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1. ABSTRACT

Human T-lymphotropic virus type 1 (HTLV-1) is
the causative agent of adult T-cell leukemia and tropical
spastic paraparesis/HTLV-1 associated myelopathy
(TSP/HAM). Although the precise mechanism of HTLV-1
oncogenesis remains unclear, the pathogenesis has been
linked to the pleiotropic activity of the viral transcriptional
activator protein Tax.  Tax has been shown to regulate viral
and cellular gene expression and to functionally interfere
with proteins involved in cell-cycle progression and DNA
repair.  This review will concentrate on the ability of Tax to
promote cellular proliferation through activation of the NF-
κB pathway while inhibiting the cell-cycle checkpoint and
apoptotic function of the tumor suppressor gene p53.

2. INTRODUCTION

The human T-lymphotropic virus type 1 (HTLV-
1) is a complex retrovirus belonging to the family of Delta-
retroviruses.  HTLV-1 is associated with two fatal human
diseases: adult T-cell leukemia (ATL) and the
neurodegenerative disease tropical spastic paraparesis
/HTLV-1 associated myelopathy (TSP/HAM) (reviewed in
(1-4)).  ATL is an aggressive lymphoproliferative disease
which can be classified into distinct clinical subtypes: pre-
ATL, the acute form, the sub-acute or smoldering form, the
chronic form, and ATL lymphoma (5,6).  HTLV-1 is
endemic in Southern Japan, the Caribbean basin, inter-
tropical Africa, the Middle-East, South-America, and
Papua New Guinea (5).  It is estimated that 20-30 million
people worldwide may be infected with HTLV-1.  Of
those, about 4% will go on to develop disease after a
latency of 20 or more years (7,8).

In vivo, HTLV-1 infects CD4+ peripheral T-cells
but has also been detected, to a lesser extent, in CD8+ T-

cells (9-11).  Unlike typical transforming retroviruses,
HTLV-1 does not encode a cellular oncogene or disrupt
cellular gene regulation by insertional mutagenesis.  While
several viral proteins act in concert to allow infected cells
to avoid immune regulation, modulate anti- and
proapoptotic signals, and increase T-cell responsiveness to
extracellular stimuli, the viral Tax protein is the major viral
oncoprotein (12-15).

3. TAX THE VIRAL ONCOPROTEIN

The long latent period that precedes the onset of
ATL suggests a multistep mechanism of leukemogenesis
(16).  Two major ways in which viral oncoproteins affect
the passage of cells through individual phases of the cell-
cycle are by (1) increasing the expression level of growth
promoting genes and (2) by altering the function of cell-
cycle regulatory proteins.

Several studies have established that Tax
expression is both necessary and sufficient to establish the
transformed phenotype.  Examination of malignant cells
from ATL patients, which carry defective HTLV-1 proviral
genomes, suggests the genomes preferentially retain the 3’
end of the proviral genome encoding the Tax protein
(17,18).  Several other lines of evidence more directly
demonstrate the importance of Tax in cellular
transformation.  Using a Herpesvirus saimiri vector,
expression of the 3’ portion of the HTLV-1 genome
containing the Tax gene was able to transform T-cells
resulting in a phenotype similar to HTLV-1 transformed
cells (12).  Mutation of the start codon of Tax eliminated
cellular transformation (19).  Rodent fibroblastic cell lines
expressing Tax form colonies in soft agar and tumors in
nude mice (14).  Tax also immortalizes rat embryo
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Figure 1.  The pleiotropic effects of Tax.  This is a
summary of the activity of Tax within an infected cell that
leads to uncontrolled cell proliferation. (adapted from
Yoshida, 2001)

fibroblasts and cooperates with ras in cellular
transformation (20).  Subsequently, Smith and Greene
found that Tax alone could transform Rat2 cells (13).  In
addition, Tax expression allows factor independent growth
of established murine T-cell lines (21).

