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1. ABSTRACT

In an earlier poster paper (1) we proposed that
cancer can be viewed not only as a fatal disease but also as
a local aberrant “rejuvenation” in an organism, and this fact
can be useful for developing new anti-aging and anti-cancer
treatments. In this paper we provide additional evidence
from human and experimental animal studies in support of
this view. First, we discuss cancer genes as candidate
targets for anti-aging interventions. We review examples in
which the life of experimental animals has been prolonged
in situations of increased activity of proto-oncogenes - or
decreased activity of tumor suppressors - in normal (non-
cancerous) cells in vivo. Studies of genetic polymorphisms
revealed similar effects on longevity in humans. Second,
we discuss the possibility of treating cancer with embryonic
stem cells. The fact that cancer cells do not “age” means
that these cells overcome aging host cells. However, cancer
cells can be suppressed by young and quickly proliferating
non-cancer cells, such as embryonic stem cells. The
grafting of these cells in the tumor environment could be a
prospective non-toxic anti-cancer treatment. We discuss
recent evidence in support of this view.

2. INTRODUCTION:
CANCER AND AGING

CONTRAST BETWEEN

In our earlier (poster) paper (1), we suggested
that cancer can be viewed not only as a fatal disease but
also as a local aberrant “rejuvenation” in an organism.
Indeed, a comparison between malignant and aging cells
shows that cancer cells do not “age”; their metabolic,
proliferative and growth characteristics are the opposite of
those observed in cellular aging (both replicative and
functional) (2, 3, 4). Cancer cells are potentially immortal
(they may avoid apoptosis) and can proliferate to an
unlimited extent. Aging cells, both proliferating and post-
mitotic, normally die via apoptosis (5, 6, 7). Aging
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proliferating cells exhibit a decline in proliferative
ability with each cell division and finally suffer
irreversible growth arrest (also called replicative
senescence). It is recognized that cells in a state of
irreversible growth arrest (such as mature neurons in
vivo or replicatively senescent cells in vitro) are not
prone to malignant transformation (e.g., 8, 9, 3).
Whereas cancer cells are de-differentiating, the final
stage of normal cellular development is terminal
differentiation. Cancer cells often have an increased
metabolism, while functionally aging cells (e.g.,
neurons) decline in metabolic activity. Cancer cells may
secrete factors that increase blood supply and produce
embryonic proteins such as o-fetoprotein, while aging
cells do not (2, 3) (Table 1).

Many of these cancer features are inherent to
most “young” cells in an organism, that is, embryonic
cells. Embryonic cells are capable of extensive
proliferation, migration, they secrete factors that
increase the local supply of blood, and produce enzymes
degrading basal membranes (3) (Table 2).

Thus, cancer and aging are in many instances
opposite phenotypic conditions. Recent evidence
suggests that these arise from the opposite expression of
genes participating in apoptosis/growth arrest and
growth signal transduction pathways in cell (such as
proto-oncogenes and tumor suppressors). The proto-
oncogenes are often suppressed in aging cells, while in
cancer cells they are upregulated. Tumor suppressors are
permanently expressed in aging cells, while in cancer
cells they are downregulated (Table 3). We proposed
that controlled “cancer-like” expression of some of
these genes may have an anti-aging effect on cells and
organisms.
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Table 1. Distinctive features of cancer and aging cells

Cancer cells

Aging cells

e  potential immortality

programmed death (apoptosis)

unlimited proliferation

decline in proliferative potential/growth arrest

de-differentiation

terminal differentiation

able to migrate

not able to migrate

increased metabolism

decline in metabolism

may secret embryonic proteins

no embryonic proteins

e  may promote angiogenesis

do not promote angiogenesis

Sources: 2, 3,4, 6, 61

Table 2. Common features of cancer and embryonic cells

Cancer cells

unlimited proliferative potential
able to migrate

increased metabolism
de-differentiated

able to promote angiogenesis

basement membranes

produce embryonic proteins and enzymes degrading

Embryonic cells
high/unlimited proliferative potential
able to migrate
increased metabolism
undifferentiated
able to promote angiogenesis
produce embryonic proteins and enzymes degrading
basement membranes

