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1. ABSTRACT

During spermatogenesis, the differentiating germ
cells migrate across the seminiferous epithelium while
maintaining close contact with the surrounding Sertoli cells
via specialized actin-based adherens junctions (ectoplasmic
specializations) and intermediate filament-based anchoring
junctions (desmosome-like junctions). Although this
migration is essential for correct completion of
spermatogenesis, the mechanisms that regulate these
anchoring junctions are largely unknown, and most of our
knowledge of cell-cell adhesion in testis is based on earlier
studies in epithelial tissues. In most epithelia, members of
the cadherin superfamily play key roles in intercellular
adhesion. Cadherins are calcium-dependent cell-cell
adhesion molecules mediating numerous homotypic cell-
cell interactions. Until recently there has been controversy
about the presence and localization of cadherins in the
testis, but now there is increasing evidence that various
types of cadherins are expressed in this organ, which
underscores their importance in testicular functions. Here,
we review the expression patterns, regulatory mechanisms
and possible roles of the cadherin-mediated cell-cell
adhesion in the testis, and particularly during
spermatogenesis. Moreover, attention is paid to additional
molecular adhesion complexes in the testis, to associated
signaling pathways and to cell adhesion-related innovative
ways for male contraception.
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2. INTRODUCTION: JUNCTION DYNAMICS
DURING SPERMATOGENESIS

Mammalian spermatogenesis is probably the
most exquisite example of a continuously synchronized and
spatially organized sequence of cell proliferation,
differentiation, translocation and morphogenesis. Unlike
oogenesis, spermatogenesis relies on a population of true
stem cells that are direct descendants of primordial germ
cells, and which are capable of self-renewal and production
of progeny for differentiation into spermatozoa. These
progenitor cells, known as type-A spermatogonia, are
located at the basal lamina of the seminiferous tubule,
where they continuously proliferate by mitotic cell division
(Figure 1). Some of these daughter cells, called type-B
spermatogonia, stop proliferating and in a subsequent phase
they undergo drastic changes in chromatin configuration, as
they transform into primary spermatocytes. It is at this
stage that meiosis begins and a single primary spermatocyte
gives rise to four round, haploid spermatids. During
meiosis, the preleptotene spermatocytes detach from the
basal lamina at the preleptotene-leptotene transition and
start migrating towards the lumen of the seminiferous
tubule. Spermiogenesis, the final phase of morphogenesis
of haploid spermatids into spermatozoa, is accompanied by
extrusion of the cytoplasm, extensive nuclear condensation
and the formation of a sperm tail. These specialized
elongated spermatozoa are released into the lumen of the
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Table 1. Functional classification of cell-cell junctions in the seminiferous epithelium

Junction class Junction type

Localization

Class I: Occluding junctions
Class II: Anchoring junctions
- ITA. With actin filament attachment sites

Tight junctions

- [I1B. With intermediate filament attachment sites

Class I11: Communicating junctions Gap junctions

Adherens junctions (AJ)
Ectoplasmic specializations (ES)
Tubulobulbar complexes (TBC)
Desmosome-like junctions

Inter-Sertoli cell junctions (blood-testis barrier)

Inter-Sertoli and Sertoli-germ cell junctions
Inter-Sertoli and Sertoli-spermatid junctions
Junctions between Sertoli cells and elongated spermatids
Inter-Sertoli and Sertoli-germ cell junctions
Inter-Sertoli and Sertoli-germ cell junctions

seminiferous tubule, finally leaving the testis and passing
into the epididymis for storage and further maturation.

During this highly organized program of
extensive changes, the migrating germ cells maintain close
contact with the surrounding Sertoli cells. The specific
interactions between Sertoli cells and germ cells are
absolutely crucial for the production of normal
spermatozoa. During gametogenesis, Sertoli cells provide
developing germ cells with essential structural support via
adhesion junctions, and with nutritive support in the form
of secreted factors. Evidently, successful migration of germ
cells requires the existence of a well-organized system of
cell-cell adhesion junctions. A characteristic feature of this
system is the dynamic breakage and reformation of cell
junctions between Sertoli cells and developing germ cells, a
process which allows germ cell migration while
maintaining the integrity of the testis. Ultrastructural
studies of the seminiferous epithelium identified many
morphologically diverse junctions (Figure 1) that mediate
inter-Sertoli cell contacts besides contacts between Sertoli
cells and germ cells. The cell-cell adhesion structures
involved can be divided into three major types: occluding,
anchoring and communicating junctions (Table 1).

1) Occluding or tight junctions play an essential
role in the compartmentalization of the testis by sealing
adjacent Sertoli cells together, and thereby preventing the
diffusion of ions and solutes through the paracellular
pathway. This barrier, also called the blood-testis barrier
(BTB), divides the seminiferous tubule into a basal and an
adluminal compartment, and in this way creates a unique
separated microenvironment (lumen) in which germ cells
can differentiate without risk of autoimmune reactions. A
second function of tight junctions is the formation of a
morphological and functional boundary between the apical
and basolateral surface domains of the cell, a boundary that
creates and maintains cell surface polarity (1, 2).

2) Anchoring junctions interconnect cytoskeletal
proteins of adjacent cells, creating a strong intercellular
network that maintains tissue integrity. Two types of
intercellular anchoring junctions are known in epithelia:
desmosomes (3) and adherens junctions (4). Desmosomes
use intermediate filaments as anchoring sites, while
adherens junctions are linked to the actin cytoskeleton.
Ultrastructural studies have shown that the testis is
equipped with both types of junctions: intermediate
filament-anchored ~desmosome-like junctions, and a
modified type of adherens junction called the ectoplasmic
specialization (ES), as described in more detail below
(section 4.2). Another type of actin-anchored junction, the
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tubulobulbar complexes (TBC), is found between Sertoli
cells and the elongated spermatids (5).

