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1. ABSTRACT

Presently, it is widely accepted complex systems
couldn't be comprehended by studying parts in isolation
without examining integrative and emergent properties, and
system-level understanding thus has become the focus in
biological science. However, it should also be noted that
common systematic analysis was restricted to large-scale
analysis at a certain level, while the facts that the nature of
complex systems is their multi-scale structures was usually
neglected or ignored. Therefore, this paper described a
multi-scale methodology to investigate the nature of
biological complexity and prospected this methodology
could lead to a promising revolution in current system-level
understanding and the integration of molecular biology
databases.

2. INTRODUCTION

To date when we cheer up the imminent leap
forward in various omics science, an era of ‘big science’ is
stealthily but undoubtedly coming into being (1, 2). That is,
most of research fields in life science become
multidisciplinary (3, 4), drawing information and
techniques not only from biochemistry, genetics, molecular
biology and cell physiology, but from chemistry, chemical
engineering, systems science and computer science as well.
In the meanwhile, apart from this interdisciplinary
endeavor, biologist, facing biological entangling networks,
also has to shift his focus from individual properties of the
components to collective properties of the systems (5, 6, 7).
Thus, a systematic fashion emerged and bio-X science was
highly advocated to map the multi-tiered molecular
networks in biological systems (8).

In fact, however, system-level approaches have
already had a long history to explore the complex systems
in biology (9), but traditionally, biological science tended
to capture the complexity of biological systems in a simpler
formalism (5, 10). It was clearly a kind of reductionist,
driven by the needs of simplicity as well as the limits of
technology (11). Although hese classical methods had
played the important roles in progress of complexity
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science, it was safely hard to advance the systematic
analysis of biological networks more with the reductionist
vision now (5, 12). Luckily, statistics and other
computational methods had come to our rescue and
provided several important experimental tools to cell
biologists (13). What is more, coupled with advances in
high-throughput measurements, recent achievements in
omics science have grandly raised hopes for system-level
understanding and prediction to cellular spatial and
temporal phenomena.

Consequently, on a hand, system-level analysis
received the mainstream attentions and became the core
approach in biology; On the other hand, numerous of novel
grandiloquent terms ceaselessly came forth, such as large-
scale organization, whole-cell simulation, global gene
expression profiling. However, given the avalanche of
information in those areas following this fashion, biologist
inevitably had been pushed into such an awkward position
that new technologies were providing information at a
much faster rate than his ability to digest and understand it
(7, 14). Hence being puzzled and even somewhat helpless,
we had to question either whether it was essential to
comprehend cellular mechanism by current system-level
analysis, or what the thorough and rational systematic
analysis methods is could completely determine the
biological complexity in the intact scales?

3. THE NATURE OF BIOLOGICAL COMPLEXITY

From the philosophical viewpoint, the objective
of science is to seek the facts or nature of the complex
phenomena of interest, then to make it clear in theory and
to apply it to the engineering practice. Clearly, it is the
same case as systems biology. In order to perform a more
concise and efficient investigation on life’s complex
systems, as well as to fulfill the tasks of systems biology,
no one could overlook the nature of biological complexity.

As a rough definition, a complex system is a
system with a large number of elements, building blocks or
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agents, capable of exchanging stimuli with one another and
with their environment (7). Thus, an effective way to find
the nature out is to investigate their organizing principles,
including how parts were connected and how systems were
operated. Fortunately n the past decades several major
mechanisms had been discovered inside most systems (14,
15, 16). As the common characteristic of complex systems,
it is clear that complex systems have the collective
properties, which are unequal to the sum of individual
properties of their component sub-systems. That means
complex systems must be studied in their entireties rather
than by analyzing the parts in isolation in view of some
emergent or integrated properties. Moreover, complex
systems have the history and are in a dynamic state, of
which the present behaviors are in part determined by
their past behaviors. That is system has to be analyzed
to follow the arrow of time But to the special properties
of their own, complex systems are that they display
organization without any external organizing principle
being applied (7). Each system thus has its particular
organizing principles and it can’t be understood out of
itself. On this footing, it is evident that rational
strategies should unite these features compatibly to
explore complex systems and unravel their specific
features from wuniversal ones to address their
complicated temporal and spatial properties.