Sources: 2, 3, 4, 62

Table 3. Genes oppositely expressed in cancer and aging

Apoptosis/Growth arrest

Gene Protein function In cancer cells In aging cells In aging organisms
53 Induces cellular Downregulated in most | Elevated expression (17, Upregulating mutation is
apoptosis/ growth human cancers (14, 6) 18) associated with early aging
arrest; tumor phenotype and lower cancer risk
suppressor in mice (19, 20)
fas “Death” receptor of Decreased expression Higher expression on Proportion of cells expressing
(CDY5) | apoptotic signal 27) lymphocytes from adults CD95 is higher in older
compared with newborns individuals (29)
(30)
bcl-2 Anti-apoptotic Overexpressed in some Decreased levels (63, 32) Decreased expression in
protein; proto- cancers (31) lymphocytes from older
oncogen individuals (29)
Growth signal transduction
Gene Function In cancer cells In aging cells In aging organisms
myc Transcription factor; | Overexpressed in many Expression is lower in Aging diminishes the myc
proto-oncogen cancers (32) senescent cells (35, 32). | expression including that in
Sustained expression response to stress (66)
rescues embryo cells
from senescence (34).
ras Signal transducer; Activated in some cancers Decreased expression in | Activity is lower in old rats
proto- oncogen (36) senescent cells (38) (37). Controlled expression
extends the reproductive life
span in yeast (39)
tyrosine | Growth factor Overexpressed in some Receptor density and Overexpression of tkr-1
kinase receptors (e.g. erb-B, | cancers (32) mitogenic response increases longevity in
receptors | TRK); proto- decrease with donor age | nematodes (44)
oncogenes (41,42)

3. OPPOSITE MANIFESTATION OF COMMON
SIGNALING PATHWAYS IN CANCER AND AGING

3.1. Apoptosis/growth arrest
3.1.1. P53

The potential immortality of cancer cells results
from their ability to avoid apoptosis. The unlimited growth
and proliferation of cancer cells are linked to their ability to
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avoid irreversible growth arrest (2, 4). Both these
qualities require the suppression of p53 tumor
suppressor gene (6, 10, 11). The latter codes a
transcription factor that induces apoptosis or cell circle
arrest at the G1-S phase. It may also promote cell
differentiation. P53 protein influences expression of
many target genes, such as fas, bax, bcl-2, and p21 (12,
13) (Figure 1)
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Targets of P53

P53

Fas
Bax P21
Bcl-2
Apoptosis Growth arrest

Figure 1. Selected genetic targets of P53 (Sources: 15, 28,
64).
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Figure 2. Simplified picture of two major apoptotic
pathways: via “Death” receptor (Fas), and via
mitochondrion (Sources: 15, 28, 65).

P53 is a key tumour suppressor. Mutations that
downregulate or completely knock out this gene are found
in all major histogenetic groups of cancer, such as colon
(~60% cases), lung (~70% cases), brain (~40% cases), and
esophagus (~60% cases) cancers. It is estimated that p53
mutations are the most frequent genetic event in human
cancer cells (14). Even if p53 is not mutated, it is still
downregulated in most human cancers (11, 15).

As for aging, p53 is permanently expressed in
senescent cells (9, 10, 16). P53 gene expression increased
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significantly in aged rat brain (17). Elevated P53 protein is
found to be associated with aging in human diploid
fibroblasts (18). Mice carrying the p53 mutation with a
phenotypic effect analogous to the upregulation of this gene
display an early aging phenotype along with a lower risk of
cancer development (19, 20). Long-living mutant mice,
p66°", have shown an impaired p33 apoptotic response
(21). Introducing the null p53 allele has protected Ku80™"
and mTR” mice from premature aging (22, 23), indicating
that the senescence phenotypes were pS53-dependent (24).
Recently, Van Heemst (2003) demonstrated that
individuals with the Pro/Pro genotype of p33
(corresponding to reduced apoptosis in cell) significantly
increased both survival rates and the proportion of deaths
from cancer at oldest old ages (85+) (25).

Thus, it follows that the upregulation of the p53
tumor suppressor gene is required for both cellular and
organismic aging, while its downregulation may have an
anti-aging effect on cells and (at least in some cases) on
organisms (Table 3).

