSTRACT

Sepsis is the leading cause of death in critically ill
patients in the United States.  It is associated with
enormous expenditures within the health care system and
despite substantial human, medical and fiscal resources
directed at this clinical entity we have only had a modest
effect on the septic patient’s long-term survival.  However,
extensive studies over the last few decades have begun to
reveal important pathophysiological processes around
which a few promising therapeutic strategies with potential
benefits may be derived.  It is generally believed, that the
body reacts to a septic challenge with an intense hyper-
inflammatory response, designed to eliminate the
underlying pathogen.  However, along with and in response
to the intense pro-inflammatory reaction, mechanisms fall
into place to counter regulate (control) this initial response,

typically resulting in a down regulation of the
inflammatory response.  This frequently results in
dysfunction of various immunological conditions and
may result in the inability to ward off the infection and
consecutively lead to multiple organ dysfunction,
multiple organ failure and death.  It is the aberrant
development of this anti-inflammatory/
immunosuppressive response, in which it is important to
expand our understanding of pathological components to
develop potential remedy.  Upon this background this
review aims to provide an overview on the
pathophysiological mechanisms which initiate or
maintain the down regulation of the immune response to
a septic challenge and which might be a starting point
for the development of therapeutic strategies.



Immunosuppression in Sepsis

273

2. INTRODUCTION
 

Although there is great variability on the reported
incidence of sepsis it appears that about 750,000 people are
affected by sepsis in the United States each year with a
mortality of about 28.6% (1, 2).  Among more than 6.5
million hospital admissions 2.9% develop a severe form of
sepsis (1, 2).  The Center for Disease Control attributed
about 32,000 deaths in 2001 to septicemia, based on the
international classification of disease (3).  This identifies
septicemia as the tenth leading cause of death in the U.S.
(3).  An annualized increase of sepsis from 1979 to 2000 of
8.7% resulting in three times as many deaths from sepsis in
2000 when compared to 1979 has been reported (4).
Overall, in 60% sepsis is caused by gram-negative bacteria
(1, 5).
 
In the response of the host to a septic challenge,
inflammation is thought to play a crucial role (6).  In this
regard, sepsis has been defined as the systemic
inflammatory response that occurs during infection (7).
Thus, it seems logical that numerous therapies have been
based on the concept of applying anti-inflammatory agents.
Among those, corticosteroids (8), anti-endotoxin antibodies
(9), tumor necrosis factor antagonists (10, 11), and
interleukin-1 receptor antagonists (12) are only a few to
mention.  However, aggressive maintenance of
hemodynamic function (13), intensive insulin therapy (14),
low dose corticosteroids (15) and activated protein c (16)
are the only remedies that have beneficially altered
mortality from sepsis in clinical trials.  These agents, with
the exception of corticosteroids, are not classic anti-
inflammatory agents based on their primary mechanisms of
action.  The explanations for the failures of the anti-
inflammatory approaches have been attributed to several
different reasons.  First, the animal models used to study
many of those anti-inflammatory reagents did not
sufficiently emulate the pathophysiological processes
leading to sepsis and multiple organ dysfunction (MODS)
(17-20).  In this regard, the inflammatory reaction
provoked, as assessed by circulating cytokine levels, was
often a manifold greater than that seen in the clinical setting
and often pretreatment approaches were used to study the
effect of anti-inflammatory agents (6, 17-19).  Second, in
the clinical setting multiple risk factors influence the
underlying pathophysiological processes that are involved
in the development of sepsis and/or MODS.  Thus, these
may represent confounders in the assessment of the value
of a potential therapy.  Among those, age, nutrition, gender,
disease/injury comorbidity and gene polymorphism are a
few to mention (1, 2, 20, 21).  Third, it is likely that the
development of septic shock and/or MODS is not solely
dependent on the initial infectious agent and the evoked
hyper-inflammatory response of the host, as patients
frequently demonstrate organ failure or succumb in the
absence of an infectious agent (22) and as anti-
inflammatory agents can especially reveal their therapeutic
potential in diseases of clear inflammatory nature such as
rheumatoid arthritis and inflammatory bowel disease (23),
that said in conditions when no infection is present.
However, it is particularly these conditions that become
important when trying to explain why and how the capacity

to successfully ward off an infectious challenge is reduced
in patients with such comorbidity, multiple injuries or in
the scenario of a second insult/hit.  It is critical to
understand on a pathophysiological level what and how the
response to a septic stimulus is altered by adverse
conditions resulting in a lethargic/anergic immune response
in order to establish starting points at which to properly
consider boosting the immunologic response.

With this background we attempt to review those
mechanisms, which have evolved in the immune system
and that are able to counter regulate or resolve an ongoing
immune response.  By understanding the nature of these
players and considering them in the context of the septic
patient, we may get some perspective as to how they may
drive immune paralysis seen in these critically ill
individuals.

In this regard, we will consider four basic
mechanisms of immune resolution/counter regulation.
First, the release of soluble anti-inflammatory mediators,
which in response to a prior release of pro-inflammatory
mediators counter regulates the initial innate immune
response (Figure 1).  Beside soluble receptors for pro-
inflammatory agents (i.e.  IL-1 receptor antagonist , TNF-
Receptor I/II, IL-8 duffy receptor), which primarily have a
limited neutralizing effect, cytokines like IL-4, IL-10, IL-
13, TGF-beta, glucocorticoids, catecholamines, and
prostaglandins of the E series, initiate more profound and
multilevel changes in the immune system.  They directly
affect cytokine production (24-29), apoptosis and
proliferation of immune cells (30-37) and interfere with
signal transduction pathways (38).  The intracellular mode
of action for many of these agents appears to involve the
induction signaling through janus kinase (JAK), signal
transducers and activators of transcription (STAT),
phosphatase, the signalling mother against decapentaplegic
peptide (SMAD) proteins, certain members of the
suppressor of cytokine signalling (SOCS) family as well as
alterations in mitogen activated protein kinase (MAPK)
family signaling (39, 40).

The second mechanism is closely related to the
first mechanism and represents the activation/induction of
immune suppressive cell populations.  Here, while we
separate these for the purpose of discussion, we want the
reader to appreciate that this mechanism, like the one
before it and those to follow are really intimately
interwined aspects of the immune response.  The shift
towards T-helper type II subclass of CD4 (helper) T-
lymphocytes (Th2-cells) following infection and/or
inflammation has been extensively studied over the past 10-
15 years (Figure 1) (41-48).  Th2-cells are defined by their
ability to produce anti-inflammatory cytokines such as IL-
4, IL-5, IL-6, IL-10 and IL-13 as opposed to pro-
inflammatory cytokines like IL-2 and IFN-gamma
(cytokines made predominantly by Th1-cells).  Both of
these cell lineages appear to derive from a Th0 cell.  This
nomenclature also has been applied to defining CD8 T-
lymphocyte sub-populations, i.e., T-cytotoxic-cell-1 and T-
cytotoxic-cell-2, which exhibit a similar type of immune
suppressive cytokine phenotype (49).  In recent years,
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Figure 1.  Postulated inter-relationship of T-helper-cells (Th) (Th0-, Th1-, Th2-, Th3-cells), T-regulatory-cells (T-reg), gamma-
delta-T-cells, natural-killer-T- (NKT) cell or cytotoxic-T-cell (Tc) -1 and -2 and the cytokines they express in the
regulation/development of a competent cell-mediated immune response.  See text for detailed description.

along with the development of better agents to phenotype
immune cells, additional immune suppressive lymphoid
sub-populations have been found and are currently the
focus of extensive research.  Among those, Th3-cell (linked
to gut associated lymphoid tissues and extensive TGF-beta
release) (50-55), T-regulatory cells (56, 57) and the
Natural-killer-T- (NKT) cell (linked to the liver and
intestinal mucosa, producing IL-4 and IL-10) (58-63) are of
particular interest.  Beside lymphocytes,
monocytes/macrophages and dendritic cells, while playing
a key role in the innate immune response to infection
and/or inflammation can also be significant contributors to
the resolution of the inflammatory response and in inducing
immune suppression.  This in large part is based on the
observation that they can be stimulated to be potent sources
of many of the anti-inflammatory agents.  Recent studies
have also shown that even the nature of the materials they
phagocytized can drive changes in the array of pro- or anti-
inflammatory mediators they release (64, 65).  For
example, engulfment of apoptotic cells as opposed to
necrotic cell debris induces the release of predominantly
anti-inflammatory as opposed to pro-inflammatory
mediators (64, 65).

The third mechanism mainly involves the loss of
cell-cell mediated co-stimulation on lymphocytes and/or
antigen presenting cells.  In this regard, especially T-cells
require a variety of cell surface co-stimulatory molecule

ligation to become fully activated/differentiated during the
process of antigen presentation (66) (Figure 2).  Changes in
the expression level of intercellular adhesion molecule-1
(ICAM-1), B7.1, B7.2, and CD40L (67-69) on antigen
presenting cells closely regulate the activation/differentiation
state of lymphocytes during antigen presentation.
Alternatively the activation of inhibitory receptors such as
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and
CD45 within the receptive T-cell can serve to block the
activating signal via their capacity to dephosphorylate key
components in receptor signaling complex (70-72).  Loss of
co-stimulation frequently results in the arrest/anergy of T-cell
development and programmed cell death of the tolerized cell,
leading to the down regulation of growth/differentiation factors
release.