3) Communication between cells is achieved via
gap junctions. These are aggregated channels that connect
two adjacent cells and permit the exchange of small
regulatory proteins and ions. These communicating
junctions are found not only between neighboring Sertoli
cells, but also between Sertoli and germ cells (6, 7).

Both adherens junctions and desmosomes have
been well documented in epithelia. Over the last decades
we have gained considerable insight into their composition,
and recently we started to understand their regulation.
Cadherins are single-pass transmembrane proteins that
appear to play a crucial role in the formation of both types
of intercellular junctions. Cadherins form a bridge between
the two apposing cell membranes by means of Ca®'-
dependent homophilic binding of their extracellular
domains. Here, we will focus mainly on the role of
cadherin-mediated adhesion in spermatogenesis. Although
cadherin-mediated adhesion has been extensively studied in
epithelial tissues, much controversy exists in the literature
regarding the expression and functions of cadherins and
their associated proteins in the testis as outlined below.

3. CADHERIN-MEDIATED CELL-CELL ADHESION

Cadherins comprise a large family of
transmembrane or membrane-associated glycoproteins that
mediate specific cell-cell adhesion in a Ca®'-dependent
manner, functioning as key molecules in the morphogenesis
of a variety of organs. The family consists of at least six
major subfamilies, namely classical cadherins I and II,
desmosomal cadherins (desmocollins and desmogleins),
protocadherins and a variety of cadherin-related molecules
(8). Many aspects of the three-dimensional structure of
cadherins have been elucidated, and several reviews
summarize these findings (9-13). In brief, most cadherins
are integral membrane glycoproteins consisting of an
intracellular domain, a single-pass transmembrane domain
and an extracellular domain. Common to all of the family
members is a number of so-called cadherin repeats in the
extracellular domain, each containing about 110 amino acid
residues (AA) and designated EC. A His-Ala-Val sequence
in the aminoterminal EC1 repeat of E-cadherin was found
to serve as a cell adhesion recognition (CAR) sequence
(14). Calcium ions are absolutely essential for cadherin
function, as they intercalate between the extracellular
cadherin domains and rigidify the multidomain structure
(15, 16). In the absence of calcium, cadherins appear to be
very vulnerable to proteolytic degradation (17).
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Figure 1.Schematic overview of cell junctions and their dynamics during spermatogenesis. Part of a seminiferous tubule is
shown. In addition to occluding (tight) junctions and communicating (gap) junctions, different forms of anchoring junctions are
known to regulate cell-cell adhesion in the testis. Desmosome-like anchoring junctions use the intermediate filaments as
attachment sites. This is in contrast to ectoplasmic specialization (basal and adluminal ES) and tubulobulbar complexes (TBC),

which are actin-based anchoring junctions.

The molecular details of the homophilic binding between
the cadherin ectodomains are still a matter of debate.
Tomschy et al. (18) suggested a two-step association
mechanism in which lateral cis interactions (strand dimer)
between the aminoterminal ends of cadherin ectodomains
occur first and are a prerequisite for a second antiparallel,
adhesive trans interaction (adhesion dimer). On the basis of
the crystal structure of the aminoterminal domain of N-
cadherin, Shapiro et al. (19) proposed a first model for
homophilic cadherin binding. In this model cis bonds are
mediated by the exchange of aminoterminal beta-strands
between adjacent protomers and the trans dimerization
appeared to be determined by a highly conserved
tryptophan side chain (Trp2) in the cadherin EC1 domain,
which is binding to a hydrophobic pocket comprising the
CAR sequence. Specificity of homophilic adhesion by the

400

various cadherins can be ascribed to evolutionarily
conserved changes in this CAR sequence. Alternating cis
and trans interactions then form an ‘endless’ zipper-like
structure. However, a later study of the same group (20)
and the crystal structure of the combined EC1 plus EC2
domains of E-cadherin (16, 21) could not confirm this
hypothesis. Recently a novel model for cadherin-mediated
adhesion has been proposed on the basis of the crystal
structure of the entire ectodomain of C-cadherin of
Xenopus (22). Here, a novel type of cis-interaction is
suggested between Trp2 of the EC1 of one protomer and
a hydrophobic pocket within the EC2 of a second
adjacent protomer. This cis-orientated interface places
protomers, emanating from the same cell surface, in a
front-to-back arrangement, such that a continuous line
of molecules is formed rather than a discrete dimer
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Figure 2.Dissection of adherens junctions. (A) In epithelia, three different protein complexes are known to localize at the

adherens junctions: the cadherin/catenin complex, the nectin/afadin/ponsin-complex (NAP-complex) and the vezatin/myosin

complex (modified after ref. (204)). (B) In the testis, a specialized actin-based anchoring junction can be found between Sertoli

cells and between Sertoli cells and germ cells, called the ectoplasmic specialization. Three different protein complexes may be

involved in the formation of these specialized anchoring junctions: the cadherin/catenin complex, the NAP-complex and an

alpha-6 beta-1 integrin/laminin gamma-3 complex.

(Figure 2A). Trans or juxtaposed interactions between exchange assigned to the cis interaction in earlier work (13,
ectodomains were proposed to imply the beta-strand 22).
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Cadherin-mediated adhesion is crucial for the
sorting out of cells during morphogenesis and organogenesis.
Cadherins mediate cell-cell adhesion preferentially through
homophilic cell-cell interactions, i.e. cells expressing the same
type of cadherin adhere to each other, whereas cells expressing
different types of cadherins adhere weakly or segregate from
each other (23, 24). The role of cadherin-mediated adhesion in
cell sorting processes was demonstrated by straightforward in
vitro assays: two populations of non-adherent cells, each
transfected with a different cadherin, sort out according to the
type of cadherin expressed (25, 26). Homophilic adhesion
enables the sorting out of cells according to predetermined
patterns, establishing specific cell populations that form the
basis for morphogenesis and organogenesis.

