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1. ABSTRACT

HTLV-I is a complex retrovirus that encodes a
transcriptional activator, Tax, which regulates expression of
the viral promoter. Tax has been shown to be both
necessary and sufficient to effect immortalization and
transformation of cells in culture and tumorigenesis in
animal models. Tax exerts its influence through protein-
protein interactions with a variety of molecular targets,
including transcription factors and cofactors, histone
modifying enzymes and post-translational modifying
enzymes. Through these interactions, Tax disrupts cellular
regulatory cascades and checkpoints designed to control a
variety of systems. The result is untimely activation or
repression of gene expression, inappropriate protein
modifications, incorrect cell cycling, loss of adequate DNA
repair capacity, and potential release of the cell from tumor
suppression. Whereas for the virus these functions of Tax
provide a means for successful completion of its life cycle, for
the cell, they result at best in anarchy, and at worst in death of
both the cell and the organism of which that cell is a part.

2. INTRODUCTION TO HTLV-I

2.1. HTLV-I epidemiology
Human T cell leukemia virus type I (HTLV-I)

was the first human pathogenic retrovirus identified (1, 2),
and was promptly causally linked to a disease that came to
be called adult T cell lymphoma (ATL), reviewed by
Ratner, this issue. Subsequently, this virus was also
associated causally with a neurodegenerative disease, first
named tropical spastic paraparesis (TSP), then also named

HTLV-I associated myelopathy (HAM), and now referred
to by both terms as TSP/HAM (3, 4).

Estimates of numbers of people infected with
HTLV-I worldwide vary from 10 to 20 million (5, 6) with
infection particularly endemic in parts of the Caribbean,
Africa, South America, and Japan, where ATL was first
reported and characterized (7) (Figure 1). Of those infected,
a predicted 5% will develop disease, most commonly ATL
(reviewed in 8), and second most commonly TSP/HAM
(reviewed in 9). HTLV-I is statistically responsible for 1%
of all leukemias (10). HTLV-I has also been linked with
several less debilitating diseases, including infective
dermatitis (11, reviewed in 12), rheumatoid arthritis (13,
reviewed in 14), uveitis, (15, reviewed in 16), and
polymyositis (17, 18). These are generally considered to
result from pathological inflammatory responses to the
virus (19). They often present in seropositive carriers with
no other disease symptoms (19, 20, reviewed in 21). In an
individual ATL patient, the viral integration site is clonal
within tumor cells, which exist in a background of
oligoclonally or polyclonally infected cells (22, 23, 24). No
notable commonality in integration sites has been reported
in tumor cells (25). Infiltrating infected CD4+ T cells in
TSP/HAM patients exist as oligoclonal populations (26,
27). The time from infection to the onset of ATL or
TSP/HAM is estimated to be 20 to 40 years (28), and
statistical analysis predicts that five independent genetic
events subsequent to infection are required for
transformation (29).
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Figure 1. World map depicting regions of endemic HTLV-I infection in brown. HTLV-I infection is particularly prevalent in
Japan, parts of South America, parts of Africa, and the Caribbean (modified from 6, 322).

HTLV-I is transmitted from infected mother to
child (vertical), between sexual partners, or by
contaminated blood products or tissue (horizontal) (30,
reviewed in 6). There is a growing body of evidence that
infection from mucosal exposure may favor genesis of
ATL, whereas exposure through peripheral blood may
favor development of TSP/HAM (31, 32). The
immunological phenotype of the infected individual also
influences disease progression and status (33, 34, 35).

2.2. Geography of the HTLV-I genome
The HTLV-I genome has been completely

sequenced (36) and shares characteristics with other
retroviruses (Figure 2). Flanked by long terminal repeats
(LTRs) on both ends, the genome encodes the common
retroviral gag, pro, pol, and env genes in the first 6 kb
followed by a unique region at the 3’ end of the genome,
referred to as the X region, because of an early enigma
regarding the function of this region’s gene products. Four
open reading frames, termed I, II, III, and IV, have now been
identified within the X region. Region III encodes the Rex
protein (37, 38), see Green et al. this issue, and region IV
encodes the Tax protein (39, 40). Regions I and II encode
proteins termed “accessory” that are referred to as p12 and
p30/13, respectively, (41, 42, 43), see Bindhu et al. this issue.
Alternative mRNA splicing and frameshifting during
translation are used by HTLV-I to generate the 12 protein
products that have been identified (44, reviewed in 45).