The fourth mechanism contributing to resolution of
the immune response and possibly to an anergic
immunosuppressive status is the activation of programmed cell
death in those cells, which are involved in the initial immune
response to infection (73-76).  In this regard, early and
enhanced apoptosis of lymphocytes following infection and/or
sepsis is probably one of the most well studied examples of
this process in the induction of the immunosuppressive state
(77-82).  However, the converse of this process, the delay of
apoptosis, can also lead to additional tissue damage in some
scenarios in the critically ill.  This is particularly true with
respect to neutrophils in an inflammatory and non
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Figure 2.  Aspects of the process of T-cell activation in the development of acquired immunity (either cell-mediated and/or
humoral) in response to foreign antigen (Ag) presented by an antigen-presenting cell (APC).  See text for detailed description.

infectious environment, where the delay of apoptosis they
experience is thought to be detrimental to the tissue in
which they reside (83-89).

Having now outlined a few possible mechanisms
that are involved in the counter regulation of the pro-
inflammatory/Th1 driven immune response it seems logical
that dysregulation of this secondary response, which restrains
the initial immune response, easily could result in a status of
anergy and suppression of the immune system.  Furthermore, it
seems likely that the sometimes non-selective initiation of
immunologic events also contributes to unwanted
immunosuppressive conditions.  In this regard, the enhanced
lifespan and activation of neutrophils by inflammation in the
absence of infection and the associated tissue damage will be
discussed later on.  However, it seems of particular importance
to shed light on the regulation of these mechanisms outlined
above as it is the anti-inflammatory response, which can result
in the inability to ward off infectious challenges and which
contributes to the subsequent failure of organs and late fatal
outcome.  That said, we believe it is within those mechanisms
that starting-points for the development of beneficial
immunomodulatory agents might be provided.

3. RELEASE OF SOLUBLE PRO-
INFLAMMATORY/ANTI-INFLAMMATORY
MEDIATORS AND THEIR IMMUNOSUPPRESSIVE
POTENTIAL

Sepsis or trauma is followed by an increase of
circulating pro-inflammatory mediators.  It has been

suggested, that this early systemic rise in TNF-alpha, IL-
1beta and IL-6 might be responsible for the development of
organ dysfunction and cell death in response to the insult
(90) (Figure 1).  In this regard, it has been observed that the
elevation of TNF-alpha, IL-1beta and IL-6 early after the
onset of sepsis or trauma correlates with morbidity and
mortality (91-93).  Furthermore, intravenous injection of
these mediators generally results in a shock like state (94,
95) and can result in organ dysfunction (96).  However, the
high doses or extended infusions of these cytokines used in
the majority of these studies most likely represent a
stimulus that is far beyond the levels detected in response
to cecal ligation and puncture (CLP) (97-100) or in septic
patients (101).  While it has been shown that in sepsis there
is a marked early (~1 h peak) elevation in circulating
bioactive TNF, followed by IL-6 (~4 thru 24 h) and later by
TGF-beta (24 h) (97, 98), these levels of TNF are generally
too low to produce shock (101).  Also, while the infusion of
TNF-alpha or IL-1beta has been shown to result in a shock-
like state (94, 95) the reverse logic, that inhibiting them is
beneficial, is not necessarily true.  For example,
pretreatment with antibodies to TNF prior to CLP resulted
in increased mortality when compared to sham treatment
(100).  Furthermore, passive immunization with antibodies
against TNF-alpha or IL-1beta did not inhibit sequestration
of neutrophils in the lung following CLP (99).  These data
indicate that it is not simply the presence or absence of pro-
inflammatory mediators but also the degree of release and
the final amount in circulation that appear to be relevant in
driving the immune system towards a immunosuppressive
state.  Several mediators have been identified as directly or
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indirectly affecting mortality following sepsis or shock and
in potentially altering the responsiveness of the immune
system.  In this regard, macrophage-inhibitor factor-1 (102,
103), chemokine migration inhibitory protein-1 (104) and
complement fragment 5a (C5a) (105, 106) have been
identified as directly affecting organ function and their
increase is associated with high mortality. Most recently,
high-mobility group box chromosomal protein 1 (HMGB-
1) has been described as a late pro-inflammatory mediator
in response to infection, injury and inflammation (reviewed
in (107)).  Whereas there was high lethality associated with
the administration of HMGB-1 (108, 109), antibodies
against HMGB-1 dramatically reduced mortality in animal
models of sepsis (110).

          According to Bone et al. an initial insult
(bacterial, traumatic, thermal) results in a systemic increase
of pro-inflammatory as well as anti-inflammatory
mediators and subsequently depending on the balance of
the two systems can drive either a systemic inflammatory,
compensatory anti-inflammatory or mixed antagonistic
response (111).  However, experience over the last decade
suggests that these states do not exclude one another.
Moore and colleagues suggested in their global hypothesis
for the pathogenesis of post-injury multiple organ failure
(MOF) (112), that the systemic inflammatory response
syndrome is consecutively followed by the anti-
inflammatory response.  Furthermore, an extensive
inflammatory response accounts for a more severe
immunosuppression possibly resulting in MODS and fatal
outcome (112).  Thus, the question arises as to whether in
the end it is the extent of the anti-inflammatory response -
influenced by the initial pro-inflammatory response - that
drives immune suppression, subsequent organ failure and
adverse outcome?  In this respect, we initiate our review of
the potential immune suppressive mechanisms by a
discussion of several typical anti-
inflammatory/immunosuppressive agents that have been
shown to impose direct and/or indirect effects in
experimental and, where data are available, in the clinical
setting of sepsis.

3.1. IL-10
IL-10 is an important immunosuppressive player

in the anti-inflammatory circuit accompanying/following
the pro-inflammatory reaction in response to a pathogen
(Figure 1).  However, in septic or traumatized patients it
can be associated with poor outcome (113-116).  IL-10 is
produced by T-regulatory cells, which are inducible in vitro
and in vivo under particular conditions of antigenic
stimulation (discussed later in this text and reviewed in
(117)).  B-lymphocytes (24), macrophages, dendritic cells
(DC) (118, 119) and non T-regulatory cells (reviewed and
referenced in (24, 120)), are other sources of IL-10.  IL-10
inhibits the development of Th1 responses and cytokines
released by Th1-cells.  IL-10 directly inhibits pro-
inflammatory cytokine production, e.g. IL-12 production
by dendritic cells or macrophages (24, 121).  In this regard,
a state of decreased IL-12 as opposed to enhanced IL-10
release is also evident in macrophages from mice subjected
to CLP or cecal ligation or to implantion of muscle as a
source of necrotic tissue (121).  Rahim and colleagues have

recently shown that besides the known involvement of
nuclear-factor-kappa-B (NF-kappa-B) subunits, the effect
of IL-10 on IL-12 production in macrophages may also be
associated with a decrease in nuclear c-rel levels (122).  In
synergy with IL-4, IL-10 negatively regulates the survival
of dendritic cell (DC)-1 precursor monocytes by inducing
their apoptosis (31).  In late sepsis the decrease in splenic
lymphocyte IL-2 and IFN-gamma release capacity is
associated with an increased ability to produce the anti-
inflammatory cytokines IL-4 and IL-10 (123).  Liu and
coworkers have shown that transfecting DCs with IL-10
siRNA is associated with increased CD40 expression and
IL-12 production after maturation in those cells (124).
Furthermore, silencing of IL-10 in DCs significantly
increased allogeneic T-cell proliferation and enhanced Th1
responses by increasing IFN-gamma and decreasing IL-4
production in naïve CD4 T-cells in co culture experiments
(124).

With respect to the role of IL-10 in the mortality
of CLP, there is some controversy.  Work by Hogaboom et
al. (125) indicates that mice pretreated with polyclonal
antibody to IL-10 exhibit a decreased survival to
subsequent CLP.  Along these lines studies by Minter et al.
(126) indicate that mice, which have been transiently
transfected in vivo with an adenovirus containing the
human IL-10 gene showed a marked attenuation of the pro-
inflammatory response associated with septic challenge in
the form of CLP.  However, as this represents a pre-
treatment approach it still remains to be established what
effects this approach may have in the post-treatment setting
of shocked and/or septic animals/patients.  IL-10
administration following the induction of sepsis in mice is
associated with a suppression of the early pro-inflammatory
cytokine response but also a suppression of the Th1
lymphokine response and a decrease of the animals' overall
survival (127).

Furthermore, our own laboratories results
indicate that IL-10 gene deficiency prevents the sepsis-
induced depression of Th1 lymphokine production (128).
The role of IL-10 in sepsis induced splenic immune
suppression in vitro was further confirmed by the capacity
of anti-IL-10 monoclonal antibody treatment to restore Th1
cytokine productive capacity.  Interestingly, Song et al.
found that in vivo treatment of animals with antibody to IL-
10 had a salutary effect on animal survival only when
administered following the pro-inflammatory/ hyper-
dynamic/ hyper-metabolic phase, but not when given
during pro-inflammation (128).  Thus, our results document
not only IL-10's role in septic immune dysfunction, but
illustrate that anti-IL-10 administration beyond the initial
pro-inflammatory state of polymicrobial sepsis improves
survival (128).

