IMR Press / FBL / Volume 10 / Issue 3 / DOI: 10.2741/1759

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Article
The spectrin-associated cytoskeleton in mammalian heart
Show Less
1 Department of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
2 Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London SE1 1UL, UK
Front. Biosci. (Landmark Ed) 2005, 10(3), 3020–3033; https://doi.org/10.2741/1759
Published: 1 September 2005
Abstract

The membrane-associated cytoskeleton of the cardiac muscle cell is emerging as an important element in the maintenance of normal cell functioning. Recently it was shown that when proteins (betaII-spectrin, muscle Lim-only protein, ankyrin-B, ankyrin-G) of this system are defective or deficient, cardiac malfunction ensues. It is well-established that the spectrin cytoskeleton is associated with the plasma membrane, but it was only lately demonstrated that its components also lie on internal cell membranes. This is particularly apparent in muscle cells of the heart which contain specialised intracellular membrane compartments particular to this cell type such as the sarcoplasmic reticulum and T-tubules. Cardiomyocytes are subjected to constant mechanical stress. Since their mechanics are controlled through coordination of calcium fluxes mediated via cell membrane-based assemblies, it is imperative that these essential elements withstand the displacement forces of contraction. Cardiomyocyte spectrin locates the multifunctional spectrin/actin-binding and membrane-binding component, protein 4.1, and they act together on the plasma membrane as well as on internal membranes. We have found that cardiac protein 4.1 links to the calcium handling apparatus whilst spectrins connect with the sarcomeric contractile elements of the cell. Overall this assembly fulfils roles in stabilising cardiomyocyte cell membranes and in coordinating the macromolecular protein accumulations which regulate and accomplish cardiac molecular crosstalk, whilst at the same time enabling the muscle cells to resist extreme forces of contraction.

Keywords
Cell Biology
Cardiac
Heart
Cardiomyocyte
Sarcoplasmic Reticulum
T-tubules
Intercalated Disc
Spectrin
Protein 4.1
Ankyrin
Immunofluorescence
Yeast-2-Hybrid
Cardiomyopathy
Arrhythmia
Review
Share
Back to top