In transgenic mice, Tax protein expressed from
the HTLV-1 LTR gave rise to animals that developed
neurofibromas and mesenchymal tumors (22-24).  In
addition, arthritis and thymic atrophy have been observed
(25).  To investigate Tax’s leukemic potential, Grossman et
al. (26) targeted Tax to the mature T-lymphocyte
compartment by developing mice which express Tax under
the control of the granzyme B regulatory element.   While
these mice did not develop CD4+ T-cell leukemia, they did
develop large granular lymphocytic leukemia of natural
killer (NK) cell and cytotoxic T lymphocyte (CTL) nature
(26). 

3.1. Tax regulates gene expression
Tax is a 40kDa phosphoprotein that is

predominately nuclear but has been shown to shuttle
between the nucleus and cytoplasm (27).  Tax lacks a
cellular homologue (28), but has been shown to
transactivate or transrepress the expression of a wide
number of cellular genes.   These include cytokines, growth
factors, cellular receptors, cell-cycle regulators, DNA
repair proteins, or proteins which regulate apoptosis
(1,3,29-35).  Tax does not bind DNA directly but acts
through cellular transcription factors, CREB, NF-κB, and
SRF (1,34).  With the advent of DNA microarray
technology, profiles of HTLV-1 infected cells and Tax
expressing cells have allowed a more complete list of
HTLV-1/Tax regulated genes (36-39).  It’s these
pleiotropic actions of Tax that predict its central role in
leukemogenesis (Figure 1).

3.2. Tax activation of the viral LTR
Tax was originally identified as a transcriptional

activator for viral gene expression.  Tax drives viral gene
expression from three imperfect 21 base pair repeat

enhancer elements located within the U3 region of the
HTLV-1 long-terminal repeat (LTR).  Each Tax-responsive
element (TRE) contains a core CREB/ATF binding site
flanked by 5’G- and 3’C-rich residues (40,41).  Tax
efficiently activates the LTR by forming a Tax/CREB/TRE
complex where binding of Tax to CREB enhances CREB
homodimer formation (42-45).  Tax is believed to contact
the G-C-rich flanking sequences of the DNA, which results
in a conformational change in Tax allowing the exposed C-
terminal region of Tax to recruit the co-activators
CBP/p300 and PCAF (46,47).  Unlike CREB-mediated
transcription, Tax-mediated transcription occurs in the
absence of CREB phosphorylation.  The ability of Tax to
activate transcription via CREB/ATF sites is context
specific, since transcriptional activation of cellular
promoters that contain CREB sites is not seen (43,48,49).

3.3. NF-κB activation
Tax works at several levels to maintain

constitutive activation of the NF-κB pathway (50).
Although a direct interaction between Tax and different
members of the NF-κB family have been reported (51-56),
the primary action of Tax in activating NF-κB has been
shown to occur through interaction with IKKγ in the IKK
signalsome which includes IKKα, IKKβ, NIK, and
MEKK1 (57-59).  The mechanism by which Tax stimulates
the IKK complex through IKKγ is not clearly understood.
A more comprehensive discussion of this topic can be
found in reviews on Tax activation of NF-κB
(35,50,60,61).

Although other pathways have been implicated
(13,62), strong evidence supports the activation of the NF-
κB family of eukaryotic transcription factors by Tax as
playing a critical role in HTLV-1 induced leukemia
(21,63,64).  This is not surprising since the NF-κB family
plays an important role in the regulation of immune
responses, embryonic and cellular development, apoptosis,
cell-cycle progression, inflammation, and oncogenesis.