The HTLV-I LTR is divided into three regions, U3,
R, and U5 (Figure 3). The 5’ LTR serves as the principal viral
promoter with a TATA box and binding sites for numerous
cellular transcription factors located in the U3 region (46, 47).
The transcription start site is located at the border between the
U3 and R segments. The LTR also contains three 21 bp
repeats called TRE1 (Tax response element 1) with homology

to cellular cyclic AMP response element binding protein
(CREB) binding sites (CREs). The HTLV-I Tax protein binds
to CREB and CREB family members and activates
transcription from these elements to high levels (48, reviewed
in 49). An additional Tax responsive region, termed TRE2 or
ERR-1, is located between the second (middle) TRE1 and the
third (promoter proximal) TRE1 (50, 51, 52). It contains
additional cellular protein binding sites, and new Tax
responsive elements continue to be characterized within this
region (53). In vivo, the two LTRs, although virtually identical
in sequence, appear to be methylated differentially,
predominately silencing the 3’ LTR. Similarly,
hypermethylation of the 5’ LTR correlates with latency of
viral gene expression (54, 55, 56).

2.3. The HTLV-I life cycle
As is true of retroviruses in general, the mature

HTLV-I virion is surrounded by a lipid envelope derived
from the membrane of the host cell from which it budded.
This envelope projects glycoprotein spikes encoded by the
viral env gene. There are two env gene products, the 21 kDa
transmembrane protein (TM) and the 46 kDa surface
glycoprotein (SU) (Figure 2). Evidence indicates that
retroviral attachment and entry involves interactions between
the SU and a host cell surface receptor(s). Recent evidence
points to the HTLV-I receptor being a glucose transporter,
GLUT-1 (57, reviewed in 58, 59 and Manel et al. this issue).
There is convincing evidence that the HTLV-I receptor is
widely expressed on multiple cell types from a variety of
species (60, 61, 62, 63). Since CD4+ T cells are the
primary targets of virus infection in vivo a coreceptor may
be involved in viral attachment and/or entry (62, 63, 64).
Binding of SU to the receptor triggers fusion with the cell
membrane (62, 65) and T cell activation in a CD2-
dependent pathway (66). The reverse transcriptase enzyme,
present within the virus capsid, initiates synthesis of viral
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Figure 2. HTLV-I genome organization and gene products. The proviral genome is flanked by direct long terminal repeats and is approximately
9000 bp long. It encodes the retroviral canonical gag, pro, pol, and env genes as well as a number of genes in the pX region, including Tax, Rex,
and other accessory proteins. Singly-spliced mRNA results in the env message, p21rex, and p13, whereas doubly-spliced mRNA comprises the
full length rex, tax, p30 and p27 messages. Usage of different start codons and frameshifting results in expression of the viral proteins.
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Figure 3. U3 region of the HTLV-I LTR and binding proteins. The LTR region of the HTLV-I genome is depicted and numbered
according to genome sequence. Below, the U3 region is expanded, and numbering reflects the designation of the transcription start
site at the boundary of U3 and R as +1. The three TRE1s are shown as red, yellow, and blue rectangles, TRE2/ERR-1 as a purple
rectangle, and the upstream ERR-2 as a green rectangle. Multiple proteins bind within the U3 region and have been grouped
according to which binding sites they associate with. Class I includes TRE1 binding proteins, including multiple members of the
ATF/CREB family. Class II includes proteins that bind TRE2. Class III consists of SP1, which binds both to a TRE2 site and to the
proximal TRE1. Class IV consists of Ets1, which has two binding sites in the TRE2 and one in the ERR-2. Class V includes two
proteins, which have binding sites located either outside or both outside and inside one of the general binding regions. These have
been individually designated under the bar that represents the entire U3 region (modified from 323, 324).

progenomic DNA, using genomic RNA as a template.
Following viral entry and uncoating, double-stranded viral
genomic DNA is transported into the nucleus and
integrated into the host cell genome using the enzymatic

activity of the viral integrase, also contained within the
viral capsid. Early events in HTLV-I infection and
replication are reviewed in Derse et al. this issue.
Following integration, the provirus undergoes replication,



HTLV-I Tax Effects on Cellular Transformation

624

transcription, and translation of its gene products, and
virion assembly and release by budding, to complete its life
cycle. These processes require cellular as well as viral
machinery (67, 68, 69).