Mechanistically, in vivo administration of
antibodies to IL-10 markedly attenuated the rise in P38
MAPK expression in splenic lymphocytes from septic mice
in response to T-cell mitogen while restoring their ability to
produce IL-2 and IFN-gamma (38).  Thus, MAPK signal
transduction appears to be important in mediating the
anergic effects of IL-10.  More recently, Newton et al. have
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been able to demonstrate that peritoneal macrophages
lacking the CD86 receptor are not able to respond
adequately in vivo to a septic challenge and that this is
associated with an increase in their IL-10 production.  This
implies a potential immune suppressive role for the co-
stimulatory receptor CD86/B7-2 beyond that of simply
promoting competent antigen presentation to T-cells (129).

3.2. IL-4
The Th2 cytokine IL-4 is known to regulate Th1-

and Th2-cell responsiveness primarily through the
activation of the signal transducer and activation of
transcription factor-6 (STAT6) pathway (Figure 1).
However, while it is suggested that IL-4 may contribute to
the suppression of cell-mediated immunity and possibly to
fatal outcome seen in sepsis, there has been little
information on the role of this agent in the induction of
immune suppression seen in sepsis.  In this respect, studies
in our own laboratory indicated that following the onset of
sepsis (123) or following hemorrhagic shock (130),
splenocytes isolated from mice exhibited an enhanced
capacity to produce IL-4.  However, little evidence of this
cytokine’s presence in shocked/septic mouse circulation
was ever revealed.  This suggests that the role of IL-4 may
be more localized in nature.  These studies also did not
establish whether IL-4 could actively contribute to the
development of immune suppression seen in these mice.  In
this regard, Song et al. (25) observed that when mice were
post-treated with neutralizing monoclonal antibody against
mouse IL-4 that septic Balb/c mouse splenic lymphoid Th1
cytokine responsiveness could be restored while preventing
the enhancement of Th2-cell cytokine release and
associated STAT6 phosphorylation.  Furthermore,
neutralization of IL-4 markedly increased the survival rates
in septic animals when given 12hrs post CLP.

Morita and colleagues have recently provided
further insight about the mechanisms involved in IL-4
regulated Th1-cell response.  They have shown that IL-4-
transduced DCs loaded with antigen induced lower T-cell
production of IFN-gamma and an increased production of
IL-4 (26).  Furthermore, they have indicated that the
suppression of Th1 mediated and induction of Th2
responses by IL-4-transduced DCs is associated with
decreased production of IL-23 (26).  The effect of IL-4 on
peripheral blood monocyte apoptosis has been addressed by
Eslick and colleagues (30).  They have demonstrated that
IL-4, like IL-10, is able to prevent monocyte apoptosis by
upregulation of FLICE-Like Inhibitory Protein (FLIP) and
inhibits monocyte pro-inflammatory cytokine production
(30).  Taken together, these data indicate that the Th2
cytokine IL-4 can contribute to the suppression of cell-
mediated immunity and death associated with experimental
polymicrobial sepsis.

3.3. TGF-beta
Studies from our laboratory (131) and others

(132, 133) have also demonstrated that immunosuppression
following shock or sepsis is associated with the systemic
release of the anti-inflammatory cytokine TGF-beta.  The
role of TGF-beta and IL-6 (a direct/indirect inducer of
TGF-beta release) as potential anti-inflammatory agents in

sepsis, as well as in trauma, has been documented by the
work of Miller-Graziano et al. (134) and Zhou et al. (135).
Based on this, one can envision a network of systemic
effects mediated by agents that induce the release of IL-6,
leading to increased TGF-beta levels that would in turn
directly or indirectly induce the suppression of host
responses seen during sepsis.

In a series of experiments Williams and
coworkers have addressed the role of TGF-beta in
infectious lung diseases (136).  They have shown that
intranasal instillation of plasmid DNA for the TGF-beta
gene is beneficial in ameliorating inflammation during C.
neoformans, Influenza and Respiratory Syncitial Virus
infection by down regulating both, Th1- and Th2-cells
(136).  However, these effects were associated with a
decreased capacity to clear influenza and respiratory
syncitial virus, which resulted in an increase of the
replicating pathogen (136).  TGF-beta has also shown to
decrease E-selectin and IL-8 gene transcription and thus
inhibit neutrophil transmigration through endothelial cells
(28), potentially inhibiting pathogen clearing by
neutrophils.  Chen and coworkers have delineated that upon
apoptosis of T-cells, TGF-beta is secreted and inhibits pro-
inflammatory cytokine production by activated
macrophages to foster immune suppression (27).  TGF-beta
also stifles the expression of Fc receptor for
immunoglobulin, inhibits chemokines (i.e. MCP-1), which
results in impaired leukocyte trafficking to the site of
inflammation and down regulates CD36, a receptor
important to the recognition and clearance of apoptotic
cells (32, 137-140).

3.4. Prostaglandin E2 (PGE2)
In addition to the anti-inflammatory cytokines,

prostaglandins (PGs), particularly PGE2, are important
mediators of immuneresolution/immunesuppression.  Their
production can be induced not only by microbial
components such as endotoxin, but also by complement, or
by platelet and leukocyte aggregation.  There is also
evidence that cytokines such as TNF, IL-1, and TGF-beta
may also stimulate the release of PGE2 (95, 134).  Studies
by Ertel et al. (141) in rats subjected to CLP indicated both
elevated IL-6 and TNF levels in circulation, and a marked
increase in plasma PGE2 levels.  The anti-inflammatory
properties of PGE are by far not restricted to the regulation
of leukotrienes.  Choudhry et al. (142, 143) have reported
evidence that prostaglandins appear to mediate lymphocyte
dysfunction in a rat sepsis model.  We have previously
made similar observations following shock where
hemorrhage was found to induce such effects by
augmenting PGE2 release and lymphocyte responsiveness
(130).  PGE2 itself has been shown to inhibit proliferation
of antigen-stimulated lymphocytes (33) and to suppress
cytokine release by mononuclear phagocytes in the lung
(29).  PGE2 can also exert its effects by inhibiting
lymphocyte trafficking through endothelial cell layers (144)
via down regulation of ICAM-1, VCAM-1 and ELAM-1,
thus preventing them from entering the site of inflammation
(145, 146).  In general PGE2 in vivo seems to result in a
inhibition of Th2 differentiation (147), although in vitro
exposure of lymphocytes to PGE has in part resulted in
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divergent effects (reviewed in (148)).  In summary, PGE2
not only inhibits pro-inflammatory and anti-inflammatory
processes, but also has a marked immunosuppressive
effect.  That said, the cell/tissue specific distribution of the
four subtype PGE receptors (E1-E4) further complicates
the situation and broadens the in vivo effects of PGE2
(149).

3.5. Nitric Oxide (NO)
Another potentially important

immunosuppressive agent, which may contribute to the
suppression of lymphocyte-mediated immune response
following sepsis, is nitric oxide (NO).  Hogaboom et al.
(125) have shown that NO may play a role in improving
survival of female mice subjected to sepsis.  Although
when a non-specific NO antagonist (L-NAME) was used,
they found that such post-treatment also increased the
peritoneal exsudate fluid IL-10 levels, though not the
capacity of the peritoneal macrophages to make IL-10.
However, it is not known if these effects would be
comparable if male mice had been used.  Chung et al. (150)
studied the onset of immune suppression in intra-epithelial
lymphocytes and found that the NO release by inducible
nitric oxide synthase (iNOS) did appear to play a role in the
onset of immune hyporesponsiveness in the gut mucosal
lymphoid system.  Song et al. also recently reported that
NO derived from iNOS, by an autocrine/paracrine
activation loop, may play a role as a contributor to splenic
lymphoid dysfunction seen in response to sepsis.  In this
regard, iNOS deficiency restored IL-2 production but not
IFN-gamma production (151).  Alternatively, it has been
reported, that iNOS deficient mice succumb more readily to
sepsis (152).  As iNOS expression is dependent on nuclear-
factor-kappa-B (NF-kappa-B) translocation to the nucleus
(153-156) as well as activation of p38 MAPK (157, 158),
our laboratory set out to determine whether in vivo
inhibition of NF-kappa-B would also alter septic survival in
mice.  Using the NF-kappa-B inhibitor, PDTC, as a
pretreatment it was found that this increased septic
mortality (159), similar to what was seen in iNOS deficient
animals (159).  In contrast, Wu and colleagues have
reported a protective effect in preventing iNOS
upregulation in arterioles in sepsis due to protection of
impaired arteriolar constriction and pressor responses
(160).  Thus while NO’s role, as derived from iNOS, in
sepsis immune dysfunction appears important, its
pleiotropic effects make it a difficult therapeutic target.

3.6. Glucocorticoids
Corticosteroids travel easily through cell

membranes interacting with cytosolic receptor proteins
(161) and affecting transcription in the promoter region of
sensitive genes (161, 162).  They inhibit transcription factor
activator protein-1 (AP-1) (163) and members of the NF-
kappa-B-Rel transcription factor family (161, 163-166).  In
sepsis/septic shock a lack of cortisol or its effect due to
adrenal insufficiency occurs in about 10% of severe sepsis
patients (15, 167) and a glucocorticoid peripheral resistance
syndrome is also often evident (168).  However, 50% of
patients with severe sepsis typically present increased
cortisol levels (15, 167), which have alternatively been
linked to an increased risk to succumb (15).