An early study showed that while antisense
oligonucleotides to Tax had no effect on tumor growth,
antisense to NF-κB blocked Tax induced tumor growth
(65). More recently, using the infectious molecular clone of
HTLV-1, Robek et al. (63) demonstrated that mutants in
Tax that could not activate the NF-κB pathway could not
immortalize human T-lymphocytes.  In contrast, Tax
mutants that failed to bind p300/CBP or activate the
HTLV-1 LTR still allowed lymphocyte immortalization
(63,64).  Similarly, inhibition of apoptosis induced by
factor withdrawl in mouse CTLL cell lines correlates with
the ability to activate NF-κB and induction of the anti-
apoptotic, NF-κB-regulated gene, Bcl-xL (21,66).  Further,
inhibition of NF-κB activity by expression of the NF-κB2
precursor abrogated Tax-mediated transformation of rat
fibroblasts without affecting viral LTR activation (67).
Using Tax-transgenic mice, Portis et al. (68) demonstrated
that sodium salicylate and cyclopentenone prostaglandins,
inhibitors of NF-kB activity, blocked spontaneous
proliferation of Tax transgenic mouse spleen cells.  In
addition, Tax-induced tumor cells resistant to irradiation-
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Figure 2.  The p53 response.  Diagrammatic representation
of the central role p53 plays in the coordination of the
cellular response to a variety of stresses.

Figure 3.  p53 modifications.  The human p53 protein has
distinct functional domains TA, transactivation; Proline
rich; DBD, DNA binding domain; NLS, nuclear localization
sequence; TET, tetramerization domain; REG, regulatory
domain.  This schematic diagram depicts the phosphorylation
(P) and acetylation (Ac) sites of the p53 protein upon DNA
damage or during proliferation and senescence. S, serine; T,
threonine; K, lysine; IR, ionizing radiation; UV, ultraviolet
radiation.  The putative kinases are indicated. ATM, Ataxia
telangiectasia mutated; CK1 and CK2, casein kinase 1 and 2;
p38, p38 mitogen-activated kinase; HIPK2, homeodomain-
interacting protein kinase 2; JNK, Jun-terminal kinase; CDK2,
cyclin-dependent kinase 2; PKC, protein kinase C.  In vitro,
PCAF acetylates p53 at K320 while CBP/p300 acetylates
K370, K372, K373, K381, K382, K386.  These same C-
terminal residues acetylated after DNA damage are also the
residues ubiquitinated by MDM2.

induced apoptosis became sensitive in the presence of
sodium salicylate and prostaglandins.  Finally, our studies
suggest a link between NF-κB activation and Tax-mediated
inhibition of the tumor suppressor, p53 (69).

4. THE TUMOR SUPPRESSOR p53

Eukaryotic cells have developed signaling
pathways to coordinate cell-cycle transitions and ensure

faithful replication of the genome before cell division.
These regulatory pathways are termed cell-cycle
checkpoints (70).  Checkpoints exist in cells that will
interrupt cell-cycle progression when damage to the
genome or spindle is detected, or when cells have failed to
complete an event.  When a checkpoint is triggered, cells
arrest transiently to allow for the repair of cellular damage
or alternatively, if damage is irreparable, signal pathways
lead to programmed cell death.  The ability of normal cells
to undergo cell-cycle arrest or apoptosis is critical for the
maintenance of genomic integrity.  Defects in cell-cycle
checkpoints can result in gene mutations, chromosome
damage, and aneuploidy, all of which may contribute to
tumorigenesis.

Arguably the most frequently detected alteration
in human cancer is inactivation of the tumor suppressor,
p53.  In fact, mutation of p53 is associated with
approximately 50% of all human cancers.  In addition, p53
is a frequent target for inactivation by viral transforming
proteins such as SV40 large T-antigen, HPV E6, hepatitis B
X-antigen, and adenovirus E1A and E1B (71).  While Tax
has been shown to affect several cell-cycle checkpoints
such as G1/S and DNA repair (1,72), this review will focus
on the role of Tax in p53 inhibition.

4.1. p53 function
The p53 protein belongs to a family of related

proteins that includes two other members, p63 and p73
(73,74).  While the proteins are all structurally and
functionally related, p63 and p73 have clear roles in
development, whereas p53 seems to have evolved to
prevent tumor development and has earned the name
“cellular gatekeeper”.