3. EFFECTS OF TAX ON GENE EXPRESSION

3.1. Role of Tax in cellular transformation
Early HTLV-I studies demonstrated its ability to infect

and immortalize or transform cells in culture (70, 71, 72).
Immortalization of peripheral blood mononuclear cells (PBMCs)
allows them to grow in culture long-term. In a subsequent step
toward transformation, cells acquire the ability to grow in culture
in the absence of exogenous IL-2. In addition to PMBCs, a variety
of cell types from multiple species have been immortalized or
transformed by co-culture with HTLV-I (73, 74, 75, 76). Tax
protein has been demonstrated to be responsible for this activity
both in transformation assays and in transgenic animal
experimental models (70, 75, 77, 78, 79, 80, 81).

The mechanisms by which Tax promotes cellular
transformation have been the subject of intense and
ongoing investigations that have revealed a protein with
extensive pleiotropic effects on host cell replication,
transcription, DNA repair, and cell cycling. Tax exerts its
functions not as a specific DNA-binding protein, but rather
through interactions with cellular transcription factors or
other cellular proteins (Table 1) (49, 82, 83, 84, 85).
Multiple cellular transcription factor pathways are targeted
by Tax; the most comprehensively studied and reported
ones include CREB, NF-kappa B and SRF.

3.2. Transcriptional activation through the CREB
pathway

Tax interacts with the transcription factor CREB
and other members of the CREB family (49, 86) to activate the
HTLV-I LTR in the absence of regulated CREB
phosphorylation (47, 84). Under normal cellular regulatory
conditions, CREB is phosphorylated at a critical serine residue,
S133, in response to activating signals (87, reviewed in 88, 89).
This modification activates CREB to bind the CREB binding
protein (CBP), which functions as a coactivator and
subsequently promotes transcription of genes containing a
CREB response element(s) (CRE) in their promoters (90, 91).
On the viral LTR, Tax bypasses this regulated system by
binding CBP and CREB concomitantly, thereby promoting
transcriptional activation in the absence of CREB
phosphorylation. Conversely, studies on a model cellular CRE
have determined that Tax-directed activation requires CREB
phosphorylation (92). CBP and its close relative p300 effect
their coactivator functions predominantly through their histone
acetyltransferase (HAT) activity (93). Therefore, Tax may
disregulate cellular gene expression by modulating the
enzymatic activity of HAT proteins to which it binds. CBP-
Tax-CREB complexes have been identified (92), and residues
essential for Tax interactions with both CREB and CBP have
been located by mutational analysis (94, reviewed in 95, 96,
97). An additional protein, p300/CBP associated factor
(P/CAF) has also been identified in complexes with Tax (98)
or with Tax and p300 (99). Although P/CAF also possesses
HAT activity (100), this activity is not essential for
Tax-directed transcription of the LTR (98).

Collectively, studies examining Tax activation of
cellular promoters support its ability to assemble P-CREB,
CBP/p300, and/or P/CAF into active complexes under
conditions in which CREB would remain inactive in the
absence of Tax. The HAT activity associated with these
complexes can alter chromosomal architecture at these
promoters. Tax is also recruited to the TRE1s within the
HTLV-I LTR through interactions with CREB, which can
occur in the absence of CREB phosphorylation. The CREB-
Tax complex can subsequently recruit CBP, resulting in
transcriptional activation in the absence of cellular signaling
(92).

3.3. Transcriptional activation through the NF-kappa B
pathway

A second target for Tax is the nuclear factor
kappa B (NF-kappa B) family of transcription factors. Tax
exerts its influence on these factors by a completely different
strategy than that elucidated for CREB. The NF-kappa B
family consists of at least five related proteins, generally
divided into two groups, the first consisting of p105/p50 (NF-
kappa B1) and p100/p52 (NF-kappa B2), the second consisting
of c-Rel, RelA (p65), and RelB (reviewed in 101, 102, 103,
104). This family of transcription factors regulates expression
of a large group of diverse targets, including growth factors
such as IL-2 (105, 106), anti-apoptotic proteins such as Bcl
(107), TRAF1, TRAF2, c-IAP1, c-IAP2 (108), and the caspase
8 inhibitor FLIP (109), as well as the pro-apoptotic protein p53
(110), but plays an especially large role in activating genes
involved in the immune response.