Experimentally, intraperitoneal and intravenous
injection of LPS leads to a sudden increase of cortisol in
the bloodstream (169).  Furthermore, cytokines such as
TNF-alpha, IL-1 and IL-6 indirectly increase cortisol via
stimulation of the hypothalamic pituitary adrenal axis (170-
173).  Corticosteroids have a variety of anti-inflammatory
properties (reviewed in (174)).  Among others, they inhibit
pro-inflammatory cytokine production by lymphocytes,
macrophages, neutrophils, alveolar macrophages and
fibroblasts.  They also activate the production of anti-
inflammatory cytokines such as IL-10 in macrophages and
TGF-beta.  INOS, cyclooxygenase (COX)-2, platelet-
activating factor (PAF) and macrophage migration
inhibitory factor (MIF) production/release are alternatively
inhibited.  Furthermore, the expression of CD14 on
macrophages, as well as endothelial-leukocyte adhesion
molecule 1 (ELAM-1), ICAM-1, Lymphocyte-function-
antigen-1 (LFA-1) and CD-2 on endothelial cell are also
down regulated by corticosteroids (174).  Finally,
corticosteroids seem to induce apoptosis in immune cells,
such as thymocytes and T-lymphoytes.

However, whereas high dose corticosteroid
therapy has not shown beneficial effects for septic patients
survival over the years, various studies suggest
advantageous effects of low dose hydrocortisone therapy in
sepsis (reviewed in (175) and (176)).  In this regard, low
dose hydrocortisone is able to decrease plasma levels of
TNF-alpha, C-reactive protein, phospholipase A2 and to
increase anti-inflammatory plasma IL-10, IL-1RA and
soluble TNF-receptor (177-179).  Keh and colleagues
recently described the attenuation of the pro-inflammatory
and the anti-inflammatory response to sepsis in a double
blind, randomized, placebo-controlled, crossover study
(180).  Besides improvement of hemodynamic parameters,
they also observed a decrease in systemic IL-6, IL-8 and
soluble E-selectin, a down regulation of CD11b and CD46
on circulating neutrophils and an attenuated release of IL-
10 as well as reduced concentrations of both soluble TNF-
receptors I and II (180).  The assessment of IL-12, IFN-
gamma and IL-4 revealed no changes after hydrocortisone
treatment, indicating a normal Th1-Th2 response and only
subtle differences in the human leukocyte antigen-DR
(HLA-DR) expression of monocytes was observed (180).
In addition, monocyte phagocytosis was enhanced,
granulocyte phagocytosis was slightly depressed and
granulocyte respiratory burst was not affected during
hydrocortisone treatment (180).  These data indicate that
low dose hydrocortisone induces a down regulation of the
pro-inflammatory as well as anti-inflammatory response to
sepsis, while preserving innate immune functions.
           

Based on these results it appears that exogenous
corticosteroids clearly have immunosuppressive effects.
These immunosuppressive effects might also be a reason
for the failure of high dose corticosteroids in septic
patients.  Low dose hydrocortisone treatment in septic
patients with low cortisol levels however, appears to
beneficially blunt pro- and anti-inflammatory immune
response without causing immunosuppression (180).  This
seems to be related to decreased mortality (reviewed in
(175) and (176)).
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3.7. Sex Hormones
It has also been suggested that the balance of

endogenous sex-steroids, especially prolactin, estrogen and
testosterone may play an important role in directly or
indirectly modifying the host's immune response.  In this
regard, the impact of gender differences with respect to
sepsis has been documented by studies performed by
Zellweger et al. (181) who found that proestrus female
mice survived septic challenge better then age-matched
males.  Furthermore, a survival advantage in response to
hemorrhagic shock, seen in proestrus female animals,
appears to be related to not only higher endogenous levels
of the sex steroid hormone estrogen (182) but also to
elevated levels of prolactin (183).  Supplementation of
animals with either estrogen or prolactin has been shown to
have both immune restorative effects as well as a survival
benefit in mice subjected to shock which are subsequently
challenged by sepsis (182, 183).  Alternatively, endogenous
levels of testosterone in male mice appear to contribute to
immune suppression in hypovolemic mice (184, 185).  The
castration of male animals prior to shock or treatment with
testosterone antagonists (186) markedly attenuated the loss
of immune responsiveness in these animals while providing
a survival advantage.  Ba and colleagues recently put
forward the hypothesis that androgens appear to play an
inhibitory role in small intestinal endothelial function
(187).

4. POTENTIAL CONTRIBUTION OF LYMPHOID
AND/OR PHAGOCYTIC CELL SUB-POPULATIONS
TO THE IMMUNE SUPPRESSION SEEN IN SEPSIS.

As mentioned in the introduction, during
experimental sepsis in mice there appears to be a distinct
shift toward a Th2, or humoral, rather than a Th1, or cell-
mediated, immune response (Figure 1).  It is now well
established that septic patients and animals exhibit
enhanced expression of immunosuppressive Th2 cytokines
IL-4 and IL-10, with concurrent suppression of Th1
cytokines IL-2 and IFN-gamma (123, 188, 189).  However,
the mechanisms underpinning the development of this Th1
to Th2 shift are poorly understood.  More recently, much
effort has been made to identify potential immune cell
populations that might contribute to this shift, and whether
there are distinct immunosuppressive/anti-inflammatory
cell populations underlying both the shift toward Th2 as
well as the development of immune dysfunction (Figure 1).
That said, the possibility that injury could induce the
activation of specific populations of suppressive T-cells is
an old concept that was initially proposed by Munster et al.
(190).  Since then, much work has focused on identifying
the phenotype(s) of these suppressive T-cells beyond the
general CD3/CD4/CD8 markers.  A noteworthy sub-
population of the CD4+ T helper cell that has begun to
draw sepsis researchers scrutiny is the CD25+ T regulatory
cell.  It has been proposed that this cell population normally
exists as a constitutively active immunosuppressive T-cell
(56, 57).  In view of that, CD4+ CD25+ T regulatory cells
have the potential to contribute to the immune dysfunction
in sepsis.  Studies conducted in our lab and others support
this hypothesis, given that the percentage of CD4+ CD25+
T-cells is increased in septic mice and humans.

Interestingly, Venet et al. (191) showed that this increase
was the result of diminished CD4+ CD25- populations and
not elevated CD4+ CD25+ cell proliferation, suggesting
that CD4+ CD25+ cells, through further activation, may
induce the expression of CD25 on their negative
counterparts.  However, while this establishes an
association, further investigation is needed to directly
connect CD4+ CD25+ to the pathological alterations and/or
immunosuppression observed in sepsis.

NK-T-cells as well as gammadelta-T-cells
represent other sub-populations, which may also contribute
to the immune suppression observed in polymicrobial
sepsis (Figure 1).  Gamma-delta-T-cells are considered to
be early responders to host defense against a myriad of
microbes.  Although few studies have investigated the
functions of gamma-delta-T-cells in sepsis, initial studies
suggest these cells are not involved in the early immune
suppression, but may instead play a significant role in re-
establishing cell-mediated immune response during the
recovery phase (192).  NK-T-cells may also contribute to
the immune suppression observed in polymicrobial sepsis,
as mice depleted of this subset exhibited lower mortality, as
well as IL-6 and IL-10 levels in blood and spleen (193).
Additional studies are required to further increase our
understanding of NK-T and gamma-delta-T-cell
involvement in sepsis and its mechanisms.

Natural Killer (NK) cells, a key component in
host defense against viral infections, have also been
implicated in host response to polymicrobial sepsis (194)
(Figure 1).  Holub et al. observed lower absolute numbers
of NK-cells in peripheral blood from septic patients for up
to 7 days after onset.  In septic animals, the percentage of
perforin-positive and IFN-gamma-positive NK-cells has
been reported to decrease, suggesting diminished NK-cell
function (195).  In this regard, depletion of NK-cells
corresponded with an inability to clear bacteria early after
surgery (196).  Though this did not appear to affect the
overall survival of septic animals, it does suggest a role for
NK-cells in the early host response to invading microbes.
Further studies confirmed that NK-cells played a key
regulatory role in bacterial clearance via induction of
macrophage phagocytosis (197).

Our understanding of the contributions of
monocytes/macrophages and dendritic cells has expanded
considerably in recent years (Figure 1 and 2).  The capacity
of macrophages to produce both pro-inflammatory and
anti-inflammatory/immunosuppressive mediators is
influenced by both timing and the nature of the stimulus.
Upon infection, macrophages first produce pro-
inflammatory agents, but over time shift toward synthesis
of anti-inflammatory agents, which creates an approximate
balance of mediators and helps prevent an exacerbated
immune response.  However, during sepsis macrophages
exhibit a compensatory anti-inflammatory response
concurrent with the cessation or inability to produce pro-
inflammatory mediators.  One possible explanation for this
altered macrophage response involves the presence of an
increased number of apoptotic cell populations.  Apoptosis
serves as a stimulus for macrophage phagocytosis, and
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generally induces anti-inflammatory cytokine production.
Another possibility is the induction of an
immunosuppressive macrophage phenotype through the
p38 MAPK signaling pathway stimulated by NO release
from iNOS (151, 198).