Although biological network is characterized
as symbiotic systems (18) relying on the cooperation
between the network and the involved specific elements,
which is dissimilar with the normal complex-system
functioning by the whole networks, it also can’t cast off
above organizing principles. Their respective unique
characteristics are dominated by their special genotype
and corresponding environmental perturbations, while
the general ones are for all life systems. Recently,
Oltvai and Barabasi (19) compared it as life’s
complexity pyramid to illustrate the relation between the
particular and the universal. At the top of the pyramid,
large-scale organization with scale-free structure has
been uncovered as inherent properties in broad
organisms, complying with a power law (20). Various
complex systems, like Internet and social networks, yet
strikingly share the similar hierarchical architectures
with biological systems (7, 21). Further at the lower
level, even within cell, metabolic networks and protein
interactions still have certain similar network topologies
to construct corresponding functional modules in
cellular organization (22). Whereas, there is little
commonness at the bottom of pyramid, where cell’s
genome, transcriptome, proteome and metabolome
vividly exhibits organism specificity, including itself
distinct inherited information and the special principles
of information processing.

However, it should be noted that this from-
universal-to-particular pyramid is only a transverse
section, if coalesced the temporal-spatial properties and
extended this pyramid to a 3D structure by XYZ axis
constructed by the temporal, spatial and organizing
characteristics, respectively. Nevertheless by this 3D
pyramid, it is evidently shown that multi-scale structure
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in complex systems is the uniform nature to incorporate
above mechanisms. This conclusion not only provides
series of platforms to draw diagrams of their
interconnections and the assembly lines how system
functions, but also implies the grand challenges for
systems biology to cross and wunite the different
horizontal and vertical levels or scales in life’s solid
pyramid (16).

4. WHAT IS THE SYSTEM-LEVEL UNDERSTANDING?

At the risk of sounding too direct, the heart of
systems biology is to the tight coupling with
experimentation, data analysis, and hypothesis generation
under the multi-scaling challenges described above (25).
Initially, however, such three concepts were divided into
distinct science approaches in systems biology. For
instance, hypothesis-driven approach stems from the
extending of theories; data-driven approach lies in
experiments or databases, while model-driven approach
depends on computer simulation. Taken the hypothesis-
driven science for granted, much of last century biology
used to reduce biological phenomena to the behavior of
molecules and especially attempted to infer the existence of
genes and their properties from the investigation of
inheritance of wvariation (26). It shaped so-called
hypothesis-driven science. By contrast, with advanced
high-throughput technologies, biologist had to change the
custom over from ‘a gene = a paper’ research to a single
paper describingthe properties of the whole genome or the
comprehensive protein networks (2). That signaled a huge
leap towards a systematic fashion from molecule-directed
fashion, as well as the shift from hypothesis-driven science
to non-hypothesis-driven or data-driven science (8, 25).

Therefore, if analogizing the development in
hypothesis-driven science as the accumulation of discrete
particles, recent achievements by date-driven omics science
had established numerous longitudinal sections in the solid
pyramid. Given the transverse sections built by
organization principles, it is evident that current ‘flat’
systematic fashion should extend to the integrated
tridimensional spaces from various severed planes of
transverse and lengthways sections around corresponding
spatio-temporal-organizing scales.

Furthermore, note that although large-scale
measurement from data-driven science allows the rule
parameters to be determined, it is invalid to realize the
comprehensive examination to the structures and dynamics
from the causal links between the inputs space and the
outputs space, especially if based on blind trial-and-error
methods and discrete measurement. Firstly, these causal
links almost belong to a kind of ‘N to N’ networks rather
than the ‘1 to 1’ or N to 1’ or ‘1 to N links. Without
rational methodologies, it cannot but fall into cluster
analysis or statistics-based theories after a mass of
experiments to assure the relation between various matrix
of inputs and outputs space (11, 25); secondly, considered
the networks properties high cohesion and low coupling,
the causal links between the hubs of levels or scales in the
system perhaps is not robust and adaptable as much as them
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inside(20); thirdly, due to the particular hierarchical
architecture in different inputs and outputs space, there are
quite different organization principles in various scales(26).
As an illustration, only in input space, if the relation among
inputs is governed only by cascade control, it is appropriate
to confer the higher-level module by the common large-
scale analysis depended on mono-scale measurement, like
simple gene or protein microarrays. Otherwise, if inputs or
their subsets are independent on one another, it is safely
inefficient to explore life’s pyramid only with a flood of the
system-level measurement without multi-scale
apprehension.

Hence, in order to understand and especially
predict the spatial and temporal phenomena among the
Micro-(DNA, RNA), Meso- (Protein, Metabolite) and
Macro-(Cell, Device) scale, the extended system-level
understanding on the basis of multi-scale methodology
should be highlighted to meet the challenges in the next
‘space’ era.