Two major types of cadherin-dependent cell-cell
adhesion mechanisms have been extensively studied: the
cadherin/catenin complex, which is the major functional unit
of the adherens junctions, and desmosomal cell-cell adhesion.
Below, we will elaborate on these junctions, their intrinsic and
associated proteins and the roles they may play in the testis.

4. ADHERENS JUNCTIONS

4.1. The adherens junction dissected

Adherens junctions were originally defined, on
the basis of ultrastructural analysis, as closely apposed
plasma membrane domains reinforced by a dense
cytoplasmic plaque to which actin microfilaments attach
(27). As mentioned above, considerable research has been
conducted on cadherin-mediated adhesion in epithelia, and
much of our discussion of the data regarding the testis is based
on the findings in epithelial tissues. Three protein complexes
are found at the classical adherens junction in epithelia: the
cadherin/catenin ~ cell-cell ~ adhesion  complex, the
nectin/afadin/pontin complex and the vezatin/myosin VIIA
complex. The cadherin/catenin complex represents the major
structural and functional unit at the adherens junctions, and is
responsible mainly for homotypic cell-cell adhesion (28). The
nectin/afadin/ponsin complex is found at homotypic cell-cell
adhesion sites, but it is also present at synapses and at
heterotypic cell junctions, e.g. Sertoli cell-spermatid junctions
during spermiogenesis (29).

4.1.1. The cadherin/catenin complex: the
functional unit of adherens junctions in epithelia

The transmembrane core of the cadherin/catenin
complex consists of a classical cadherin, with E(pithelial)-
cadherin as the best characterized member (30, 31). The
120-kDa mature E-cadherin protein is composed of an
extracellular domain with five tandemly arranged cadherin
repeats (EC1-5), a single-pass transmembrane domain and
a carboxyterminal cytodomain. Like all type-I classical
cadherins, the extracellular domain binds Ca*" and interacts
in a homophilic way with E-cadherin molecules on the
surface of neighboring cells. E-cadherin’s function in
intercellular adhesion requires its indirect linkage to the
actin cytoskeleton through cytoplasmic binding to catenins
(32, 33) (Figure 2).

major

The cytoplasmic tail of classical cadherins is
highly conserved and possesses a binding site for beta-
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catenin or plakoglobin (gamma-catenin), both members of
the armadillo protein family (34). Beta-catenin binds via its
armadillo repeats directly to a carboxy-terminal core region
of 30 AA residues containing a cluster of eight serine
residues. Phosphorylation of this serine cluster within the
cytoplasmic domain of E-cadherin enhances intercellular
adherence and the affinity of E-cadherin for beta-catenin
(35, 36). The beta-catenin binding site overlaps recently
identified PEST sequences, which are associated with
ubiquitin/proteasome degradation (37). In that way, binding
to beta-catenin structures the cytoplasmic domain of E-
cadherin and prevents its degradation (34). Besides its role
in cadherin-mediated adhesion, beta-catenin is also an
important player in the Wnt/Wingless signal transduction
pathway, a highly conserved pathway involved in a large
variety of developmental processes (38). This will be
elaborated in section 4.4.

Binding of E-cadherin to beta-catenin or
plakoglobin triggers the association of alpha-catenin with
the amino-terminal head domain of these armadillo-
proteins. By binding to F-actin, either directly through their
carboxy-terminus, or indirectly, e.g. by binding to the actin-
binding molecules alpha-actinin, vinculin (39) or zyxin
(40), Alpha-catenins provide the necessary link to the actin
cytoskeleton. Three different alpha-catenins, which are
highly similar at the structural level but differ in expression
pattern, are known. Apart from the ubiquitously expressed
alphaE-catenin (41) and the neural alphaN-catenin (42, 43),
a new alpha-catenin has recently been identified, alphaT-
catenin (44). This novel alpha-catenin is expressed
predominantly in heart and testis, but is also detectable in
skeletal muscle and brain, and at low levels in some other
tissues. /n vitro, alphaN- and alphaT-catenin can substitute
for the adhesive functions of alphaE-catenin (44, 45).
However, their restricted expression patterns suggest that
each one has specific functions.

A third member of the armadillo protein family,
p120ctn, can also bind the cytoplasmic tail of E-cadherin.
At cadherin-based junctions, p120ctn binds directly to a
juxtamembrane cytoplasmic domain of classic cadherins,
and together with the p120ctn phosphorylation status, this
interaction modulates the adhesive strength of the junction
(46, 47). More recently, a role for p120ctn in stabilization
of cadherin junctions was convincingly demonstrated (48,
49). Furthermore, p120ctn is found within the nucleus of
some cell types (50), where it may modulate gene
expression by binding to transcription factors such as
Kaiso, a new member of the BTB (Broad complex,
Tramtrak, Bric a brac)/POZ (Pox virus and zinc finger)
protein family of transcriptional repressors implicated in
development and cancer (51). Thus, like beta-catenin,
p120ctn is a protein that may play dual functions within the
cell.