Dendritic cells (DC) play a central role in the
development of cell-mediated immunity against invading
pathogens, and therefore the fate of DCs may provide
further insight into the mechanisms of immune suppression
in polymicrobial sepsis.  Studies from our lab and others
reveal a striking decrease in the number of DCs in patients
with sepsis and septic animals, predominately mediated by
caspase-3-induced apoptosis (199-202).  Although
apoptosis of DCs from spleen as well as local and distant
lymph nodes did not appear to discriminate between
immature and mature populations (200, 202), apoptosis of
peritoneal DCs appeared to favor the immature population
(201).  Given these findings, it is conceivable that DC
apoptosis, the concomitant loss of antigen presentation and
release of pro-inflammatory cytokines from DCs play a
crucial role in T-cell impairment and a shift toward Th2
cytokine production.

5. CO-STIMULATORY RECEPTOR/CELL-CELL
SIGNALING CHANGES IN SEPSIS: CAUSE OR
EFFECT OF IMMUNE DYSFUNCTION IN SEPSIS?

Experimental studies and clinical observations
documented that sepsis and many acute severe
inflammatory processes result in the appearance of
cytokines in the systemic circulation (as discussed earlier),
but measuring blood levels of cytokines often does not aid
in defining the pro- to anti-inflammatory balance, because
serum cytokine levels can change from minute-to-minute
and may be very different in adjacent tissue compartments.
Thus, as one alternative, the functional status of circulating
immunoeffector cells has also been considered in looking
for indices that may predict not only the trajectory of the
critically ill patients’ immune response, but also the onset
of organ dysfunction and mortality.  In this respect, as a
third potential mechanism that might contribute to immune
suppression, it is worth reviewing some of the changes that
have been seen in key immune cell receptors related to
developing organ failure and/or sepsis.

5.1. Human Leukocyte Antigen-DR (HLA-DR)
The monocytes localized at the site of

inflammation appear to be one of the predominant
participants in defense and repair.  HLA-DR, i.e., the major
histocompatibility type two antigen (MHC class II), is
primarily involved in presenting extracellular foreign
antigen on antigen presenting cells, and typically must be
expressed at levels greater than 20% to activate a normal
cell-meditated immune response (203) (Figure 2).  In
clinical observations, monocytic HLA-DR expressions
have been reported to be significantly decreased in both
survivors and nonsurvivors at the onset of severe sepsis.
However, where survivors of sepsis showed a continuous
recovery of monocytic HLA-DR expression to ≥70%
within 10 days, nonsurvivors were characterized by a
second decrease in monocytic HLA-DR expression after

day 7 or a permanent suppression.  Furthermore, the nadir
of monocytic HLA-DR expression coincided with the peak
of the systemic inflammatory reaction (204, 205).  Another
study confirmed this early down-regulation of monocytic
HLA-DR expression in all infected patients, but found that
persistently low expression at day 6 correlated with poor
outcome.  This alteration in HLA-DR appeared to occurr at
a transcriptional level via a decrease in the class II
transactivator (CIITA) transcription and could be correlated
with increase in cortisol but not IL-10 (206).  Other
mechanisms of the down-regulation of HLA-DR have also
been revealed, such as intracellular sequestration of the
HLA-DR molecules.  This defect in the process of HLA-
DR expression appears to be partially associated with IL-10
(25).  Experimental studies looking at models of
polymicrobial sepsis also indicate that tissue macrophages
derived from the spleen, peritoneum or the liver exhibit a
decline in MHC class II expression following the onset of
sepsis and that this is associated with a reduced antigen
presenting capacity of these cells (129, 207).  This same
depression in MHC class II has been reported using models
of tissue injury (129) and hypotensive shock (208).  The
mechanism undermining this change is still poorly
understood.  Interestingly, while a decline in MHC class II
expression has been reported in splenic dendritic cells
during sepsis, it was not associated with a loss of antigen
presenting capacity of these cells (209).

5.2. Co-Stimulatory Factors in Sepsis
5.2.1. Intercellular Adhesion Molecule-1 (ICAM-1)

ICAM-1 serves roles in the activation of either T-
cells in response to exotoxin induced shock or macrophages
in response to endotoxin induced shock, which can
contribute significantly towards a fatal outcome (Figure 2).
For example, ICAM-1 deficient mice were found to be
resistant to lethal effects of high doses of LPS, which
correlated with a significant decrease in neutrophil
infiltration in the liver.  This protection appears to be
related to the loss of ICAM-1 mediated leukocyte-
endothelial interactions.  ICAM-1 deficient mice were also
protected from lethal Staphylococcal enterotoxin B
challenge which was associated with a decreased systemic
release of inflammatory cytokines.  These results suggest
that anti-ICAM-1 therapy might be beneficial in both gram-
positive and gram-negative sepsis (210).  In the CLP
model, ICAM-1 deficient mice exhibited a less severe
physiological response to sepsis, exhibiting significantly
less weight loss and hypothermia.  The mortality rate in
those mice was significantly lower when compared with
WT mice and the degree of leukocyte infiltration was
decreased in pulmonary and hepatic tissue, which reduced
consequent secondary organ damage, such as acute lung
injury (211, 212).  Furthermore, saturating concentrations
of anti-ICAM-1 monoclonal antibodies reduced lung tissue
neutrophils sequestration and migration during E. coli
challenge (213).  Together, these findings document the
central role of ICAM-1 in mediating leukocyte-endothelial
cell interaction in models of septic organ injury and
suggests that this may be the predominant role of ICAM-1
during the early septic pro-inflammatory response.  It
remains unknown whether changes in ICAM-1 during
sepsis play a role in altering its’ other effector functions
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such as modulating the formation of the antigen presenting
cell-T-cell synapse during antigen mediated activation of a
cell-mediated immune response.

5.2.2. CD40
CD40 is an integral co-stimulatory molecule in

development of adaptive immunity.  In this respect, recent
studies indicate that CD40-/- deficient mice had delayed
death and improved survival after CLP (Figure 2).  They
also had less remote organ injury as manifested by reduced
pulmonary capillary leakage.  This protection was
associated with reduced IL-6 and IL-10 levels in circulation
and bronchoalveolar lavage (214).  CD40 has also been
demonstrated to be important in the ingestion of bacteria by
macrophages (215) and was necessary for IL-12 production
by macrophages upon E. coli HSP70, but not LPS
administration (216).  Another interesting observation,
which was made from clinical investigations, is that CD40
was found to have an inverse correlation between peak
CD40 expression and septic patient survival.  Particularly
in patients with bacteremia, which exhibited an increase in
CD40 expression on peripheral blood monocytes this was
found to be a protective phenomenon (217).  Our own
laboratory’s study show that the expression of CD40 was
significantly increased in Kupffer cells but not peritoneal or
splenic macrophages after sepsis (129).  This suggests that
the changes in CD40 expression may be markedly effected
by the local tissue environment of the septic animal.

5.2.3. B7 & Cytotoxic T-Lymphocyte-Associated
Protein-4 (CTLA-4)

Our results showed that the expression of B7-2
(CD86), but not B7-1 (CD80) is significantly decreased on
peritoneal macrophages after the onset of sepsis or tissue
injury (in the form of cecal ligation alone).  The increase of
IL-10 production by peritoneal macrophages during sepsis
was abolished by CD86 gene deficiency (129) (Figure 2).
The expression of CTLA-4 was also increased on
peritoneal macrophages but not on splenic adherent cells in
CLP mice (201).  Alternatively, studies by Ding et al. (201)
indicate that after sepsis mouse, splenic T-cells (CD3+
cells) express not only an increase in CD40L and CD28 but
also in CTLA-4.  Interestingly, the results from critically ill
patients indicated that CTLA-4 appears to be overexpressed
primarily on the circulating CD4+ CD25+ T-cells (205).
As these are a potentially important regulatory T-cell
population, this suggests a novel mechanism of mediating
immune suppression in sepsis, potentially via CTLA-4
activation.