5. MULTI-SCALE METHODOLOGY

In retrospect, the multi-scale methodology was
firstly proposed in astronomy(27) and chemistry (28) during
the 90s last century. Then it has received more and more
attention and been used broadly in various basic and
applied scientific disciplines (17), such as mathematics,
physics, chemistry, astronomy, biology, and in applied
fields such as mechanics, chemical engineering, biomedical
engineering and so forth. And a novel term, multi-scale
science, has been proposed as an independent branch in

system sciences, which was considered to be a grand
challenge for 21% century (29, 30, 31).

Say the biotechnology. In fact, if traced back to
the development of biotechnology, lots of progress was
achieved also through some kinds of multi-scale analysis.
A good case is the research evolution on Crabtree effect.
Crabtree (or glucose repression of the respiratory chain)
effects were firstly presented in 1929. In the initial
research, there was no choice but to select other non-
fermentative carbon source such as glycerol, instead of the
fermentative carbon substrate glucose, in order to obviate
these effects (32). However from the 60s to 70s last
century, golden era of antibiotics, glucose became possible
to be utilized as carbon resource with the development of
fed-batch culture technique and SSF (simultaneous
saccharification and fermentation) process (33). Meanwhile
continuous culture system was investigated with the
introduction of the oxygen electrode at device scale to
control appropriate specific growth rate and oxygen
density. On the other hand, PTS system and the active
transport and permease system were discovered in the end
of 70s (34, 35), which agitated an important revolution
from engineering scale to molecule-scale with the
development of molecule biology, including the progress in
signal transudation. In the end of 90s last century,
hexokinase P was reported to play a major role in the early
part of the glucose-repression cascade (36). Then both
positive and negative control aspects were found in glucose
effects at the level of transcriptional control, which were
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mediated by the cyclic AMP (cAMP)-cAMP receptor
protein complex (for catabolite repression) and by the
specific repressor (for specific repression), respectively.
And subsequent studies have revealed the specific
repression is controlled by ITAS*-dependent PTS-mediated
inducer exclusion (37). Recently entire sequence of
genome, large-scale expression measurements and protein
assays yet had exhibited a more comprehensive map enable
us to dissect glucose signaling more systemically (38, 39,
40).

Similarly in other aspects of life science,
multiscale analysis has grandly extended the spatio-
temporal-organizing range of biological network. However,
it is noteworthy that multi-scale analysis is just a kind of
methodology, rather than some concrete quantitative
methods, like system-level analysis which only supplies us
series of principles for the investigation of the multi-scale
structure of complex systems. The major ones are
descriptive (describing the appearance of structures
without paying attention to the mechanism of the formation
of the structures and the relationship between the different
scales), correlative (formulating the phenomena at higher
scales through analyzing the interaction at lower scales),
and variational (evealing the relationship between scales
by formulating the stability condition of structure)(17).
Fortunately, today with the development of modeling
network dynamics or computational biology, it provided
huge opportunities to apply those principles to direct the
quantitative research, especially in database integration.
Numbers of model systems has been implemented to
accelerate the interconnectedness of biological research
(41). And gene-enzyme-endproduct control unit model
became a central method to describe the genetic regulation
mechanism and to optimize biosynthesis (42, 43, 44).

6. PROSPECT

Science discovery is actually just a ‘compilation
strategy * as described by Selinger et al. (11), which is not a
goal but a process of continual accumulation. That is, there
are never the endpoint and so-called the eventual goals in
science. However, today lots of biologists regard the
whole-cell simulation (45, 46) as the highest ideal. That
means in the future biological systems could be deciphered
with comprehensive system-level understanding and
cellular behavior simulation. Obviously until now under the
limit of combinatorial capability and casual links among
scales, even to move upward or downward harmoniously is
not an easy task. Especially considering the recent
controversies between ELMO (elementary flux modes)
and EXPA (extreme pathways) (47, 48), although both
methods are indeed identical under most situations of
interest, the discrepancies, even in a tiny extent, challenge
us to balance the reversible movement between the
bottom-top and the top-bottom process with multi-scale
analysis. Further, given the accumulation of noise, small
discrepancies between model and reality could
accumulate to cause completely inaccurate predictions
(9), due to so-called ‘butterfly effect’. So the central
issue of systems biology should alter to enhance the
further communication in scale or among scales,
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obviating the conflicts and distorting, while multiscale
analysis is compelled to complement a series of
molecular, cellular, and physiological validation
methodologies to adapt the new ‘multiscale- synthetic-
analysis’ fashion. Undoubtedly these progresses will
contribute to anew avenue to tackle the overall behavior
of cell in the next era.
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