Under quiescent conditions, NF-kappa B is
sequestered in the cytoplasm in an inactive complex with one
of the inhibitor of kappaBs (I kappa B), a family of proteins
that includes the p105 and p100 proteins mentioned above,
which in their precursor forms, function as inhibitors (101).
Upon stimulation, I kappa B is phosphorylated by IKK
proteins (inhibitors of kappa kinases) at two amino-terminal
serine residues (111, 112, 113, 114), causing it to be targeted
for ubiquitination and proteolysis with the concomitant release
of NF-kappa B and its translocation into the nucleus (115,
116). A second event, phosphorylation of one of the second
group of NF-kappa B proteins (RelA, RelB, or c-Rel) is
necessary for NF-kappa B -directed transcriptional activation
(117, 118). Tax expression results in nuclear, active NF-kappa
B in the absence of these regulatory steps (119). Tax disrupts
NF-kappa B regulation by at least two strategies. By
interacting with MEKK1 kinase, which normally
phosphorylates the IKKs in a regulated fashion, Tax promotes
constitutive IKK phosphorylation (120). Subsequently, targets
of the IKKs, the I kappa Bs, are phosphorylated and degraded
(121). Tax also interacts directly with IKKs to increase their
kinase activity (122, 123, 124), thereby inducing constitutive I
kappa B phosphorylation, dissociation of I kappa B and NF-
kappa B, and translocation of NF-kappa B into the nucleus
(125).