5.3. Contribution of Several Intracellular Signal
Pathways
5.3.1. NF-Kappa-B

Nuclear factor-kappa B (NF-Kappa-B) is a
cardinal transcription factor in inflammatory response that
bridges the stages of recognition and reaction to an
inflammatory stimulator and/or infectious agents (Figure
3).  CD14, the “universal receptor”, can recognize a variety
of unrelated foreign biologic materials with the help of
host-derived cofactors and then activate an intracellular
tyrosine kinase system that eventually activates NF-Kappa-
B through its transmembrane signal transducing partners,

the toll-like receptors (TLRs) (218, 219).  The NF-Kappa-B
family is composed of various members, p50 (NF-Kappa-
B1), p52 (NF-Kappa-B2), p65 (RelA), RelB, and c-Rel,
which can form homo- and/or heterodimers (220).  The
most studied in sepsis are two dimers, the active form of
p65-p50 heterodimer and the non-active form of p50-p50
homodimer.  The phosphorylation of the I-Kappa-B-alpha
subunit of the NF-Kappa-B complex directs it to be rapidly
degraded, and thus frees the dimer to translocate into the
nucleus.  The activity of NF-Kappa-B can be down-
regulated by increased I-Kappa B-alpha, which dissociates
the binding of the p65-p50 heterodimer and its responsive
elements (221), or by excess production of p50-p50
homodimer (222, 223).  That said, defects or alterations in
this pathway can lead to incomplete or dysfunctional
activity of this pathway that may contribute directly or
indirectly to what would appear to be immunesuppression
and/or the state of endotoxin (LPS) tolerance/insensitivity
seen in the critically ill patients.  In this regard, activated
NF-Kappa-B can promote the expression of pro-
inflammatory cytokines such as TNF-alpha, IL-1beta, and
IL-8 plus the pro-inflammatory enzymes iNOS and COX-2,
which typically serve to potentiate the innate immune
response (224).  The results of studies on freshly isolated
peripheral blood mononuclear cells (PBMC) of patients
with severe sepsis and major trauma indicate that p50
expression is critical in the prognosis of sepsis.  The
expression of the active p65-p50 heterodimer was
significantly reduced for all patients as compared to control
donors while the p50-p50 homodimer was reduced in the
survivors of sepsis and in patients with trauma.  Upon ex
vivo LPS stimulation, PBMCS of patients with systemic
inflammatory response syndrome showed patterns of NF-
Kappa-B expression that resembled those seen during LPS
tolerance: a global down-regulation of NF-Kappa-B was
seen in survivors of sepsis and trauma patients and large
amounts of the inactive homodimer were exclusively
present in the nonsurvivors (223).  It was speculated that
this might be a mechanism by which p50 inhibits TNF
transcription (225).  However, the ratio of p65-p50 to p50-
p50 represents only one level at which NF-Kappa-B can
down-regulate the inflammatory process, NF-Kappa-B
activation can also be regulated at many other stages.  I-
Kappa-B-alpha synthesis may be stimulated by NF-Kappa-
B activation to achieve an autocrine negative feedback loop
or indirectly by other anti-inflammatory factors (221, 226,
227).  Using the THP-1 cell as a model of endotoxin
tolerance, it was shown that I-Kappa-B-alpha could also be
the mediator responsible for the reduction of LPS-induced
steady state production of the pro-inflammatory cytokine
IL-1beta (221).  Agonists of the activation of I-Kappa-B-
alpha have also been shown to inhibit NF-Kappa-B-
induced production of TNF and IL-8 (226).  Taken
together, these ex vivo patient findings and in vitro cell
study data may help to explain why inhibitors of NF-
Kappa-B activation have such divergent effects on in vivo
models.  In those studies of lethal endotoxemia where
pretreatment of animals has been carried out with an
inhibitor of NF-Kappa-B, like PDTC, some benefit has
been seen on survival.  This speaks to the classic concept of
inhibiting rampant NF-Kappa-B mediated inflammation
(228).  Interestingly when the septic challenge is modified
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Figure 3.  Diagrammatic representation of the various activation signal pathways (_____›) induced by presentation of antigen (or
mitogenic stimulant) through the T-cell receptor complex (TCR/CD3/CD4), in the presence or absence of co-stimulatory receptor
signaling via CD28, various type I/II growth factors, chemokines, as well as a variety of antagonistic signals (-----›) which inhibit
activation.  Pathways that appear to be involved in transmitting signals, which both stimulate or inhibit cell activation, are
indicated by -------›. For abbreviations please refer to text.

to include an intact infectious agent, as is the case with
CLP, the outcome is often worse (159).  This speaks to the
concept here that a minimal NF-Kappa-B mediated innate
immune response is necessary to handle the infectious
challenge.

5.3.2 p38 Mitogen-Activated Protein Kinase (MAPK) 

MAPKs are involved in all aspects of immune
responses, from the initiation of innate immunity, to the
development of adaptive immunity, and to resolution of the
immune response by apoptosis (Figure 3).  Thus it is not
surprising that p38 MAPK affects the inflammatory
response in sepsis (Figure 3).  Studies by Song et al.
revealed that the expression and activity of p38 MAPK
were increased in splenocytes and T-cells during sepsis and
that this effect could be reversed by neutralization of IL-10.
Alternatively, the expression of IL-10 also seems to be p38
MAPK dependent because the inhibition of p38 MAPK
activation suppressed IL-10 expression.  In both
circumstances, Th1 responsiveness was restored, indicating
p38 MAPK may play an important role in immune
suppressive response.  Another study on iNOS knockout
mice supports this hypothesis (38, 151, 229).  Furthermore,
delayed in vivo treatment with SB-203580 an inhibitor of

p38 MAPK was found to improve survival after CLP,
providing a potential therapeutic target for sepsis (151).

5.3.3. Janus Kinase (JAK)/ Signal Transducers and
Activators of Transcription (STAT) and Suppressors of
Cytokine Signaling (SOCS) 

JAK/STAT proteins provide a direct link between
the cytokine receptors and cytokine-induced gene
transcription.  Several STAT proteins in mammals have a
crucial role in host defense (Figure 3).  STAT1 and STAT2
mainly mediate the effects of IFNs, STAT3 mediates the
effects of gp130 ligands, typically IL-6 and to some extent
IL-10,  STAT4 and STAT6 mediate the effects of IL-12
and IL-4/IL-13, respectively (230).  As mentioned earlier,
most of these cytokines play critical roles in the septic
process.  Our own laboratory’s studies indicated evidence
of increased activation of IL-4 induced STAT6 associated
with the onset of septic immune dysfunction and mortality
in the Balb/C mice (25).  However, STAT6 deficiency did
not completely restore survival although the lymphoid Th1
responsiveness was restored.  Both STAT4 and STAT6
gene deficiency provided protection during septic
peritonitis (231).  STAT6 deficient mice showed increased
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levels of IL-12, TNF-alpha, macrophage-derived
chemokine (MDC) and an associated enhanced local
bacterial clearance.  In STAT4 deficient mice, sepsis
induced hepatic inflammation and injury were significantly
ameliorated without affecting local responses, the hepatic
levels of IL-10 and IL-13 were increased while those of
MIP-2 and KC were decreased.  Renal injury in STAT4
deficient mice during sepsis was also abrogated, which was
accompanied by decreased renal levels of MIP-2 and KC
without altering IL-10 and IL-13 levels.  Together, these
data indicate that the balance of type-1 and type-2 cytokine
responses contributes to the outcome of sepsis and
therefore such signal molecules might be potential targets
for modulating the septic response.

Activation of JAK/STAT family members also
induce the synthesis of the suppressors of cytokine
signaling (SOCS) family of proteins, which inhibit the IL-
2, IL-6 and IFN signaling pathways (Figure 3).  One could
speculate that over expression of such intracellular
signaling antagonist could lead to a state of immune cell
non-responsiveness to various stimuli.  This has in fact
been reported for SOCS-1 and SOCS-3 proteins, using
models of in vitro and in vivo endotoxin challenge (232).
However, until recently it was not known if the response to
polymicrobial sepsis was similar.  Using the CLP model,
Grutkoski et al. observed that SOCS-3 was up-regulated in
the spleen, lung, and peritoneal leukocytes [233].  Further
only the macrophages and neutrophils appeared to express
SOCS-3 in those tissues.  This supports the concept that
SOCS-3 may be another possible candidate mediator of the
immune suppression (233).  The result from studies looking
at hemorrhagic shock also support this hypothesis (234).

6. MECHANISM OF APOPTOSIS AND THEIR
RELEVANCE IN SEPSIS

Over the last decade, various studies have
implicated that programmed cell death, or apoptosis, of
immune cells appears to contribute to the immune
dysfunction and the development of multiple organ failure
seen during sepsis (235).  The process of apoptosis
represents the ability to actively delete selected cell
populations in specific tissues (236).  While required to
fight off a foreign pathogen, for macrophages, lymphocytes
and neutrophils their activation often also initiates their
subsequent apoptotic death (73-76).  The major pathways
by which cell death can be initiated are discussed in detail
elsewhere (237-252) and are also summarized in Figure 4
to provide context.  In brief, three pathways have been
described, which appear to drive apoptosis: the extrinsic
death receptor pathway (type I cells), the intrinsic
(mitochondrial) pathway (type II cells), and the
endoplasmic reticulum (ER) or stress-induced pathway.
With respect to the death receptor pathway, i.e. extrinsic
pathway, apoptosis is initiated upon ligation of soluble
(sFasL) or membrane bound (mFasL) Fas ligand (CD95L)
and Fas (CD95).  TNF-R, TNF-related apoptosis inducing
ligand (TRAIL), etc. also belong to the death receptor
family (239).  Initiator and subsequently effector caspases
are recruited and induce programmed cell death via

cleavage of DNA in the nucleus.  The expression of Fas is
regulated in a sophisticated fashion on a variety of cells
which determines their susceptibility to Fas induced
apoptosis.  In this regard, thymocytes, activated B-cells, T-
cells, monocytes, macrophages and neutrophils all express
the Fas antigen (253).  Alternatively, type II cells rely on
mitochondria to release cell destruction molecules.
Typically, activation of this intrinsic pathway can be
initiated by a loss of growth factors such as IL-2, IL-4 or
GM-CSF, or the presence of cell stressors such as IL-1, IL-
6, steroids and reactive oxygen intermediates, which
regulate pro-and anti-apoptotic Bcl-2/Bax/Bad family
members (254, 255).  Release of pro-apoptotic Bcl-2 family
members to the mitochondrial membrane decreases the
mitochondrial membrane potential and leads to the release
of cytochrome c, Smac/Diablo, and Apaf, which form the
apoptosome activating downstream caspases (255).
Finally, induction of apoptosis can occur by activating the
ER/ stress induced pathway.  Oxidant stress, calcium
dysregulation and the activation of caspase-12 initiate
cleavage of downstream caspase-3 (256).

