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1.  ABSTRACT

Biclustering algorithm on Gibbs sampling
strategy is a recruit in the field of the analysis of gene
expression data of microarray experiments. Its feasibility
and validity still need to be researched not only for
synthetic datasets but also for real datasets. Here we
investigated a biclustering algorithm on a microarray
dataset of Yeast genome through building a database for
storing microarray datasets and MIPS data, and running the
scripts on Matlab platform to discover gene patterns. In
contrast with standard clusterings that reveal genes
behaving similarly over all the conditions, biclustering
groups genes over only a subset of conditions for which
those genes have a sharp probability distribution. It has the
key advantage of providing a transparent probabilistic
interpretation of the biclusters. Its basic strategy of Gibbs
sampling does not suffer from the problem of local minima
that often characterizes expectation maximization, so that
the patterns should be more global and accurate. Also we
tested it with the known explanation of genes in MIPS,
objectively to demonstrate the effectiveness and
deficiencies of biclustering approach, and the functions of a
few unknown ORFs in some bicluster can be deduced in
the present research. In addition, the result of similarity
searching in Blast-Search can be an assistant evidence for
its effectivity.

2. INTRODUCTION

DNA microarray is an innovative technology
that can measure the expression level of thousands of
genes in parallel (1,2,3). Due to the huge throughput
microarray experiments provide, computational
methods that extract the knowledge from the large sets
of experimental results become important. The
knowledge of genes’ functions and relationships
between genes may provide possible drug target
candidates or aide in the understanding of a disease
process. Among the computational methods, clustering
is one of the most popular approaches of analyzing
gene expression data without prior knowledge. Several
representative algorithmic techniques have been
developed and experimented in clustering gene
expression data, e.g. hierarchical clustering, k-means
and a recruit of biclustering, etc. Although it is
possible to obtain biologically meaningful results with
these algorithms respectively, some characteristics
often complicate their use for clustering expression
data, e.g., the predefinition of the number of clusters in
K-means (4), the finding of a suitable cleavage level
on a big hierarchy tree of hierarchical clustering, the
dispersedness of biologically similar genes on large
dimensions in hierarchy tree (5), etc. These drawbacks
induce even a mistaken result.
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Biclustering is a recruit, but a promising
methodology in the field of clustering microarray data. The
original biclusters of gene expression datasets were based
on uniformity criteria, and were discovered by applying the
greedy algorithm developed by Cheng and Church (6). The
approximate uniformity in a submatrix in gene expression data
can be detected by another model Plaid developed by
Lazzeroni and Owen (7), in which they used a form of
overlapping two-sided clustering with an embedded
ANNOVA in each other. Patterns in which genes differ in their
expression levels by a constant vector can be detected by Plaid
model. Ben-Dor et al. discussed approaches for unsupervised
identification of patterns in expression data that distinguish two
subclasses of a tissue on the basis of a supporting set of genes
that can offer accurate classification (8). Ben-Dor et al. also
introduced the model of Order preserving submatrix (9). Tanay
et al. defined a bicluster as a subset of genes that jointly
respond across a subset of conditions for reducing the
biclustering problem (10). A biclustering algorithm based on
Gibbs sampling has been successfully developed and
implemented by Sheng et al. (11), and applied on microarray
datasets. With discretizing the expression datasets into fixed
number of bins, Sheng et al. detected the motif subsequences
in sequence data. Caliafano et al. also previously observed this
analogy, and they applied a pattern-discovery algorithm
SPLASH for finding patterns in strings to gene expression data
(12). Also with Gibbs sampling, Wu et al. developed a running
scheme and expand its application to biclustering continuous
gene expression data (13).

However, biclustering method as a recruit in this
field still need to be tested and improved in practice for a
wide application. In the present research, a biclustering
algorithm is applied on a microarray dataset of Yeast
genome, and the result of biclusters is discussed detailedly
for finding functional information of genes.

3. MATERIALS AND METHODS

3.1. Microarray datasets of Yeast genome
Whole-genome expression profiling, facilitated

by the development of DNA microarrays (14), represents a
major advance in genome-wide functional analysis.
Because the relative abundance of transcripts is often
tailored to specific cellular needs, most expression profiling
studies conducted on microarray have focused on the genes
that respond to conditions or treatments of interests. Not only
can we directly apply a single assay to measure the interaction
items of unknown or known genes in identifying functions, but
also the idea of “compendium” can be used for the purpose of
predicting or diagnosing etc (14,15). Hughes datasets as a
comprehensive datasets of reference profiles were created for
the aim of analyzing functions, testing drug target, etc (15).
The reference datasets of three-hundred full-genome
expression profiles in S. cerevisiae corresponding to mutations
and chemical treatments in both characterized genes and
uncharacterized open reading frames (ORFs), as well as
treatments with compounds with known molecular targets
were developed. A gene-specific error model was built for
compensating for differences in variation of transcript
abundance among different yeast genes. Hughes datasets
contain totally 6316 genes corresponding to 300 conditions

related to S. cerevisiae. For each experiment (condition),
five values were calculated: logIntensity, logRatio, errors
of error model, errors of measurements and P value. The
values of logIntensity and P value have been investigated in
present research.