3.4. Transcriptional activation through the SRF
pathway

Serum response factor (SRF) represents the third
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Table 1. Cellular Genes Whose Expression Patterns are Changed by Tax
Gene Effect on Expression Path Category of Gene Product Function References
1309 + CC chemokine 222
Act2/MIP-1beta + Beta chemokine 222, 223
Bax - E box Apoptosis regulator 224
Bcl-xl + NFκB CREB Anti-apoptosis 225, 226, 227
beta-1, 4-N-acetylgalactosaminyl-transferase + Ganglioside synthesis 228
b-myb - Transcription factor 229
Butyrate Response Factor + CREB mRNA degredation 230
CalpainII + Cysteine protease 231
c-fos + SRF Transcription factor 137, 136
c-jun + Transcription factor 232
c-myb - NFκB Transcription factor 233, 234
c-myc + NFκB Transcription factor 235
c-Rel + NFκB Transcription factor 236, 237
c-sis/PDGF-beta + SP1 SP3 Egr1 Protein tyrosine kinase 238
CXCR4 + nuclear respiratory factor 1 Cell surface receptor, cell fusion 239
Cyclin A - CREB Cell cycle 240
Cyclin D1 + NFκB Cell cycle 200
Cyclin D2 + NFκB CREB Cell cycle 241, 242, 200
Cyclin D3 - CREB Cell cycle 240
DNA pol alpha - CREB DNA replication 240
DNA polymerase beta - E box DNA repair; BER 154, 243
E2F-1 + CREB Cell cycle transcription factor 244
E-cadherin + NFκB Cell adhesion 245
Egr-1 + SRF Transcription factor 138
Egr-2 + SRF Transcription factor 138
ETR101 + CREB Putative Transcription Factor 246
FasL + NFκB CREB NFAT TNF receptor family ligand; apoptosis induction 247, 248
Fibronectin + NFκB Cell surface glycoprotein; cell adhesion 249
Fra-1 + AP1 Rb control element Transcription factor, cell motility 250
Fucosyltransferase VII + CREB Synthesis cell surface glyco-moieties 251, 252
Galectin-3 + NFκB CREB Galactose and IgE binding 253
GM-CSF + NFκB cytokine 254, 255, 256, 257
HTERT - c-Myc DNA polymerase 258
ICAM + CREB Cell adhesion 259, 260, 261
IL-1alpha + NFκB Cytokine 262, 263
IL-1beta + C/EBPβ Spi-1 PU.1? Cytokine; pyrogen 264
IL-2 + NFκB AP1 Cytokine 254, 265, 266
IL-2Ralpha + NFκB Cytokine receptor 267, 190, 257, 268
IL-4 + C/EBPβ cytokine 269
IL-6 + NFκB Cytokine 262, 270, 270
IL-8 + NFκB AP1 CXC chemokine 222
IL-10 + NFκB Anti-inflammatory cytokine 271, 272
IL-13 + cytokine 273
IL-15 + NFκB Cytokine 274
IL-15Ralpha + NFκB Cytokine receptor 275
iNOS + Immune and inflammatory modulator 276, 277, 278
interferon (IFN) consensus sequence- binding protein (ICSAT) + Transcription factor; IRF family member 279
IP-10 + Interferon inducible inflammation regulator 222
IRF-4 + NFκB NFAT Transcription factor; T cell activation 280, 281
Lck - E box Protein tyrosine kinase 282, 146
Lyn + Protein tyrosine kinase 283
Matrix Metalloproteinase 9 (MMP9) + NFκB SP1 Degradation of extracellular matrix 284
MIP-1alpha + CC chemokine 222, 285
monocyte chemoattractant protein (MCP)-1, + NFκB chemokine 286, 287
MultiDrugResistance-1 + C/EBPβ Transmembrane transport 288, 289, 290
Nerve Growth Factor + CREB-like Neuron growth, differentiation 291
NF-1 - GAP family member, regulates Ras activity 47
Nur77 + CREB AP1 Steroid receptor; apoptosis related 292, 293
Ox40 + NFκB TNF family member; cell surface receptor 294, 295
Ox40L + NFκB Transmembrane ligand 296, 297, 298
p18INK4C - E box Cyclin dependent kinase inhibitor 211
p19INK4D - Cyclin dependent kinase inhibitor 95
p21Cip + E box Cell cycle; kinase inhibitor 217, 299
p27Kip - CDK inhibitor 95
Parathyroid hormone-related protein (PTHrP) + SP1 Ets1 Regulatory for calcium metabolism 300, 301, 302, 303, 304
PCNA + DNA replication and repair 160, 166
Proenkephalin + AP1 Neurotransmitter/Neuroimmodulator 305, 306
SCM-1/SCYC-1 + C chemokine 222
Stat 1 + Signal transduction; transcription factor 307
Stat 5 + Signal transduction; transcription factor 307
TGFbeta + Proliferation & differentiation 308, 309
Thioredoxin + oxidoreductase 310
tissue inhibitors of matrix metalloproteinases-1 (TIMP-1) + AP1 Connective tissue remodelling 311
TNFalpha + NFκB Proinflammatory cytokine 312, 313, 314
TNFbeta + NFκB Proinflammatory cytokine 315, 316
VA-1 + CREB 317
V-Cam + NFκB Cell adhesion 318
Vimentin + NFκB Cytoskeletal subunit 319, 320
Zap-70 - Protein tyrosine kinase; T cell activation 321

and least well-characterized cellular transcription factor
pathway targeted by Tax. Serum response factor is a

MADS box-binding protein and was first identified as a
transcription factor activated in response to serum (126,
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127, 128). Since its activation is independent of de novo
protein synthesis, SRF is categorized as an immediate early
gene (129). Multiple targets of this transcription factor have
been identified and include genes important in early
responses to mitogenic stimulation, as well as genes
important during early stages of development, particularly
in myogenesis in general (130, 131, 132, 133) and
cardiomyogenesis in particular (134, 135). Following
mitogenic stimulation SRF is phosphorylated, resulting in
its activation. Tax usurps this pathway by interacting with
SRF and perhaps cofactors in a strategy that resembles that
employed for CREB activation. The interaction of Tax and
SRF results in constitutive expression of early growth
response genes including c-fos, egr1, and egr2 (83, 136,
137, 138, 139). Roles for cofactors or histone modifying
proteins in this activation have not yet been reported.
Binding sites for multiple proteins, including CREB and
SRF, have been identified within the HTLV-I LTR (47,
Wycuff et al., in press). Dysregulated activity of an
immediate early protein such as SRF may provide a
mechanism by which HTLV-I can promote productive
infection and/or reactivation from viral latency.