With our development of a basic understanding
of the biology of apoptotic processes and their role in
controlling excessive immune reactions (73, 75, 257-259) it
has now become apparent that this same process appears to
contribute to the pathophysiology of disease states such as
HIV immune depression, cancer, autoimmune disorders,
neurodegenerative diseases, inflammatory bowel disease
and ischemic injury (260-269).  However, the question rises
whether the programmed cell death of immune cells plays a
significant role in the development of the immune paralysis
and subsequent morbidity/mortality seen in response to
sepsis.  In the following section we hope to summarize
those findings, which implicate programmed cell death as a
contributor to the down regulation and arrest of certain
septic immune functions.

6.1. Lymphocytes and Gut Associated Lymphoid
Tissues [GALT]
Apoptosis of lymphocytes during sepsis (thymocytes,
splenocytes, circulating lymphocytes (B- and T-cells)) are
central to the adaptive immune response and rapidly
expand in response to cytokines and antigen specific
stimulation (Figure 5).  While not always considered
critical to the early innate/pro-inflammatory septic
response, it is clear that the absence of lymphocytes is
associated with a decreased ability to survive sepsis (270).
It is hypothesized that dysregulation of apoptosis with a
loss of thymocytes, splenocytes and/or gut/mucosa
associated lymphoid tissue (GALT/MALT) during sepsis
might lead to immunosuppression by diminishing the hosts
abilities to ward off the ongoing infectious agent (79).  In
this regard, some of the earliest studies in septic mice
indicated that immature T-cells (CD4+ CD8+, CD4- CD8-)
of the thymus exhibit apoptotic changes very early (> 4 hrs)
in response to sepsis, mainly driven by the initial presence
of pro-inflammatory agents such as glucocorticoids and NO
(271) or early stimulation by complement (C5a) (272).  It
has been suggested that thymocyte apoptosis is mainly
independent of the extrinsic pathway (78, 273), however
there is also evidence, that steroids regulate the expression
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Figure 4. Diagram of some of the key components, mediators and the pathways, which have been implicated in the activation
and suppression of immune cell apoptosis. In type I cells apoptosis is mainly induced via activation of the death receptor
(extrinsic) pathway, in type II cells via the mitochondrial (intrinsic) pathway. The activation of apoptosis through the
endoplasmatic reticulum might be considered as an additional route. Stats (Signal transducers and activators of transcription),
PI3K (phosphatidylinositol-3 kinase), MAPKs (mitogen activated protein kinases), C/AIF (cellular apoptosis-inducing factor),
ψm (mitochondrial membrane potential), Apaf-1 (apoptosis-activating factor-1), MCL1 (myeloid cell leukemia sequence 1),
FADD (Fas-associated death domain), TRADD (TNFR1-associated death domain), TRAF (TNFR associated factor), IAP
(inhibitor of apoptosis proteins), RIP (receptor inhibitor protein), FLIP (FADD-like IL-1beta-converting enzyme (FLICE)-
inhibitory protein), NF-kappa-B, nuclear factor-kappa-B.

of Fas on thymocytes and thereby inititate apoptosis (274).
Death receptor driven apoptosis is more commonly seen in
bone marrow and lamina propria B-cells (275), splenic T-
cells, intestinal intraepithelial lymphocytes (IELs), and
mucosal T- and B-cells of the Peyer’s patches (276).

The relevance of lymphocyte apoptosis in septic
mice has been demonstrated by a series of studies
conducted by Hotchkiss and colleagues.  Following CLP,
lymphocyte apoptosis was found to be extensively present
in thymus and spleen and to a somewhat lesser degree in
the lung and gut (77).  Whereas we could not confirm the
apoptosis of splenocytes during sepsis in our studies (277),
we could clearly observe the apoptosis of thymocytes
during this event (78).  However, more interestingly mice
that lack mature B- and T-cells (Rag-1 deficient animals)
do not seem to have increased mortality in the first 18 hrs
after sepsis when apoptosis is present in most organs (77)
but do show an overall decreased survival rate (80).  In
contrast the transfer of apoptotic lymphocytes has been
shown to decrease survival during sepsis via an IFN-

gamma dependent mechanism (81).  This observation is of
particular interest as it suggests that apoptotic cells might
participate in the regulation of the Th1-Th2 response during
sepsis.  In a recent prospective clinical study, Hotchkiss
and colleagues reported that sepsis was associated with an
increase in apoptotic circulating lymphocytes (CD4 and
CD8 T-cells, CD20 B-cells and CD56 NK-cells).
Furthermore, the degree of CD3 T-cell apoptosis correlated
with the severity of sepsis and this was associated with
evidence of activation of both, the extrinsic and intrinsic
pathways (82).

As mentioned above IFN-gamma seems to play
an important role in mediating the effects of apoptotic
lymphocytes on the septic host’s immune response.  In this
regard, the overexpression of Akt in transgenic mice is
associated with decreased lymphocyte apoptosis, increased
IFN-gamma levels and finally decreased mortality during
sepsis (278).  The pathological significance of increased
lymphocyte apoptosis in sepsis also comes from studies,
which report that complete protection against sepsis-
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Figure 5.  Postulated steps (activation, antiinflammatory induced suppression, maladaptive intracellular signaling, pathologic
induction of apoptosis) at which the process of immune cell (T-cell) activation/differentiation might be inhibited/suppressed by
various agents leading to a resolution/suppression of the response to foreign antigen in T-lymphocytes following the onset of
sepsis.

induced T lymphocyte apoptosis in thymus and spleen and
an improved septic survival can be seen in mice which
overexpress the antiapoptotic protein Bcl-2 in lymphocytes
(80).

Apart from circulating lymphocytes and
lymphocytes in spleen and thymus, studies indicate that gut
associated lymphoid tissues (GALT), such as the Peyer's
Patches, also exhibit increased apoptosis in response to
polymicrobial sepsis/CLP, and this appears to be mostly in
the B-cell population expressing the Fas receptor (77, 279).
Besides the changes in Peyer’s Patches, increased apoptosis
has also been reported in lymphoid cells lining the small
and large intestine in mice 24 hrs post-CLP (77, 273).
These changes are also evident in the B-cell subset of the
lamina propria.  Further assessment of lamina propria
mononuclear cell (LPMC) preparations from septic mice ex
vivo also indicate not only that there are marked increases
in B-cell apoptosis but also increases in the % apoptosis in
the CD4+ (T-helper cell), CD8+ (cytotoxic T-cell) as well
as F4/80+ (macrophages) cells at both 4 (except for CD4+)
and 24 hrs (280).  Most intriguingly, we have recently
shown that the phenotypically distinct intestinal
intraepithelial lymphocyte (IEL) population also exhibits
changes associated with increased apoptosis (this may be a
reflection of localized immune cell activation in response to
sepsis as increased cytokine gene expression is also seen in

late sepsis) (281).  Interestingly, this appears to be a FasL-Fas
antigen mediated process independent of TLR-4 sensitivity,
which culminates in a marked reduction in late mortality in
C3H/HeJ-FasLgld (FasL/TLR4 deficient mice) (281).

Another interesting mechanism by which apoptotic
cells regulate the immune response and participate in the
counter-regulation of the initial inflammatory response lies in
their removal.  As eluded to earlier, it has been demonstrated
that ingestion of apoptotic cells by macrophages triggers the
release of anti-inflammatory mediators, whereas the ingestion
of necrotic cells enhances the production of pro-inflammatory
mediators (64).  In this respect, studies by Hotchkiss et al.
illustrated (81) that if they adoptively transferred cells, in
which apoptosis was induced by ex vivo irradiation, to naïve
mice prior to polymicrobial sepsis the animals survival was
worsened.  Alternatively, the transfer of necrotic cells
improved survival in septic mice.  This supports the hypothesis
that apoptotic lymphocytes have the potential to serve as
immune suppressants through their clearance during sepsis.
Evidence for this mechanism however remains to be
established within actual septic mice/patients.

6.2. Neutrophil Apoptosis
Polymorphonuclear granulocytes represent a cell

type, whose viable half-life in vivo under normal conditions
ranges about 1-2 days once released from the bone marrow.



Immunosuppression in Sepsis

286

Figure 6.  Postulated steps (activation, antiinflammatory induced suppression, maladaptive intracellular signaling, pathologic
induction of apoptosis) at which the process of neutrophil activation/differentiation might be inhibited/suppressed by various
agents leading to a suppression of the response of neutrophils to a foreign antigen following the onset of sepsis.