3.1.2. Fas

One apoptotic pathway involves the transduction
of a signal from outside Fas-ligand (FasL) to the “death”
receptor, CD95 (or Fas), on the cellular membrane. This
signal activates a cascade of caspases, which are
intracellular enzymes destroying cell proteins (Figure 2).

The expression of CD95 is weaker on cancer
cells. Cancer cells may avoid apoptosis when, for instance,
Fas receptor is in soluble form (26) or when its expression
to cell surface is decreased (27). This, together with
increased expression of FasL, may help cancer cells to
avoid immune surveillance because FasL is able to
counterattack host lymphocytes. The decreased expression
of CD95 in cancer cells can be directly related to
downregulation of p53 because the latter has the ability to
induce transport of CD95 from the golgi apparatus to the
cell surface (28).

As regards aging, the susceptibility of cells to
Fas-mediated apoptosis was shown to increase with the age
of the donor (29). The proportion of CD4+ and CD8+
lymphocytes expressing the Fas receptor was significantly
higher in serum taken from old compared to that from
young individuals (45% vs. 29%). It was possible to induce
an in vitro apoptosis in 55 % of the CD4+ cells of old (65-
95) donors, while it was possible in only 26% of the cells
of young (20-29) donors. A similar relationship was
observed for CD8+ cells (29). Other studies show that the
Fas receptor is weakly expressed on the lymphocytes of
newborns; however, its expression progressively increases
in adulthood (30).

3.1.3. Bcl-2

Another apoptotic pathway involves the release
of Cytochrome C from mitochondria and following
activation of effector caspases. The Bcl-2 protein blocks
this apoptotic activity of mitochondria (see Figure 2). The
bcl-2 is known as a proto-oncogen overexpressed in some
cancers (31). As for aging, the density of this protein is
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Growth Signal Transduction

: Growth Factor
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Figure 3. Simplified picture of a growth
transduction pathway (Sources: 31, 32).

signal

lower in aging cells and in lymphocytes taken from old
individuals compared to young ones (32, 29).

Thus, available evidence indicates that key genes
contributing to apoptosis/growth arrest signalling pathways
are oppositely expressed in cancer and aging cells (Table
3). There is also evidence - although limited - that the
downregulation of the p53 tumor suppressor gene may have
an anti-aging effect on cells and organisms.

3.2. The Growth Signal Transduction

The proliferation, the growth signal autonomy
and the de-differentiation of cancer cells are all associated
with the upregulation of the growth signal transduction
pathway. This typical pathway involves the transmission of
a signal from an external growth factor to the growth factor
receptor on a cellular membrane (such as tyrosine kinase
receptor), and from there to cytoplasmic proteins (e.g., GSP
and RAS), passing the signal to a nucleus transcription
factor such as myc (Figure 3). Myc has the ability to induce
cell division and suppress cell differentiation (32, 33).

The majority of known proto-oncogenes
normally participate in the growth signal transduction
pathway in cells (31). Among these, ras, myc and tyrosine
kinase receptors are particularly involved in both aging and
cancer.

3.2.1. Myc

Elevated myc transcription is found in many
human cancers (32, 33). However, it is expressed at much
higher levels - not only in cancer, but also in normal young
proliferating cells- when compared to terminally
differentiated non-dividing ones (32). The sustained
expression of the myc rescued rat embryo cells from
senescence (34). At the same time, significantly decreased
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levels of c-myc transcription have been found in late
passage human fibroblasts compared to early passage cells
(39).

3.2.2. Ras

Ras is a proto-oncogen activated in many cancers
(36). As for aging, Ras activity has been found to be lower
in cells isolated from old rats compared to those from
young ones (37). Ras expression decreased during in vitro
senescence of human fibroblasts (38). At the same time, the
controlled overexpression of the v-Ha-ras has extended
reproductive life span in yeast nearly two-fold (39).

3.2.3. Tyrosine kinase receptors

Expression of these receptors is elevated in some
human cancers (32, 31, 40). As for aging, human
fibroblasts express fewer epidermal growth factor receptors
and display a weaker mitogenic response to the growth
factor with increasing donor age (41, 42, 43). It has been
demonstrated that upregulation of a tyrosine kinase
receptor may increase both longevity and stress resistance
in nematodes. The overexpression of tkr-1 has significantly
improved their survival (average 65%) and resistance to
heat and ultraviolet irradiation (44).