4.1.2. The nectin/afadin/ponsin complex (NAP-complex)

Recently, another membrane protein, nectin, and
its associated protein l-afadin were found to be
concentrated at adherens junctions. Nectin is a Ca®'-
independent immunoglobulin-like intercellular adhesion
molecule, and comprises a family of at least four members,
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all of which, with the exception of nectin-4, have two or
three splice variants. All the members of this family have
an extracellular region containing three Ig-like domains, a
single transmembrane region and a cytoplasmic region.
Nectin-3 is the most abundant form in the testis, but almost
exclusively expressed by spermatids, whereas lower
amounts of nectin-2 isoforms are expressed by most
testicular cell types (52). A heterotransdimer of nectin-2 on
the Sertoli cell membrane and nectin-3 on the spermatid
membrane has been proposed (29). Male nectin-2 knockout
mice are infertile, probably due to interference with a late
stage of germ cell development (53). Indeed, they show
tubules with normal numbers of apparently normal germ
cells, but spermatozoa are morphologically quite aberrant.
A conserved four-residue motif in the carboxy-terminal
part of the cytoplasmic region of nectins interacts with the
PDZ domain of l-afadin, an actin filament-binding protein,
which connects nectin with the actin cytoskeleton. Afadin
has two splice-variants, l-afadin and s-afadin. 1-Afadin is
the larger splice-variant and contains two Ras-association
(RA) domains, a forkhead-associated (FHA) domain, a
DIL-domain, a PDZ domain, three proline-rich (PR)
domains and an F-actin-binding domain (54, 55). The
shorter form, s-afadin, lacks the F-actin-binding domain
and is probably not positively involved in cell-cell
adhesion. Ponsin is an afadin-binding protein that is also
localized at the adherens junctions, and which is able to
bind vinculin (56, 57). Interestingly, the NAP complex
interacts directly with the cadherin-based adhesion complex
through afadin and alpha-catenin (57-59). Another indirect
link between the two adhesion complexes has recently been
found: ADIP (afadin DIL-domain-interacting protein) can
simultaneously bind afadin and alpha-actinin (60) (Figure
2A).

Several lines of evidence indicate that the
nectin/afadin  and the cadherin/catenin systems are
physically and functionally associated, and that these
systems cooperate in organizing adherens junctions (29,
61). It has been postulated that when contact is made
between two migrating cells, the nectin-based junctions are
formed more rapidly than the cadherin-based junctions,
which would imply that the nectin/afadin system plays a
role in cell recognition. The NAP-complex may be
involved in the dynamic formation and disruption of
various types of intercellular adhesion. In addition, this
complex may play an important role not only in homotypic
junctions, because it also constitutes an important adhesion
system in heterotypic junctions (between different types of
cells), as in the case of the Sertoli cell-spermatid junctions
dynamically formed and broken during spermiogenesis
(29).

4.1.3. The vezatin/myosin VIIA complex

Vezatin is another transmembrane protein,
discovered as a myosin-VIIA binding protein, which is
localized at the adherens junctions (62). Its recruitment to
the cadherin/catenin complex is dependent on alpha-
catenin, but it is not yet clear whether this interaction is
direct or indirect. Vezatin is presently considered the link
between the cadherin/catenin complex and the
actinomyosin-based contractile system. It is proposed that
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the forces generated by myosin-VIIA and its linkage to the
cadherin/catenin complex might create a tension between
the plasma membrane and the actin cytoskeleton. This
tension is believed to strengthen cell-cell adhesion between
neighboring cells (63).

4.2. Adherens junctions in the testis: Does the
cadherin/catenin complex exist in the testis?

During spermatogenesis, differentiating germ
cells migrate from the basement membrane to the lumen of
the seminiferous tubule, where they maintain close contact
with the nourishing Sertoli cells. Little is known about the
mechanisms involved in this translocation, but they
obviously must include a dynamic and well-organized
intercellular adhesion mechanism. Successful migration of
the germ cells is characterized by active breakage and
reformation of the Sertoli-germ cell junctions, to allow
germ cell migration while maintaining the integrity of the
testis. Ultrastructural studies of the testicular intercellular
junctions performed over the previous decades have shown
that the testis is equipped with a modified type of adherens
junction, called the ectoplasmic specialization (ES) (64).
The Sertoli cell ES is an important and unique junctional
structure found within the basal compartment (between
pairs of Sertoli cells, at the BTB) and within the adluminal
compartment of the seminiferous epithelium (between
Sertoli cells and elongating spermatids). The ES has
originally been defined as hexagonally packed non-
contractile actin filaments sandwiched between the Sertoli
cell plasma membrane and the underlying endoplasmic
reticulum (65). Despite the fact that some excellent reviews
(66-69) deal with ES junctions, our knowledge about the
molecular composition and regulation of these specialized
testis-specific adherens junctions is still limited.

Since the early 1990s, studies targeting the role
of cadherin-mediated adhesion in the testis have
proliferated. These studies have raised questions regarding
the existence of the cadherin/catenin cell-cell adhesion
complex in the testis, and its involvement in the formation
of the ES. Morphological observations suggest that the
specialized actin-based cell-cell adhesion junctions in the
testis may employ a functional unit different from that of
the adherens junctions in epithelial cells. Indeed, recent
studies have proposed that the apical ES may be largely
regulated by interplay of alpha-6 beta-1 integrins, binding
to a non-basement membrane laminin comprising the
gamma3 chain and to focal adhesion complex-associated
proteins (70-72), possibly in combination with the NAP-
complex (52) instead of the cadherin/catenin complex. The
most extensively studied integrin in the testis is alpha-6
beta-1, being largely restricted to Sertoli cells (73), whereas
the laminin gamma3 chain is almost exclusively restricted
to the apical compartment of the testis (72). Laminin-12 is
composed of alpha2, betal and gamma-3 chains (74), but
the partner laminin chains of gamma3 in the apical ES of
the testis remain to be identified. In contrast, some in vitro
data revealed that the testis may indeed use the
cadherin/catenin complex as a functional unit to regulate
actin-based adhesion. Although so far no experiments have
been performed in vivo, two functional studies have shown
that an anti-N-cadherin antibody can inhibit in vitro
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adhesion between Sertoli cells and germ cells (75, 76). It is
therefore essential to settle the controversy of the presence
versus absence of a functional cadherin/catenin complex in
the testis.