3.2. MIPS (Munich information center for protein
sequence)

The MIPS Comprehensive Yeast Genome Database
(CYGD, http://mips.gsf.de/genre/proj/yeast/) presents the
information on the functional network and molecular structure
of the entirely sequenced and well-studied model eukaryote,
the budding yeast S. cerevisiae. In addition, the data of various
projects on related yeasts has been used for comparative
analysis. Nearly seven thousands genes and ORFs documented
in MIPS, and being categorized into root main 19 functional
groups. These information known as for checking exact
functions related to each gene of each pattern was stored into a
database in local server.

3.3. Biclustering
3.3.1 Storing the datasets in database (SQL)

Some tables are built in local database to store
Hughes datasets. Then the values of logIntensity and
P_value in the original dataset are elicited for clustering
analysis. Also some tables built in local database are for the
purpose of storing MIPS datasets and explanation which
are useful for information searching of index of clusters
and genes’ annotation in chunks.

3.3.2. Preprocessing of biclustering in MATLAB
The main objective of preprocessing of biclustering

is to reduce noise. In the previous step, we have elicited the
values of “logIntensity” and “P_value” of gene expression
respectively, transfered and stored it in text file. The following
is to load them in Matlab in matrix form. The data showing
less standard deviation along column vectors (genes) is deleted
with the way of putting a certain threshold on the original data
in Matlab. Also the variations of each gene along all of the
experiments are examined for filtering the ORFs holding a
certain P_value in quantitative experiments (P≤0.01,
experiments≤100). Then discretizing the filtered expression
data into fixed number of bins in the last of this step.

3.3.3. Running the biclustering scripts
The biclustering algorithm is based on the Gibbs

sampling strategy. In this method, a greedily iterative searching
is applied to find interesting patterns in the matrices, and
probabilistic models are proposed in which matrix rows (genes
in this case) and columns (experimental conditions) are divided
into clusters, and there are linking probabilities between these
clusters. These linking probabilities can describe the
association between a gene cluster and an experimental
condition cluster, and can be found by using iterative Gibbs
sampling and approximated Expectation Maximization
algorithms (11).

3.3.4. Checking functions of biclusters through MIPS
information

Each gene’s function in each bicluster was
checked in those tables of MIPS local database with SQL
queries for inducing the functions of biclusters.
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Table 1. Number and Proportion of ORFs and experiments in each bicluster
Bicluster
Composition I II III IV V VI VII VIII IX X XI

Experiments 13 (4.3%) 19 (6.3%) 23 (7.7%) 7 (2.3%) 5 (1.7%) 23 (7.7%) 21 (7.0%) 15 (5.0%) 18 (6.0%) 20 (6.7%) 5 (1.7%)

ORFs 537
(28.3%)

155
(8.2%)

85 (4.5%) 24 (1.3%) 20 (1.1%) 35 (1.8%) 21 (1.1%) 19 (1.0%) 19 (1.0%) 24 (1.3%) 15 (0.8%)

4 RESULTS

4.1. Biclusters
The biclustering algorithm enables detection of multiple
biclusters, through the way of masking the genes selected
for found biclusters and perform the algorithm on the rest
of data. 11 biclusters were found in the original datasets in
the present research. Different bicluster consists of various
genes and experiments, also different in their quantity. The
compositions and proportions of ORFs and experiments are
shown in table 1. The patterns of those biclusters are shown
in figure 1. For the purpose of clear vision of those figures,
some patterns of biclusters are partly shown.

4.2. Relevant functions of biclusters
Through checking in MIPS database which were

restored in local server, the information of relevant
functions and proportions of genes holding the function in
each bicluster was reckoned and enumerated, which is
shown in table 2 as below. The most other parts in each
pattern are those “open reading frames” with unknown or
unclassified function, e.g., in bicluster I, 37% of the genes
(199/537) participate in cell metabolism, 62% (333/537)
with unknown functions, and less than 1% (5/537) are
classified into other function groups.

4.3. Further analysis of bicluster VII
The bicluster VII being a small subgroup with a

higher percent of genes’ homogeneity is shown and
detected detailedly in the present research. The pattern of
bicluster VII is shown in figure 2 as below.