Several stress signals can activate p53, triggering
a variety of responses including cell-cycle arrest,
differentiation, DNA repair, apoptosis, or senescence
(Figure 2).  There are five recognized domains in p53: the
N-terminal transcriptional activation, proline rich, sequence
specific DNA-binding, tetramerization, and basic
regulatory domains (Figure 3).  p53 functions as a
tetrameric, sequence specific DNA-binding transcription
factor that controls the expression of an array of gene
products in response to diverse stress stimuli.

p53 is extensively phosphorylated, and
modification at several residues has been specifically
associated with the ability of p53 to respond to certain
stress signals (Figure 3).  There are numerous
phosphorylation sites in the N-terminal domain and
phosphorylation of serines 15, 20, 37 and threonine 18 have
been shown to regulate p53/MDM2 binding in vitro.  The
kinases signaling to p53 include casein kinase 1 and 2,
ataxia telangiectasia kinase (ATM), ATR (ATM/Rad3
related kinase), CHK1 and 2, jun N-terminal kinase (JNK),
and DNA-dependent protein kinase (DNA-PK) (reviewed
in (75,76)).  Several of these kinases have also been shown
to phosphorylate MDM2 in vitro within the p53-binding
domain further suggesting a regulatory role for these
modifications ((77) and references therein).
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Under damage or stress conditions, the
phosphoacceptor sites are modified through a regulated
kinase cascade in vivo ((71,78-82) and references therein).
It is the complexity and combination of the phosphorylation
sites that appears to dictate the fate and function of p53.
For example, the phosphorylation pattern of p53 differs
during the cell-cycle and coincides with the ability of p53
to associate with regulatory proteins including p300 and
MDM2 (75,83,84).   In addition, in vitro protein-protein
interaction assays demonstrated that phosphorylation at
serine 15 alone inhibited the interaction of p53 with TBP
(85).  In contrast, phosphorylation at serine 15 and 37 did
not inhibit TBP binding, suggesting that the combination of
phosphorylated sites is important.

In addition to its complex phosphorylation
pattern, p53 is acetylated on at least 3 lysine residues, 320,
373, and 382 (86-89).  Additional C-terminal lysines have
also been identified as potential acetylation sites.
Acetylation of p53 has been implicated in transcriptional
regulation by p53 and its association with basal
transcription machinery (86-89).  In addition, the
association of p53 with deactylases has implications for
regulating both p53 transcriptional activation and
repression functions (82,90).

4.2 p53 in HTLV-1 infected cells     
HTLV-1 infection is associated with stimulation

of G1- to S-phase progression (91).  Because p53 plays
such a key role in G1- to S-phase transition, several groups
examined the status of p53 in HTLV-1 infected cells.  Early
observations found that p53 was wild-type in sequence but
stabilized in most HTLV-1 infected T-cells (92,93).  For
those cells having p53 mutations, they appeared to correlate
with late stages of disease (94,95).  In 1996, Cereseto et al.
demonstrated that p53 was transcriptionally impaired in
ATL cells.  In addition, these cells failed to undergo G1
arrest after induction of DNA damage (96).

Biochemical studies of p53 in HTLV-1 infected
cells demonstrated that p53 existed primarily as tetramers
(85), which reside in the nucleus.  Using biotinylated
oligonucleotides or gel mobility shift assays, it was shown
that p53 from transformed cells can bind DNA in a
sequence-specific manner (85,93,97).  Interestingly, in the
transformed cells, p53 was found to be
hyperphosphorylated at serines 15 and 392 by
phosphopeptide mapping (85).  This observation was of
significant interest since, as discussed above, the pattern of
p53 phosphorylation is significantly altered in response to
stress (78,79,82) and in human tumors (98).  Moreover, the
phosphorylation of p53 is predicted to alter its
conformation and its association with other factors.  This
may explain why p53 is inactive in tumor cells despite its
wild-type genotype (85,99).

Viral oncoproteins such as SV40 large T-antigen
or adenovirus E1B (71) have been shown to directly bind to
p53, inactivating its function.  Several groups have shown
by immunoprecipitation or in vitro pull-down assays that
Tax protein does not bind to p53 (85,97,100).  It appears
more likely that Tax inhibits p53 function through an

indirect mechanism.  The indirect mechanism, however,
results in a similar phenotype to E1B since p53 in the
transformed cells does not interact with the basal
transcription factor TFIID (85).  Interestingly, decreased
TFIID binding correlated with phosphorylation of p53 at
serine 15 (83,85) suggesting that Tax regulates p53 through
modulation of upstream kinase activity or specificity.