There is much disagreement in the literature
even regarding the expression and localization of
classical cadherins in the testis. A recent study, using a
reverse transcriptase-polymerase chain reaction with
degenerated primer pairs, showed that at least 7 classical
cadherins were present at the mRNA level in developing
and maturating testis, a diversity that underscores their
possible importance in spermatogenesis and other
testicular functions (77, 78). Few studies, however, have
localized specific cadherins in postnatal testis.
Immunostaining and Northern blotting both indicated
that E-, N-, and P-cadherin are expressed in unique
patterns in both the developing and the mature testis. In
the seminiferous tubule, N-cadherin appears to be
associated within the adluminal compartment at the
heads of elongating spermatids and within the basal
compartment at inter-Sertoli and Sertoli-germ cell
junctions (71, 78-83). This is in contrast to P-cadherin,
which localizes specifically to the junctions of the
peritubular myoid cells (84). There is less consistency
concerning E-cadherin in the testis. Whereas some
authors reported that E-cadherin was not at all expressed
in testis (79, 80, 85), other and more recent studies have
shown otherwise (83, 86-88). A hypothesis has been put
forward that E-cadherin expression may be restricted to
developing and early postnatal testis of mammals, while
N-cadherin expression is restricted to mature testis.
Further research is needed to elucidate this matter.

The expression of the cadherin-associated
catenins is also poorly understood in the testis. It appears
that within the basal compartment of the seminiferous
epithelium all known catenins (alpha-catenin, beta-catenin
and pl120ctn) are expressed at the inter-Sertoli junctions
(basal ES) and also at junctions between Sertoli cells and
spermatogonia or primary spermatocytes (non-ES sites,
probably at desmosome-like junctions), where they
colocalize with classic cadherins (78, 83). The expression
of catenins in the adluminal compartment of the
seminiferous epithelium and the involvement of cadherin-
mediated adhesion in spermiation remains controversial.
Recently, Chapin and coworkers have revealed the
presence of beta-catenin near the luminal edge at
spermiation (89, 90), and also pl20 catenin has been
localized at the apical ES (89, 91). In contrast, others
reported that catenins were not detectable in the adluminal
compartment of the seminiferous tubule. The latter suggests
that N-cadherin in the adluminal compartiment may serve a
signaling rather than a structural function (71, 80). It is
possible that much of the discrepancy that exists in the
literature regarding the localization of cadherins and
catenins is due to differences in the specificities of the
antibodies used by the different investigators, e.g. the pan-
cadherin antibody used by Mulholland et al. for
immunoelectron microscopy (71, 80) can recognize members
of the cadherin superfamily other than N-cadherin (83).
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In conclusion, there is enough evidence to
conclude that the proteins of the cadherin/catenin complex
are expressed in the seminiferous tubule and that within the
basal compartment of the seminiferous epithelium they are
localized at inter-Sertoli cell junctions and at junctions
between Sertoli cells and spermatogonia or primary
spermatocytes (basal ES as well as non-ES sites). The
presence of the cadherin/catenin complex within the
adluminal compartment of the seminiferous tubule remains,
however, highly controversial. It is possible that the
molecular composition of the ES changes during
development of the germ cells. It has been suggested (83,
89, 92) that the basal ES in the testis resemble the classical
cadherin-based junction, while the adluminal ES (between
Sertoli cells and elongated spermatids) is largely regulated
by an integrin-based adhesion complex in combination with
the NAP-complex. It is also possible that the three
complexes (cadherin/catenin complex, NAP-complex and
integrin based complex) work side by side to form a
specialized, very dynamic and well-regulated cell-cell
adhesion system (Figure 2B).

The precise cytoskeletal attachment site for the
‘classic’ cadherin/catenin complex in the testis is another
issue that remains very controversial. Notably, studies
using immunofluorescent and electron microscopy suggest
that the classic cadherin/catenin complex, an actin-based
junctional complex in other epithelia, uses intermediate
filaments as attachment sites in the seminiferous
epithelium. It was found that (classic) cadherins and beta-
catenin colocalize with the intermediate filament-based
cytoskeleton at the desmosome-like junctions (71, 78).
Nevertheless, it is not known whether the desmosomal
cadherins (desmogleins, desmocollins) and their associated
proteins, which are the structural proteins of desmosomes
in other epithelia, are expressed in the testis (also see
subsection 5.3). This contrasts with other reports that
clearly  demonstrated, using  immunoprecipitation
experiments on cell lysates prepared from Sertoli-germ cell
cocultures, that N-cadherin is structurally associated with
beta-catenin and  alpha-catenin, and crosslinking
experiments showed that the N-cadherin complex is
linked with the actin cytoskeleton, rather than with the
vimentin-based or microtubule-based cytoskeletons
(83). These latest findings are consistent with earlier
immunohistochemical evidence that N-cadherin and
beta-catenin are colocalized at the actin-based ES (71,
78, 89). It has recently been suggested that the
cadherins/catenin within the seminiferous tubule are
indeed largely actin-based, but that a small amount of
classical cadherins (e.g. E-cadherin) is also structurally
linked to vimentin-based intermediate filaments via
vimentin-associating adaptors, such as zyxin, axin and
WASP (93). Collectively, it becomes clear that the N-
cadherin/catenin complex in the testis is largely an
actin-based structural unit. Yet, other cadherin-based
adherens junction structures may exist side-by-side,
using intermediate filaments as their attachment site.
Clearly, much work remains to be done to define the
detailed biochemical and molecular compositions of the
ES in the testis.
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Another type of actin-based junction, the
tubulobulbar complex (TBC), is found between Sertoli cells
and elongated spermatids (maturation steps 18 and 19).
Nothing is known regarding its function, but this complex
appears before the spermatids are released into the lumen
of the seminiferous tubule, and probably plays a crucial
role in spermiation (94, 95). TBC consists of two structural
elements: a tubular structure and a balloon-like terminal
bulbar structure (5). The precise molecular composition of
TBC is still unknown. The possible role of cadherin-
mediated adhesion in this type of actin-based cell-cell
junction remains unexplored.