By checking in MIPS database, the details of
functions involving bicluster VII have been uncovered.
86% of the genes in this bicluster involves the functional
group of ‘protein synthesis’, concretely involveing
‘ribosome biogenesis’. The details of gene functions can be
checked in figure 2. The ORF YGL064c plays 'RNA
helicase activity' during the process of ribosome biogenesis
(16). Thereinto, 3 questionable ORFs (14%) locate in this
bicluster.

According the results of Blast sequence-
searching program in NCBI (http://www.ncbi.nlm.nih.gov/
BLAST/), YPL197c is full overlapped with gene YL8B
(alias: RPL7B) (Score=283 bits (723), Expect=2e-75,
Identities=137/137(100%), Positives=137/137 (100%)),
partially overlapped with gene YL8A (alias: RPL7A)
(Score=238 bits (607), Expect=5e-62, Identities=114/119
(95%), Positives=117/119(98%)). The both genes
participate in the process of ribosomal protein synthesis
(17). According to index searching in Yeast GRID
(http://biodata.mshri.on.ca/yeast_grid/servlet), YPL197c
and YCL047c have no interactions report, YDR154c has 2

interaction proteins (YHRO41c RNA polymerase II
transcription mediator activity, YCR009c cytoskeletal
protein binding). The result of bicluster VII and those
searching information in public database may be a guide
for functional detecting of the questionable ORF in
experimental biology.

5.  DISCUSSION

5.1. “Compendium” Concept
“Compendium Approach” indicates

determination of functions of genes and ORFs affected by
uncharacterized perturbation through comparisons of
expression profile with a large and diverse set of reference
profiles, and the profiles and the functions are consistent to a
known ORF or gene (15). In the present research, 11 biclusters
were gained by the biclustering algorithm which base on Gibbs
sampling strategy. Each bicluster contains a subgroup of
experiments and a subgroup of ORFs, and shows a
homogeneity respectively. So the compendium approach may
be improved for determining the function of genes by
performing the subgroup of experiments of a bicluster which
shows a higher homogeneity of genes and experiments
respectively and holds known ORFs. The bicluster V and VII
express a high homogeneity of unknown gene functions
involving ‘protein fate’ or ‘protein synthesis’ respectively.
Those experiments in the bicluster may be a ‘compendium’ or
an indicator for detecting this kind of gene function involving
the bicluster. Especially, bicluster V, which contains only 5
experiments, deserves to be further detected for the possibility
of being an indicator for functional analysis of genes.

5.2. Functional prediction of questionable ORF
Model organisms such as Saccharomyces cerevisiae

have also proven to be powerful tools for mechanistic studies
of clinically relevant compounds (18,19), which are made
possible by the fact that many human disease-associated genes
have highly conserved yeast counterparts (20,21). The
questionable ORF YPL197c was involved in analyzing
molecular mechanisms of drugs, as a biological target for
elucidating biosynthetic pathway of effective compounds
(22,23). In the present research, the YPL197c was classified in
bicluster VII in which all known genes hold the function
relating ribosome biosynthesis. And after Blast searching in
translated protein databases, we found that the sequence of
YPL197c (411bp) is a part of gene YL8B (1919bp), and 87%
(357) isoverlapped with the third exon (630bp) in the gene
YL8B. Being compared to gene YL8A (Score = 238 bits
(607), Expect = 5e-62, Identities = 114/119 (95%), Positives =
117/119 (98%)), it is full overlapped by an exon (630bp) in
gene YL8A. Dose it individually makes roles in the process of
translation or there are other regulative mechanism existing
simultaneously in transcription or translation process? And
the above analysis of biclustering gave us a
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Figure 1. 11 patterns of biclusters. 11 biclusters were found in the original datasets through the way of masking the genes
selected for the found biclusters and perform the algorithm on the rest of data. Each bicluster contains a subset of genes
responding similarly in a subset of experiments. Distinct patterns of biclusters possess different number of experiments, and the
behavior of genes in the pattern is consistent in induced (white color) or repressed (black color) response, or both (yellow color).
Also characterized genes in each pattern are categorized and reckoned according to their involvement in MIPS Yeast Function
List, which is shown in table 2.

direction for a further research. Apparently this is a further
topic of our research in which combination between
bioinformatics and biological experiments is necessary.