In normal non-stressed cells p53 has a very short
half-life due to a negative feedback loop mechanism in
which MDM2 protein plays a key role (101,102).
Transcription of MDM2 is upregulated by p53.  In turn,
MDM2 directly binds to p53 and functions as a ubiquitin
E3 ligase that promotes the conjugation of ubiquitin to p53
resulting in its proteasome-mediated degradation.  The
importance of this negative feedback loop is illustrated by
the result that MDM2 null mice are not viable unless
crossed to p53 null mice (103).  Consistent with the
stabilization of p53 in HTLV-1 infected cells, MDM2
binding to p53 was not detected (85).  In related studies,
Takemoto et al. found that p53 stabilization and functional
impairment in HTLV-I transformed cells occurred in the
absence of genetic mutation or alteration of the p14 ARF-
MDM2 loop (104).

5. MECHANISMS OF TAX-MEDIATED p53
INHIBITION

Several groups have shown that of the HTLV-1
encoded proteins, expression of Tax protein alone is
sufficient to inhibit p53 transcriptional activity.  Transient
transfection assays demonstrated that Tax could inhibit p53
activity on reporter constructs (97,105,106).  Similar
observations were reported in stable T-cell lines expressing
only Tax (107).

The mechanism by which Tax inhibits p53
function is not completely understood, but much progress
has been made.  There is general agreement that Tax-
mediated p53 inhibition is not through direct binding of
Tax, altering p53 sub-cellular localization, or disrupting
DNA-binding.  However, there is controversy as to whether
Tax uses the NF-κB or CREB/ATF pathway to inhibit p53
function.  Our studies point to the activation of the NF-κB
pathway as being important for Tax-mediated p53
inhibition (69,108).  In other studies, Tax activation of the
CREB/ATF pathway appears important (97,100,109,110).
A partial resolution of these apparently discrepant results
was offered by Pise-Masison et al., who reported that the
mechanism was cell-type dependent and depended largely
on the intracellular pool of CBP/p300 (109).  More
recently, an indirect mechanism of p53 inactivation by Tax
has also been proposed because of the interaction of Tax
with the hTid-1 protein that is a human homologue of the
Drosophila tumor-suppressor protein Tid56 (111).

5.1. NF-κB pathway
As seen in Tax-induced cellular

immortalization/transformation, our laboratory has found a
strong link between Tax’s ability to activate NF-κB and its
ability to inhibit p53 in lymphocytes (69) (Figure 4A).
Blocking NF-κB activation by expressing a dominant
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Figure 4.  Mechanisms of Tax-mediated p53 inhibition.  (A) Schematic representation of the nuclear and cytoplasmic functions
of Tax which lead to p53 transcriptional inactivation.  The Tax protein, in conjunction with CREB and the co-activators PCAF
and CBP/p300, activates transcription from the viral long terminal repeat (LTR).  Tax expression leads to the activation of the
NF-κB pathway through the IKK signalsome.  This activation leads to nuclear translocalization of the NF-κB transcription factor,
which in turn activates NF-κB responsive genes involved in proliferation and cell survival.  Tax expression also leads to the
phosphorylation of p53 at serines 15 and 392.  This phosphorylation contributes to the binding of the NF-κB subunit p65/RelA to
the p53 protein.  Although p53-p65 complexes are found bound to p53 responsive promoters in vivo, the basal transcription
machinery is not recruited to the promoter.  This results in the inhibition of p53 transcriptional activity. (B) Binding of the co-
activators p300/CBP to p53 protein have been implicated in p53 transactivation.  Once bound to p53 p300/CBP can acetylate
lysine residues in the carboxy-terminal region of p53 enhancing it’s sequence specific DNA-binding.  The viral Tax protein is
also capable of binding p300/CBP and can complete with p53 for binding resulting in inhibition of p53 transcriptional activation
function.
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negative IκBα protein blocks Tax-mediated p53 inhibition
not only in Tax transfected cells but also in HTLV-1
transformed cells (69,112).  Since expression of exogenous
p300 could not rescue p53 activity, squelching of the co-
activator by Tax or NF-κB appears not to be responsible for
the block in p53 transcriptional activity in this system (69).