4.3. Regulation of adherens junction assembly and
disassembly in the testis

Adherens junctions must be dynamic in order to
respond to the needs of the cells during morphogenesis,
tissue homeostasis and tissue injury. The disassembly and
reformation of the testis-specific adherens junctions is one
of the key events during spermatogenesis because germ
cells must translocate from the basal to the adluminal
compartment of the seminiferous epithelium. Although the
underlying mechanisms that regulate the restructuring of
these junctions during the process of germ cell migration
remain largely unknown, current studies have shown that a
wide range of signaling molecules, which include kinases,
phosphatases and growth factors, regulates adherens
junction dynamics.

4.3.1. Phosphorylation status

Processes mediating the phosphorylation status of
the cadherin/catenin complex are important to its assembly,
maintenance and disassembly (96, 97). Kinases and
phosphatases maintain a highly dynamic phosphorylation
status, and the balance between the two opposing activities
provides a rapid and reversible mechanism for regulating
cell-cell adhesion. What follows is a summary of some of
the phosphorylation pathways known to influence cadherin-
mediated cell-cell adhesion.

Serine/threonine kinases are implicated in the
regulation of cadherin function. For instance, the beta-
catenin-binding site of E-cadherin can be phosphorylated
by two serine/threonine kinases, casein kinase II (CKII)
and glycogen synthase kinase-3beta (GSK3beta), which
increases  E-cadherin/beta-catenin  interaction  and
strengthens cell-cell adhesion (35, 98). It has also been
shown that N-cadherin is constitutively phosphorylated on
serine residues (99). On the other hand, serine
phosphorylation of pl120ctn has been implicated as a
negative regulator of cell-adhesion in Colo-205 and HT-29
cells, where cell adhesion is significantly increased by
p120ctn mutants or by treatment of cells with serine kinase
inhibitors (100).

Far more is known about the tyrosine
phosphorylation status of the cadherin/catenin complex.
While maintenance of a basic tyrosine phosphorylation
level of the E-cadherin cytoplasmic domain is necessary for
functional  cell-cell ~ adhesion  (101), increased
phosporylation of beta-catenin and plakoglobin results in
the disassembly of the complex (102, 103). Tyrosine
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phosphorylation of beta-catenin by several receptor and
non-receptor tyrosine kinases reduces the strength of
binding between E-cadherin and beta-catenin. Balancing
this occurs by action of several protein tyrosine
phosphatases that dephosphorylate beta-catenin or maintain
it in a dephosphorylated state, favoring its association with
E-cadherin and alpha-catenin, and thereby stimulating cell-
cell adhesion (103). Another component of the
cadherin/catenin complex that has been considered a main
target of tyrosine kinases and phosphatases is p120ctn.
Altough multiple putative tyrosine phosphorylation sites
were identified in pl20ctn (104), and phosphorylation
increases the affinity of p120ctn for E-cadherin, the exact
role of p120ctn in the regulation of adherens junctions is
not clear since different authors have suggested either
negative or positive effects (47, 105).

Kinases that  modulate the tyrosine
phosphorylation status of the cadherin/catenin complex
include the cytoplasmic Src family tyrosine kinases and
transmembrane tyrosine kinase receptors of growth factors
such as EGF, HGF, PDGF, TGFalpha and CSF-1 (106).
Treatment of cells with epidermal growth factor (EGF) or
overexpression of the EGF-receptor (EGF-R) increases
tyrosine phosporylation of cadherin-associated proteins,
and leads to dissociation of the complex from the actin
cytoskeleton and diminution of cell adhesion (107).
Plakoglobin and beta-catenin have both been shown to
associate with various members of the EGF-R family (108,
109). Tyrosine kinases of the Src family are involved in the
transduction of intracellular signals by their association
with the cytoplasmic domains of membrane tyrosine kinase
receptors (110). Src-induced tyrosine phosphorylation of
the N-cadherin/catenin complex can lead to the loss of cell
adhesive capacity (111). The same holds true for the E-
cadherin/catenin complex (106, 112). It has been
demonstrated by immunohistochemical techniques that Src
is localized at the site of the ES between Sertoli cells and
elongated spermatids in a stage-specific manner. Fyn is
another member of the Src family of tyrosine kinases that is
expressed in Sertoli cells. It was recently found to be
enriched at the ES between adjoining Sertoli cells and
between Sertoli cells and spermatids (113).

Fer tyrosine kinase is a non-Src family
cytoplasmic protein tyrosine kinase that is associated with
the increased tyrosine phosphorylation of beta-catenin,
plakoglobin and p120ctn in N-cadherin/catenin complexes
in the testis (92, 114). A testis-specific form of Fer kinase,
Fer7, was found to be restricted to spermatocytes at the
pachytene stage of meiotic prophase (115). Surprisingly,
mice devoid of any Fer/FerT protein-tyrosine kinase
activity are viable and fertile, and exhibit apparently
normal spermatogenesis (116).