5.3. Effectiveness and drawback of the biclustering
algorithm

Biclustering on the expression profiles of genes is
an approach to detect groups of genes with similar
expression profiles, even a small group, that can further
identify their functions and putative regulatory elements in
their promoter or coding sequence region (24). These
studies help to understand gene co-regulation on the
transcription level. Functional categorization also provides
information on protein interaction and pathways. Gene
expression and regulation are complex biological

processes, which rouse the complexity of microarray data.
But those genes involving same functions probably have
similar expression patterns, which is a basic of clustering
analysis. The clustering analysis on microarray data has
been a research focus, and several of clustering approaches
are developed, nevertheless some drawbacks or characters
embarrass its further application in this field. E.g., the first
drawback of standard k-means algorithm is an iterative
procedure and requires to predetermine the number of
clusters k as a given priory which will be not known ahead
of time (4). Although several programs have been
developed to estimate the cluster number, the accuracy of
the estimation and the accuracy of results still depend on
original datasets. The second, the problem of dead units
locates into the procedure of k-means steps (4), i.e. if some
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Table 2 Relevant functions of biclusters
Bicluster Function and Proportion of genes holding the function in the Cluster Unknown ORFs
I Lipid, cofactors, prosthetic groups, fatty-acid and isoprenoid metabolism (37%) 62%
II Protein synthesis (61%) 32%
III C-compound and carbohydrate metabolism (56%) 38%
IV Transcription (62%) 33%
V Protein fate (folding, modification, destination) (55%) 45%
VI Cellular transport and transport mechanisms (72%) 11%
VII Protein synthesis (86%) 14%
VIII Unknown (100%) 100
IX Energy (47%) 42%
X Cell Cycle and DNA Processing (38%) 50%
XI Amino acid, nucleotide metabolism (27%) 33%

Figure 2. The pattern of bicluster VII. The pattern of bicluster VII comprises 21 genes and 21 experiments, experiments include
“anp1”, “cem1”, “cmk2”, “dig1, dig2 (haploid)”, “fus3, kss1 (haploid)”, “pet127”, “pfd2”, “rpl20a”, “sbh2”, “spf1”, “sst2
(haploid)”, “ste18 (haploid)”, “ste7 (haploid)”, “utr4”, “yap1”, “yar014c”, “yel033w”, “yhr039c”, “yil037c (haploid)”,
“yor006c”, “terbinafine”, the details of experiments can be seen in the experiment_list of Hughes datasets (15).

Units are initialized far away from the input dataset in
comparison with other units, they then immediately become
dead without learning chance any more in the whole
learning process. The third, k-means produces fairly round
clusters, resulting in inaccurate identification of close or
geometrically shaped clusters. But the conventional k-
means clustering algorithm has been studies very well, and
some improved k-means algorithms which can be
applicable to ellipse-shaped data clusters are developed.
The similar research locates in fuzzy k-means clustering
methods (25,26,27). The fourth, k-means algorithm is very
expensive in clustering a massive data because much
iteration is needed in obtaining a good cluster. More
recently, Nittel et. al. (28) proposes to apply k-means
algorithm to cluster massive datasets, scanning the dataset
only once. Their algorithm splits the entire dataset into
chunks, and each chunk can fit into the main memory.
Then, it applies k-means on each chunk of data, and merges
the clustering results by another k-means type algorithm.
Good results are shown on a real dataset, however, no
theoretical bounds on the results are established.
Conclusively, one can overcome one drawback but not all.

Hierarchical clustering is another popular
approach on analyzing microarray data (5,29). Although it
is possible to obtain biologically meaningful results, some
of its characteristics often complicate the use for clustering
expression data (30), and some even prevent the
hierarchical clustering from obtaining a meaningful subtree
because of the uncertainty in cleaving a big hierarchy tree
on a suitable level. Also clustering over all dimensions
(conditions) may separate the biologically related genes
from each other. These have been observed by comparison
of several clustering methods which have been deployed in
diverse datasets, e.g. cancer classification by Romualdi et
al. (31), clinical databases by Hirano et al. (32).

The biclustering approach, which is applied in the
present research, can overcome some drawbacks mentioned
above. Biclustering is a local technique by nature, i.e., the
algorithm try to find local, significant signals in dataset for
finding biclusters which contain subset of rows and
columns (genes and experiments in the present research).
So the results of biclusters are transparent. In the present
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research, the biclustering approach has gained several
meaningful biclusters which show a higher homogeneity of
gene functions, e.g. bicluster V and VII. Functions of some
questionable ORFs in these biclusters can be deduced,
although they are just putative. The biclustering approach
has exhibited a promising application. But the biclustering
strategy may meet several baffles, e.g. all genes in one
bicluster are involved in unknown functional group, e.g.
bicluster VIII in the present research. How to judge their
functions? In another case, genes included in one bicluster
relate to more than one functional group, e.g. bicluster VI.
How to judge the unknown genes in this cluster even if
there is a dominant functional group within the pattern?
Can we ignore the minor functional group? These are our
further focuses on the field of clustering analysis of
microarray data.
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