Our present evidence suggests that p65/RelA is
uniquely involved in p53 inhibition.  Antisense
oligonucleotides to p65 but not p50 or c-Rel restored p53
activity in transformed cells (112).  In addition, p50 null
cells allowed Tax-mediated p53 inhibition, but p65 null
cells could not support inhibition unless the p65 subunit
was added back (69).  In the presence of Tax protein, p65
appears to inhibit p53 transactivation function by direct
interaction with p53.  p65/p53 complexes were detected in
HTLV-1 infected and Tax transfected cells by co-
immunoprecipitation.  Previous studies suggest a strong
link between the ability to phosphorylate p53 at serines 15
and 392 with the ability of Tax to inhibit p53
transactivation of both reporter constructs and endogenous
genes (69).  Likewise, Tax-induced binding of p65 to p53
correlated with the phosphorylation status of p53
(78,85,113).

Modifications of p65 may also play a role in p53
binding and inhibition.  Recent reports indicate that p65 can
be both phosphorylated and acetylated and these
modifications influence the protein’s ability to be recruited
to the transcriptional apparatus and stimulate target gene
expression (114).  Inducible p65 phosphorylation has been
found in both the C-terminal transactivation domains and in
the Rel homology domain (RHD) (114).  Studies are in
progress to determine the importance of p65
phosphorylation in Tax-mediated p53 inhibition.
Additionally, reversible acetylation of p65 may also
regulate its transactivation function (115,116).  p65 has
been shown to associate with HDACs, which are regulated
by the phosphorylation state of p65 (117-119).

It will be of interest to identify which
components of the transcription factors are associated on
the active and inactive promoters. To this end, chromatin
immunoprecipitation assays show that in HTLV-1
transformed cells p53/p65 bind to the MDM2 promoter.
Consistent with the results of DNA pull-down assays (85),
TFIID was not found on the promoter (112).  In contrast, in
cells in which p53 was transcriptionally active, p53/TFIID
complexes but not p65 were found on the promoter.
Studies are underway to fully characterize the active and
inactive promoter complexes.

These studies identify a unique mechanism for
p53 regulation by the p65/RelA subunit of NF-κB.  The
role of p65 in directly inhibiting transcriptional activity has
also been proposed for the glucocorticoid receptor (GR).
Two groups have recently shown that a direct interaction
between p65 and GR results in mutual transcriptional
inhibition (120,121).  Further, while p300/CBP may
function as an integrator of p65/GR physical interaction, it
is not a limiting cofactor for which p65 and GR compete
(120,121).   Rather, similar to the proposed model for p53-

p65, p65 disturbs the interaction of GR with the basal
transcription machinery irrespective of the coactivator
levels.  Further studies are required to determine what
factors govern the interaction and subsequent promoter
inhibition of Tax-mediated p53-p65 complexes.

5.2. CREB/LTR activation pathway
In other situations p53 inactivation occurs

through direct competition between Tax and p53 for
recruitment of the co-activators p300/CBP (Figure 4B).
CBP and p300 are highly homologous coactivators that
promote gene expression by bridging DNA-bound
transcription factors and the basal transcription machinery,
providing a scaffold for integrating transcription factors,
and by modifying transcription factors and chromatin through
acetylation (122,123).  Evidence indicates that interference
with normal CBP/p300 function can result in a variety of
diseases (122-124).  CBP haploinsufficiency is the hallmark of
Rubinstein-Taybi syndrome and chromosomal translocations
affecting the p300 and CBP genes are the cause of congenital
malformations and hematological malignancies (125).  In
addition, mutations in the CBP or p300 gene, accompanied by
loss of the other allele, have been found in a variety of cancers
(122-124).