Given the large variety of tyrosine kinases that
appear to regulate cadherin function, it is not surprising that
protein tyrosine phosphatases have also been implicated as
cadherin regulators (97). Protein tyrosine phosphatases,
reported to be associated with the cadherin/catenin
complex, comprise the homophilically adhering receptor-
type protein tyrosine phosphatase PTP mu (117, 118), PTP
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kappa (119), PTP lambda, (120), and DEP1 (121), the
transmembrane leukocyte antigen-related protein LAR-PTP
(122), and the cytoplasmic hematopoietic cell phosphatase
SHP-1 (123).

4.3.2. Small GTP-binding proteins

Small GTP-binding proteins (small GTPases) are
known to regulate a variety of biological and cellular
functions, most notably vesicle and membrane trafficking,
reorganization of the actin cytoskeleton, cell movement,
transcriptional regulation and apoptosis. Small GTPases,
inactive when associated with GDP, are activated by
exchange of GDP by GTP. A priori, the GTPases of the
Rho subfamily, such as Rho, Rac and Cdc42, can mediate
adherens junction formation by changing actin cytoskeleton
dynamics (124-126). Racl has been shown to concentrate
at the newly formed cell-cell contacts and to regulate the
rate of initiation and strengthening of cell-cell adhesion in
MDCK epithelial cells (127). Both Rac and Cdc42 can
promote cell-cell adhesion by inhibiting IQGAP, a protein
that directly interacts with Dbeta-catenin resulting in
dissociation of alpha-catenin from the E-cadherin/beta-
catenin complex (128, 129). On the other hand, Rac
activation failed to induce recruitment of cadherin to the
adherens junction in human keratinocytes, in contrast to its
action in MDCK cells, which suggests that the effect of
Rho family GTPases on cell-cell adhesion is cell-type
dependent. What may be even more intriguing is that
sustained Rac activation in MDCK can specifically remove
cadherin from newly formed stable cell-cell contacts in a
dose- and time-dependent manner (130). High cytosolic
levels of p120ctn contribute to activation of Rac and Cdc42
whereas RhoA is inhibited (reviewed in ref. (131)). Binding
of pl120ctn to the juxtamembranous domain of classic
cadherins lowers its affinity for small GTPases. More
research is needed to resolve these apparently conflicting
reports concerning the effects of Rho GTPases on adherens
junction protein recruitment (132). Immunohistochemical
analysis has shown that there is intense staining of Racl at
the basal compartment of the seminiferous tubule. Cdc42
seems to be largely associated with spermatocytes and
Sertoli cells, and the most intense staining was detected
nearby the head of the elongated spermatids (90, 133).

Besides the small GTPases of the Rho subfamily,
other GTPases may also be involved in junction dynamics.
For instance, it was found that Rab8B was upregulated
several fold at both the mRNA and protein levels during
junction assembly in Sertoli cell cultures (134). Moreover,
Rab8B may not function in maintenance of adherens
junctions, because Sertoli cell Rab8B expression declined
to its basal level after junction assembly, suggesting that
this GTPase may be important in orchestrating the events
that take place during junction assembly. However,
evidence that would link Rab8B physically to the adherens
junctions is still lacking.

Two members of the G12 subfamily of
heterotrimeric G proteins, G-alphal2 and G-alphal3, were
recently shown to interact directly, in their active GTP-
bound form, with the cytoplasmic domain of E-cadherin,
and to cause release of beta-catenin from the adherens
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junction (135). The mechanism by which the interaction
between E-cadherin and beta-catenin is abrogated is not
based solely on competition. Rather, Galphal2 activation
seems to result in the activation of the non-receptor
tyrosine kinase Src, which lead to beta-catenin
phosphorylation and subsequent dissociation from E-
cadherin (136).

4.3.3. Other regulatory mechanisms

Several studies have shown that the cadherins
expressed by reproductive tissues are responsive to
hormonal stimuli, as exemplified by the oestrogen-induced
upregulation of N-cadherin in the mouse testis. Noteworthy
is that targeted disruption of the oestrogen receptor gene in
male mice causes abnormal spermatogenesis and infertility
(137). Furthermore, it has been demonstrated that
suppression of testicular testosterone levels in adult rats
causes the premature detachment of round step-8
spermatids from the seminiferous epithelium. This led to
the hypothesis that androgens regulate adhesion between
Sertoli cells and round spermatids (138). In vitro data have
demonstrated that the binding of round spermatids to
Sertoli cells and the production of N-cadherin by Sertoli
cells are stimulated in a concentration-dependent manner
by testosterone, but only in the presence of follicle-
stimulating hormone (FSH) (76, 139). As an N-cadherin-
specific antibody can block androgen-stimulated adhesion
between Sertoli cells and isolated round spermatids in vitro,
N-cadherin is likely to be involved in this process (76).
However, in vivo proof of the importance of androgenic
regulation of cadherin-mediated adhesion in round
spermatid adhesion is lacking. The detachment of round
step-8 spermatids as a consequence of lower testicular
testosterone levels in the treated rats is not due to absence
of ectoplasmic specializations and no unusual structures
were noted at the sites of the spermatid-Sertoli cell
junctions where the ES showed a normal morphology
(140).