3.5. Transcriptional repression
In addition to gene activation, Tax also represses

the expression of a variety of genes, primarily those
containing E boxes in their target promoters (Table 1). E
boxes are binding sites for the E2A family of proteins,
which includes c-Myc (140), E47, and E12 (141). The E2A
transcription factors are important in T cell and B cell
development (142, 143, 144). Tax does not interact with
E47, but in the presence of Tax, the association of E47 with
p300 is decreased and transcription of E47-dependent
genes is repressed. The repression of E box-containing
genes correlates with the ability of Tax to bind p300 (145).
Some genes whose expression is repressed by Tax do not
possess E boxes, including NF-1 and lck (146, 147). In
these cases, Tax may squelch gene expression by similarly
interacting with a requisite cofactor for that promoter,
thereby precluding promoter activity.

Using the above-described strategies and no
doubt others as well, Tax disrupts the regulation of cellular
gene expression, resulting in alterations in cellular
processes including cell cycle regulation, DNA replication
and repair, and apoptosis, leading to immortalization,
transformation and leukomogenesis. The ability of Tax to
disrupt careful regulatory systems in place for these
processes is consistent with cell survival in the presence of
mutations and aneuploidy that would normally trigger
cellular self-destruction.

4. IMPACT OF TAX ON DNA REPAIR

DNA can be damaged either through intracellular
mistakes during replication or as a consequence of
extracellular environmental stresses. Not surprisingly, cells
possess extensive and intricate mechanisms that detect and
repair such damage. If repair is not possible, cellular
systems exist to prevent errors from being transmitted to
daughter cells. DNA repair can be classified into four
categories, nucleotide excision repair (NER), base excision

repair (BER), mismatch repair (MMR), and recombination
repair, based on the type of damage recognized and
repaired and the proteins involved (reviewed in 148). To
date, Tax has been reported to disrupt two of these
pathways, NER and BER, and there is no experimental
evidence that Tax directly causes DNA damage (149).

4.1. Impact of Tax on base excision repair
BER removes damaged bases from DNA, which

can result from spontaneous events or exposure to exogenous
agents such as ionizing or UV radiation. These agents cause
base modifications that, along with apurinic/apyrmidinic
sites, are repaired by BER. Apurinic/apyrimidinic sites are
one of the most frequent DNA lesions incurred by the
genome (150). During BER, nucleotides are inserted by a
specific repair enzyme, DNA polymerase beta (pol beta)
(151, 152, 153), and the first intimation that Tax might
influence the stability of cellular DNA came from reports
that Tax suppressed expression of DNA pol beta (154).
Subsequent work demonstrated that Tax does indeed impede
BER (155). The predominant type of BER is short patch,
involving insertion of a single nucleotide by DNA pol β beta
(151, 152), but long patch repair, involving insertion of up to
10 nucleotides, occurs in 25% of BER events (156), and is
proliferating cell nuclear antigen (PCNA)-dependent (153,
157, 158, 159). Although it has been shown that Tax
activates PCNA expression (160), the effects of Tax-induced
PCNA over-expression on BER have not yet been reported.
The function of another important BER protein, p53, is also
impacted by Tax expression, which could contribute to Tax
inhibition of BER. The effects of Tax on p53 and vice versa
are covered in a companion review (see Pise-Masison and
Brady this issue).

4.2. Impact of Tax on nucleotide excision repair
Tax also disrupts the NER pathway of DNA

repair (161, 162). NER repairs bulky DNA adducts such as
pyrimidine dimers. NER proceeds by two pathways, global
genomic repair, which repairs general lesions, and
transcription-coupled repair, which occurs when the
transcription machinery encounters a transcription-blocking
lesion (163, 164). The disruption of NER by Tax (165)
correlates with Tax-induced activation of PCNA expression
(166). The PCNA protein is intimately associated with
DNA and with DNA polymerases delta and epsilon, which
function in DNA repair and replication. When DNA
damage is detected, p21 levels increase, and p21 interacts
with PCNA, blocking its role in DNA replication but not
DNA repair (167, 168). It is proposed that upon Tax
transactivation of the PCNA promoter, increased levels of
PCNA overcome the p21-induced replication block,
enabling replication in the presence of damage (168),
which would result in incorporation of unrepaired lesions
into the genome. Additional evidence suggesting that Tax
affects DNA repair comes from a report that Tax co-
localizes with Chk2 and p53BP1, proteins involved in
DNA damage recognition and repair (169). It is possible
that Tax affects the function of these proteins by abrogating
their participation in damage recognition and repair.