Many factors including Tax, steroid and retinoid
hormone receptors, phospho-CREB, c-Jun, c-Myb, NF-κB,
TBP, and p53 have been found to interact with CBP and/or
p300 (122-124).  Studies have shown that Tax mutants such as
K88A and V89A, which fail to interact with p300/CBP (126),
failed to inhibit p53 transcriptional activity (100,106,109).  In
vitro binding assays demonstrated that Tax interferes with the
recruitment of CBP to DNA-bound p53 (127) and that Tax and
p53 binding to GST-C/H1-KIX was mutually exclusive (106).
Similarly, in transient transfection studies, a reciprocal
repression between Tax and p53 was seen (106,127).  Finally,
exogenous p300 could in certain cell types rescue p53 activity
(109).  Recent studies have also indicated that Tax can inhibit
the p53 family members p73α and p73β perhaps also through
p300/CBP squelching (128,129).  To note, the Tax mutant
M47, which is still capable of binding CBP/p300 but does not
activate the viral LTR, failed to inhibit p53 activity
(97,109,110).  This suggests that additional factors may be
involved.

          It is important to note that while competition for
coactivators may occur in transient transfection assays
where proteins are over expressed, chromatin
immunoprecipitation assays suggest that p300/CBP is
present at sufficient levels to bind to both viral and cellular
promoters in HTLV-1 infected cells (130).  Chromatin
from HTLV-I transformed Hut-102 cells was crosslinked,
fragmented, precipitated with p300 antibody and the DNA
subjected to PCR amplification using primers for the
HTLV-I LTR or IL-15Rα promoter.  The results of this
study clearly demonstrate that p300 is present on both the
LTR and IL-15Rα promoters (130).

6. PERSPECTIVE

Acute phase Adult T-cell leukemia carries a very
poor prognosis due to the resistance of leukemic cells to
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conventional or even high dose chemotherapy.  In other
human cancers, there is a consensus that reactivation of p53
function in cancer cells could be of therapeutic benefit.
Indeed, several recent studies have defined small molecules
or peptides that restore function to mutant p53 proteins
illustrating the potential of this approach (131-133).  As it
is becoming clear that the apoptotic and cell-cycle activities
of p53 are independently regulated, more targeted therapies
to regulate cell death-inducing functions of p53 are being
pursued.  Since the majority of ATL patients harbor a wild-
type p53 protein that is functionally impaired, reactivation
of p53 could be potentially very beneficial in ATL
treatment.

In support of this, reports have shown that
inhibition of NF-κB activation with Bay 11-7082 or arsenic
trioxide treatment of HTLV-1infected cells results in
apoptosis (134,135).  Several reports link p53 activation
with arsenic induced apoptosis and cell-cycle arrest (136-
140).  Although no change in p53 stability or serine 15
phosphorylation was observed in arsenic treatment of
HTLV-1 infected cells, p53 may be functionally active in
these cells due to decreased p65 binding.  It cannot be ruled
out at this point that additional events may be important for
full activation of p53.  Thus, combination therapy may be
required.  With this in mind, studies using the NF-κB
inhibitor PS-341, which has been successful in treatment of
multiple myeloma and mantle cell lymphoma (141-144),
have shown promise.  Using a NOD-SCID mouse model
for ATL, Tan and Waldmann found that treatment of mice
with PS-341 and humanized anti-Tac was associated with a
complete remission in a proportion of treated animals
(145).

Constitutive NF-κB activation has been
associated with breast, ovarian, prostate, and colon cancer
(146-155).  In addition, multiple viruses including HIV,
HTLV-I, hepatitis B virus, hepatitis C, EBV, and influenza
have been shown to activate NF-κB to promote viral
replication, prevent virus-induced apoptosis, and mediate
the immune response (50).  It will be important to
determine if constitutive NF-κB activation, specifically p65
expression, is a general mechanism for p53 inhibition in
human cancer.
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