Thus, there is strong evidence that proto-
oncogenes participating in growth signal transduction
pathway are oppositely expressed in cancer and aging cells.
There is also limited evidence that controlled activation of
some of these proto-oncogenes may have an anti-aging
effect on cells and organisms (Table 3).

One should notice that growth signal transduction
pathway has been intensively studied last years in relation
to aging (45, 46). This pathway has been proposed to be a
conserved regulator of aging in different species (see e.g.,
47, 48, 49, 50). Mutations of many relevant genes (e.g.,
daf-2 and age-1 in C. elegans) have been found to increase
longevity in experimental animals (51, 52, 53, 54).
However, only few such mutations manifested themselves
in the activation or overexpression of a known proto-
oncogene (44). Thus, additional studies are needed to
explore the effect of the controlled “cancer-like”
upregulation of proto-oncogenes involved in growth
signalling pathways on aging and longevity.

4. APPLICATION TO ANTI-CANCER TREATMENT

The fact that cancer cells do not “age” suggests
that these cells have high competitive ability in
environment of aging host cells. The proportion of aging
cells increases with age, and proliferative and survival
advantage of cancer cells increases in an old organism, too,
in part providing an increase in cancer risk with age (55). In
this situation, “rejuvenation” of normal host cells
surrounding the tumor could be a prospective anti-cancer
treatment. One such method may involve grafting young
proliferating cells (e.g., embryonic stem cells) in the area
near a malignant tumor. Such therapy would help to
supplant cancer cells, rather than to kill them.

There are data - although limited - supporting this
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view. Neural stem cells (NSC) have shown a potential to
hunt malignant cells (when implanted into intracranial
gliomas in adult rodents in vivo). NSC surrounded the
tumor and expanded aggressively advancing tumor cells
(56). Yip et al., (2003) suggested using this property of
NSC for targeted drug delivery during cancer treatment
(57). Earlier, Barnea et al., (1996) found that fractions
derived from human embryonal neural tissue extracts
significantly suppress the proliferation of human breast
cancer cells. Significant inhibition of proliferation of
osteosarcoma and fibrosarcoma was also obtained (58).
Joshi et al., (2000) revealed significant increase in the
survival of leukemia as well as breast cancer bearing mice
that received in vitro 1L-2-activated peripheral blood stem
cells after tumor transplantation compared with untreated
mice (59).

After this manuscript had already been written,
additional evidence on the possibility of supplanting
malignant cells with normal young proliferating cells came
to light. During the recent 2™ Congress of the International
Society of Stem Cell Research (ISSCR), Staflin et al.,
(2004) demonstrated that neural progenitor cells can inhibit
malignant glioma growth in vivo (60). Glioma cells were
co-inoculated with neural progenitor cells (embryonic as
well as adult) into a rat’s CNS. Embryonic (but not adult)
neural progenitor cells inhibited glioma cell division and
induced glioma cell apoptosis. Complete tumor remission
occurred about 20% of the animals. The importance of this
study is that authors have compared outcomes of treatments
with adult versus embryonic progenitor cells and have
proved that only embryonic (i.e., the youngest) cells have
an effect on these tumors.

5. CONCLUDING REMARKS

Comparative analysis shows that phenotypes of
cancer and aging are, in many instances, opposite. Cancer
cells do not “age”; their metabolic and growth
characteristics are opposite to those observed in cellular
aging (both replicative and functional). That is, cancer
manifests itself as local uncontrolled “rejuvenation” in an
organism (1).

Available data indicate that the opposite
phenotypic features of aging and cancer results from the
opposite manifestation of common genes participating in
apoptosis/growth arrest or growth signal transduction
pathways. Genes normally managing cellular aging
promote cancer when contrarily expressed.

Understanding the opposition between cancer and
aging has practical application to developing new anti-
aging and anti-cancer interventions. The controlled
overexpression of proto-oncogenes as well as the
downregulation of tumor suppressors might produce an
anti-aging effect in cells and organisms. This, however,
needs further and careful investigation in life-term
experiments. Application to cancer therapy seems more
realistic for today. Rejuvenation of normal host cells
surrounding the tumor could be a prospective anti-cancer
treatment. One such method may involve grafting young
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proliferating cells (e.g., embryonic stem cells) in the area
near a malignant tumor.
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