4.3. Impact of Tax on aneuploidy
In addition to clastogenic lesions, aneuploidy is a
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hallmark of malignant cells in general and of ATL cells
specifically (170), as well as of HTLV-I cells infected ex
vivo (171, reviewed in 172). One explanation of this
phenotype may lie in the ability of Tax to bind to the
mitotic arrest deficiency 1 protein (MAD1) (173). MAD1 is
part of the mitotic spindle assembly checkpoint (MSC), as
are several other proteins, including budding uninhibited by
benzimidazole (BUB1, 2, and 3) (174), MAD2, and MAD3
(175). Since MAD1 transcription is regulated by p53 (176,
177), Tax may also impact MAD1 activity by inactivating
p53 (178, 179, 180). Both hBUB and hBUBR1 have been
reported to be mutated in a high proportion of ATL patients
(181), and the MSC has been found to be defective in a
study of HTLV-I infected cell lines in which MAD1 and
MAD2 mislocalized from the nucleus to the cytoplasm
(182). Because MAD1 function is required to direct MAD2
to the kinetochores (183), by altering MAD1 function, Tax
also disrupts MAD2 function. Since MAD2 functions to
block activity of the anaphase-promoting complex (184,
185, reviewed in 186), these Tax-driven events may
promote progression of the cell through mitosis and cell
division, even in the presence of chromosomal lesions.
Thus, the impact of HTLV-I on DNA damage repair is
likely the result of Tax’s influence on transcription and its
sequestration of repair factors through protein-protein
interactions.

5. TAX AND CELL CYCLE REGULATION

5.1. Activation of cell cycling
Quiescent cells enter the cell cycle from G0 upon

mitogenic stimulation by a variety of factors or events.
Continued presence of growth factors is important from
early through late G1. As described above, Tax activates
the expression of genes required to initiate and promote cell
proliferation. These include SRF, Egr1, and Egr2, early
proteins in cell activation (136, 187). Tax also activates the
expression of IL-2 and IL-2R-alpha, the high affinity
subunit of the IL-2 receptor, through NF-kappa B elements
in their promoters (188, 189, 190). In a newly infected cell,
these high levels of IL-2 and IL-2R-alpha insure that the
cell is activated and moves through the cell cycle, with a
concomitant increase in the nucleotide pool needed for
cellular DNA synthesis and viral replication.

5.2. Retinoblastoma protein
Despite the fact that Tax acts at multiple points in

the cell cycle, for example, disrupting M phase as described
above, many studies investigating the influence of Tax on
the cell cycle have focused on G1. In normal cells the
retinoblastoma tumor suppressor protein (Rb) plays a key
role in the control of cell cycle progression. During the G1
phase, Rb is hypophosphorylated, a state that enables it to
bind to the transcription factor E2F with high affinity and
precludes activation of E2F-responsive promoters,
including those of cyclin E, important for progression
through G1 phase, and cyclin A, important for progression
through S phase (191). Cyclins, complexed with their
partners, cyclin-dependent kinases (cdks), progressively
phosphorylate a host of proteins necessary for cell cycle
progression, including Rb itself. Resultant Rb
hyperphosphorylation releases E2F, thereby inducing

additional cyclin expression.

