IMR Press / FBL / Volume 11 / Issue 1 / DOI: 10.2741/1777

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Article
Sepsis-induced myocardial dysfunction and myocardial protection from ischemia/reperfusion injury
Show Less
1 Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
2 Universities Space Research Association, Division of Space Life Sciences Johnson Space Center Cardiovascular Laboratory, NASA, 2101 Nasa Road 1, Mail code: SK Houston, TX 77058
Front. Biosci. (Landmark Ed) 2006, 11(1), 23–32; https://doi.org/10.2741/1777
Published: 1 January 2006
Abstract

Sepsis, bacteremia and inflammation cause myocardial depression. The mechanism of the dysfunction is not clearly established partly because dysfunction can be elicited by many different mechanisms which can all manifest in disruption of myocardial mechanical function. In addition the models of sepsis and bacteremia and inflammation may vary drastically in the sequence of the coordinated immune response to the inflammatory or septic stimulus. Patterns of cytokine expression can vary as can other responses of the immune system. Patterns of neurohumoral activation in response to the stress of sepsis or bacteremia or inflammation can also vary in both magnitude of response and temporal sequence of response. Stress induced activation of the sympathetic nervous system and humoral responses to stress have a wide range of intensity that can be elicited. The fairly uniform response of the myocardium indicating cardiac dysfunction is surprisingly constant. Systolic performance, as measured by stroke volume or cardiac output and pressure work as estimated by ventricular pressure, are impaired when myocardial contraction is compromised. At times, diastolic function, assessed by ventricular relaxation and filling, is impaired. In addition to the dysfunction that occurs, there is a longer term response of the myocardium to sepsis, and this response is similar to that which is elicited in the heart by multiple brief ischemia/reperfusion episodes and by numerous pharmacological agents as well as heat stress and modified forms of lipopolysaccharide. The myocardium develops protection after an initial stress such that during a second stress, the myocardium does not exhibit as much damage as does a non-protected heart. Many agents can induce this protection which has been termed preconditioning. Both early preconditioning (protection that is measurable min to hours after the initial stimulus) and late preconditioning (protection that is measurable hours to days after the initial trigger or stimulus) are effective in protecting the heart from prolonged ischemia and reperfusion injury. Understanding the mechanisms of sepsis/bacteremia induced dysfunction and protection and if the dysfunction and protection are the products of the same intracellular pathways is important in protecting the heart from failing to perform adequately during severe sepsis and/or septic shock and for understanding the multitude of mechanism by which the myocardium maintains reserve capacity.

Share
Back to top