In vitro they typically undergo apoptosis within 24 hrs in a
constitutive process, which differs from that of
lymphocytes and macrophages (Figure 6).  Apoptosis in
neutrophils can be induced via Fas ligation (282, 283),
TNF-alpha (284, 285) or Trail-R (286).  However,
inhibition of Fas (283, 287) or absence of Fas/FasL in vivo
(288, 289) fails to prevent constitutive neutrophil apoptosis.
Interestingly and in contrast to lymphocytes naïve
granulocytes react to an inflammatory stimulus (e.g., LPS,
TNF, IL-8, IL-6, IL-1b, GM-CSF) with a delay in apoptosis
(85, 88, 89, 290-297).  Recent studies suggest that the
delayed apoptotic process in circulating neutrophils from
septic patients is linked to a decrease in caspase-9 and
caspase-3 activity and a prolonged, maintenance of the
mitochondrial transmembrane potential (298).  Jia and
colleagues have recently reported that pre-B cell colony-
enhancing factor (PBEF) may be an important regulator of
delayed neutrophil apoptosis of clinical and experimental
sepsis (299).  In vitro studies suggest that the postponement
of constitutive programmed cell death in neutrophils is
initiated by a series of factors such as IL-1beta, IL-8,
endotoxin release or regional hypoxia (85, 291, 296, 297,
300-303).  In this regard it has been demonstrated, that
granulocyte-macrophage colony-stimulating factor and IL-
8 delay neutrophil constitutive apoptosis by activating
phosphoinositide 3-kinase and extracellular signal-
regulated kinase controlled pathways (304).  On the other

hand, factors such as TNF-alpha and IL-10 (depending on
the timing of the exposure) have been shown to increase
PMN apoptosis (305-307).  The delay in apoptosis is
thought to provide sufficient time for PMN to migrate to
the site of infection/inflammation and interact with the
infectious stimulus (308, 309).  However this mechanism
does not seem to be solely restricted to the site of infection.
In this regard, we have demonstrated that while shock-
primed neutrophils exhibit a decreased apoptotic rate, they
conversely exhibit an increased capacity to generate
oxygen radical species (83).  However, if adoptively
transferred to a septic environment they migrate
unselectively to different organs, e.g. the lung, where they
appear to induce tissue damage even without the presence
of an infectious agent (83).  Depletion of neutrophils
ameliorates this form of extrapulmonary acute lung injury.
This injury of otherwise healthy tissue by primed
neutrophils has been described by a variety of laboratories
(84-86, 299, 300, 310).  Whereas the hypothesis of
decreased apoptosis in activated peripheral blood PMNs
from septic patients is largely supported (84-89) there is
lack of data supporting their actual ability to produce injury
once they have reached their site of interest.  In this respect,
PMNs in inflammatory sites would be expected to differ
from those seen in the blood.  Having made this statement,
using the CLP model of sepsis alone, we have assessed
phagocytes expressing Gr1 (the mouse granulocyte marker)
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Figure 7.  Postulated steps (activation, antiinflammatory induced suppression, maladaptive intracellular signaling, pathologic
induction of apoptosis) at which the process of macrophage activation/differentiation might be inhibited/suppressed by various
agents leading to the suppression of the response of macrophages to a foreign antigen following the onset of sepsis.

from 3 separate immune compartments along with the
extent of apoptosis observed.  In agreement with those
findings made in patients, decreased apoptosis was seen in
CLP mouse blood PMNs (311).  Interestingly, no change in
% apoptosis was detected in the myelopoetic compartment
of the bone marrow (312).  However, a marked increase in
the % of Gr1+ cells undergoing apoptosis was evident in
cells taken from a site of inflammation, the peritoneum of
the CLP mice (311).  Also, the extent of apoptosis in these
cells in the peritoneum appears to be regulated by TNF
(311).  There is emerging evidence that apoptosis of PMN
on a tissue level might be regulated by cytoskeletal
molecules, including BIM and BMF (313).  Furthermore
macrophages seem to be crucially involved in regulating
the action of PMN on a tissue level.  Studies in neutrophil
like HL-60 cell indicate that phosphatidylserine and its
oxidized form, which is revealed during the disintegration
of the outer cell membrane in the early stage of apoptosis
might serve as a signaling molecule for macrophages to
start their engulfment, thus limiting the potential danger of
the release of the deleterious contents from dying PMN
(314).  The cleavage of the phosphatidylserine receptor on
macrophages, can on the other hand prevent the removal of
apoptotic cells and enhance inflammation (315).
Macrophages that lack CD44 are not able to engulf
neutrophils and thus cannot clear lung inflammation,
indicting a crucial role for this cell surface molecule in the
recognition or uptake of neutrophils (316).  Unfortunately it

is yet unknown, whether the loss of the macrophage
receptor is significant only to the clearance of apoptotic
PMN or other cells in sepsis, or whether its loss effects
survival.

6.3. Macrophage/Monocyte Apoptosis
Macrophage apoptosis has been mainly studied

under in vitro conditions in response to various agents such
as ETX (LPS), TNF, IL-1beta, IL-10, IFN-gamma, FasL
and NO (Figure 7) (32, 302, 317, 318).  Also, while most of
the components of the Fas-FasL and TNF pathways are
evident, it is less clear that a comparable series of anti-
apoptotic gene products are present.  In this respect,
macrophages, unlike lymphoid cells, typically express
lower levels of Bcl-2 and Bcl-X (319) while retaining
normal expression of other members of this family such as
Bcl-w, Mcl-1 or A1 (320-322).

Unfortunately, there is only limited data on the
downstream apoptotic pathways that are activated in
macrophages in response to trauma or sepsis.  Chung et al.
found that in peritoneal macrophages from septic mice IL-
1beta and IL-18 release/processing as well as caspase-1
activity declines (323).  Alternatively, in the same cells,
caspase-3 and caspase-9 activity as well as the onset of
apoptosis is increased (323).  Similarly, alveolar
macrophages have been shown to exhibit increased
apoptosis in response to low dose pneumococci infection in
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bacterimic mice (324).  Interestingly, whereas inhibition of
caspases clearly reduced apoptosis in alveolar macrophages
it also increased the number of bacteria in mice.  This
suggests the role of alveolar macrophage apoptosis may be
important in maintaining tissue homeostasis during
pneumonia (324).  As already mentioned the engulfment of
apoptotic cells by macrophages represents a potent anti-
inflammatory/immune suppressive process.  It has been
described, that phagocytosis of apoptotic cells induces the
release of anti-inflammatory mediators (64), such as IL-10
by macrophages, possibly contributing towards a counter-
regulatory anti-inflammatory environment (325).

However, the role of apoptosis in regulating the
functional responses of macrophages to an inflammatory
insult alone is not well documented and has been hardly
addressed in vivo.  This is in part related to the difficulty in
clearly establishing whether the apoptotic phagocyte
encountered in the septic animal is truly dying from the
activation of its own cell suicide process or may just
inadvertently appear that way because it is actively
involved in clearing apoptotic or dying cells in its
environment.  Irrespectively, those data thus far concerning
the possible induction of apoptotic death in the
monocyte/macrophage and/or its development of an anti-
inflammatory phenotype through the engulfment of
apoptotic cells, provide potential mechanisms of
contributing to an overall immune suppressive state in the
septic animal (Figure 7).

7. CONCLUSIONS

Infectious challenges and sepsis initiate a
primarily beneficial reaction of the host.  This reaction is
aimed at overcoming the developing pathogenic challenge.
Initially a robust pro-inflammatory response, characterized
by mediators such as IL-1beta, TNF-alpha and IL-6
followed by late mediators such as HMGB-1 can be
observed.  This response may be interpreted as an initial
activation of the defense mechanisms of the host.  The
actions of these mediators on the host’s immune response
are manifold, multilevel, convergent, overlapping and
sometimes antipodal in nature.  The nature of their
expression can be extraordinarily specific for a given
pathogen, yet strangely nonspecific, as infectious and non-
infectious challenges can exhibit similar responses.

Concomitantly to this initial response, mechanisms come
into play, which are designed to shut down the initial
activation of the immune system.  The mechanisms we
have outlined above - while far from being exhaustive -
include shifts in systemic and local mediator profiles,
changes in proliferation and cell cycle arrest of specific
immunoregulatory cells, inhibition of specific co-
stimulatory actions, interference with intracellular signal
transduction pathways, inhibition or activation of
transcription and/or translation processes and programmed
cell death of immune cell sub-populations.  It is believed
that they evolved to protect the host from the consequences
of an exaggerated initial inflammatory response.
Depending on the nature of the pathogen, the health status
of the host, the effectiveness of treatments, and the

development over time, these responses will turn out
mainly pro-inflammatory, mainly anti-inflammatory or
ideally well balanced.  Whereas the confinement of the
initial pro-inflammatory response by the anti-inflammatory
mechanisms described above is at least a theory that might
be offered to explain many of these immunological
scenarios, the containment of the anti-inflammatory
response itself is largely not understood.  However, it may
well be, that it is the dysregulation of this anti-
inflammatory, immunosuppressive response, which may be
the critical aspect contributing to overshooting resolution of
the initial pro-inflammatory response.  This may result in
immune paralysis and/or a pathological form of immune
suppression.  In this state the host is then vulnerable, due to
the impaired function of its immune system, and to the
untoward effects of opportunistic infectious challenges.  It
is exactly this scenario of multiple insults that is believed to
be such an immense threat to the critical ill patient/ animal.
Thus, as therapeutic interventions modulating the initial
pro-inflammatory response have largely failed in the
clinical arena, it is our hope that as information becomes
available from studies directed at understanding the nature
of the counter-regulatory process in human and
experimental animals, we will be better able to
therapeutically interdict in the process to the benefit of the
critically ill patient.
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