In its hypophosphorylated state, Rb recruits a
histone deacetylase (HDAC) to E2F binding sites (192,
193, 194), which provides additional downregulation of
expression from E2F regulated promoters by causing local
histone deacetylation, augmenting E2F sequestration. Rb
also recruits the human homologues of the yeast SWI/SNF
complexes, BRG1 and hBRM, to these promoters to
modulate chromosome architecture at these sites (195). In
early G1, cyclinD/cdk4 complexes phosphorylate Rb to an
intermediate level, causing HDAC release and inducing
cyclin E expression. By remaining complexed with
BRG1/hBRM, Rb continues to repress the expression of
cyclin A, a molecule important for S phase, but not G1.
Increased cyclinE/cdk2 activity causes additional
phosphorylation of Rb as well as BRG1/hBRM, resulting in
complete dissociation of this complex from E2F, enabling
subsequent expression of cyclin A (195, 196).
Concomitantly, the cdk partner is regulated by post-
translational modifications. Inhibitory threonine and
tyrosine phosphorylations are relieved by cdc25
phosphatases and by phosphorylation of a pivotal threonine
residue by cdk activating kinase (CAK) (197, 198, 199).
All of these events direct normal cells through G1 and S in
a regulated fashion in response to cell activation signals.

5.3. Cyclins, kinases, and inhibitors
Tax impacts the careful regulation of cell cycle

progression at multiple points including upregulating
expression of at least two cyclins, cyclin D1 and D2
through NF-kappa B response elements (200). Tax also
increases the kinase activity of cdk2, 4, and 6 by increasing
their expression (201) as well as enhancing the interaction
between cdk4 and cyclin D2 by direct interaction with cdk4
(202). These activities result in increased and earlier
phosphorylation of Rb and release of E2F. Rb-directed
expression of cyclin E leads to cyclin A expression and
entry of Tax-expressing cells into S phase earlier than non-
Tax expressing cells (203, 204).

Tax also affects the activity of two families of cdk
inhibitory proteins, p16 and p21. The p16 family includes
four members, p15INK4b, p16INK4a, p18INK4c, and
p19INK4d (205, 206), which function to inactivate cdk4 and
cdk6. Tax can bind p16 INK4a and interfere with its ability
to inhibit cdk4, thereby enabling cdk4-cyclin D activity and
cell cycle progression (207, 208, 209). Similarly Tax also
interacts with p15INK4b to inhibit its activity, resulting in
active cdk4 (210). Alternatively, Tax has been reported to
repress transcription of p18INK4c (211) and to reduce
p19INK4d protein levels (201). The p21 family includes
three members, p21cip1, p27kip1, and p57kip2 that interact
with both cyclin and cdk subunits to form inactive, ternary
complexes (206, 212, 213, 214). Tax is known to upregulate
transcription of the p21 promoter (201, 215, 216, 217), which
should lead to inactivation of cdk-cyclin complexes;
however, the p21 protein does not appear to be active at the
G1/S checkpoint in Tax-expressing cells (Lemoine and
Marriott, unpublished data). Tax also binds cdk4 directly, as
mentioned above, resulting in increased cdk4 kinase activity
(218). These varied Tax activities may propel the infected
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cell, unregulated by normal cellular checkpoints, through G1
phase of cell cycle. Although the story of how Tax exploits
and disrupts the cell cycle to promote viral activities is most
certainly incomplete, its ability to influence cell cycle
progression at multiple points and through multiple
interactions stands as a model of the versatility and
pleiotropism of viral oncogenes.

6. CONCLUSIONS/PERSPECTIVES

Efficient HTLV-I infection generally occurs by
cell-to-cell transmission, a relatively inefficient overall
strategy to achieve widespread infection (219, 220,
221). The myriad activities impacted by Tax protein
presumably constitute a strategy that promotes viral
transmission. Tax both upregulates and downregulates
cellular gene expression unconstrained by normal
cellular regulatory pathways. It interacts with multiple
proteins, including MAD1 or p21, to alter their
functional characteristics. The goal of these activities
benefit the virus by promoting successful viral
replication, host cell proliferation and evasion of
immune surveillance, enabling the virus to produce
virion progeny and spread infection. The by-product of
these activities, however, is a cellular system gone awry.
The cumulative results of Tax-mediated disruption of
cellular gene expression and regulatory pathways, along
with the effects of other HTLV-I proteins, are infected
cells poised to advance to a diseased state. The
likelihood that HTLV-I infections will continue to
increase in number emphasizes the urgency of ongoing
and future studies, which will increase our
understanding of molecular mechanisms by which Tax
and HTLV-I cause disease and provide potential targets
for therapeutic interventions in the diseases caused by
this virus.
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