Testin, originally identified in Sertoli cell-
enriched culture medium, is a testosterone-responsive
Sertoli cell secretory product (141). Testin is a 36-kDa
protein, occurring as two molecular variants. Testin II
differs from testin I by having three additional N-terminal
AA, probably as a result of alternative posttranslational
processing of the protein (141, 142). In adult rats, testin is
associated with the Sertoli cell membrane. Immunogold
electron microscopy studies demonstrated that testin was
abundantly localized on the Sertoli cell side of the
ectoplasmic  specializations  contacting  developing
spermatids. Biochemical analyses have shown that testin
binds to the Sertoli cell surface via its interaction with a
receptor-like protein, possibly an adherens junction-
associated protein such as cadherin or nectin (143, 144).
Interestingly, depletion of germ cells of the adult rat testis
by X-radiation or by treatment with busulfan or
lonidamine, which disrupt actin-based Sertoli-spermatid
junctions, induces a drastic surge in testicular expression of
testin. These results suggest that the disruption of actin-
based anchoring junctions induces testin expression, but
may also indicate that junctions are disrupted as a result of
the testin induction. In any case, testin levels can
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apparently be used to monitor the integrity of adherens
junctions in the testis. Although testin is structurally related
to the cysteine protease superfamily, it seems that it is
devoid of any protease or anti-protease activity (145).
Taken collectively, these results demonstrate that testin is a
component of the ectoplasmic specialization in the testis,
that its expression is inversely correlated with germ cell
occurrence but positively correlated with the rate of
junctional complex turnover, suggesting that it may be an
adherens-junction associated signaling molecule (66).

It has been shown that even under steady state
conditions of cadherin expression, at least one pool of
cadherin is subjected to endocytosis and recycles back to
the cell surface via a post-Golgi endosomal pathway (146).
Such a regulated recycling pathway provides a mechanism
for the dynamic modulation of the cadherin/catenin
complex and cell-cell adhesion. The role of
phospoinositides as regulators of membrane traffic is well
established (147). Male mice deficient in inositol
polyphosphate  5-phosphatase (Inpp5b) have reduced
fertility and defective cell adhesion in the testis (148). The
loss of function of InppS5b results in the appearance in
Sertoli cells of cytosolic vacuoles containing N-cadherin
and beta-catenin. These vacuoles are coated with actin and
contain proteins, which are normally concentrated at the
Sertoli cell surface, suggesting that the vacuoles may
represent swollen endosomal structures formed due to an
early block in endocytosis. Inpp5b probably functions in
the endocytosis and recycling of the plasma membrane in
the testis, thereby affecting cell adhesion to neigboring
cells and resulting in concomitant, premature release of
germ cells from the mutant seminiferous epithelium (148).

The level of cadherin expression is tightly
regulated and forms another level of complexity in
adherens junction dynamics. Several nuclear factors such as
Snail, SIP-1, Slug and E12/E47 are known to repress
cadherin transcription by binding to the cadherin promoter
sequences. The exact interplay between these factors and
their specific roles in adherens junction dynamics in
various tissues and organs is still unclear (30, 149, 150).

4.4. Wt signaling in the testis

Cadherins are not simply biological glue that
sticks cells together. It is thought that cadherins also play a
role in the transduction of signals through the plasma
membrane in order to influence morphogenetic programs
controlling the structural and functional integrity of tissues
like epithelia (97). The nature of the biochemical routes
regulated by cadherins is largely unexplored and it is most
probable that other proteins that associate with cadherins
are involved in these signaling processes. Catenins are
good candidates to function in cadherin-mediated signaling.

In addition to playing a role in cadherin-mediated
cell-cell adhesion, beta-catenin is also a crucial element of
the Wnt signaling pathway. This signaling pathway is
involved in a large variety of developmental processes. In
this facet of the beta-catenin function, cytoplasmic beta-
catenin is part of the APC (adenomatous polyposis coli)
multiprotein complex. In absence of Wnt ligand, beta-

407

catenin is normally phosphorylated by the serine/threonine
kinase GSK3beta and directed to the ubiquitin proteasome
pathway for degradation. Activation of the transmembrane
Frizzeled receptor through the binding of Wnt results in the
activation of Dishevelled, which in turn inhibits the
phosphorytation of cytoplasmic beta-catenin by GSK3beta.
This leads to stabilization of beta-catenin and translocation
to the nucleus, where it associates with transcription factors
of the LEF-1/TCF family (151), thereby regulating the
transcription of LEF-1/TCF responsive genes (152-154). A
comprehensive overview of the latter has been made
available by Dr. R. Nusse at URL:
http://www.stanford.edu/~rnusse/pathways/targets.html.
Translocation of beta-catenin to the nucleus is observed in
various tumors. Indeed, nuclear beta-catenin induces the
transcriptional activation of several genes implicated in
cancer development as they modulate growth,
differentiation or invasion. A possible nuclear function for
the pl120ctn armadillo protein in complex with the
transcription factor Kaiso has been mentioned above
(4.1.1).

Little is known regarding the involvement of the
Wnt  canonical signal transduction pathway in
spermatogenesis, but it seems that it plays a crucial role in
the development of the testis and in sex determination.
Hormones secreted by the fetal gonads control the
differentiation of the reproductive tract. A specific
testicular factor in the male fetus is required for the
regression of the Miillerian duct, the precursor of oviducts,
uterus and part of the vagina in females. This factor, called
the anti-Miillerian hormone (AMH), is a homodimeric
glycoprotein secreted by the Sertoli cells of the testis
(reviewed in (155)). Beta-catenin may be involved in
AMH-signaling, as AMH secretion induces in vitro and in
vivo stabilization and accumulation of cytoplasmic beta-
catenin in  peri-Miillerian mesenchymal cells, a
phenomenon which is correlated with increased apoptosis
in the regressing Miillerian duct (156). Furthermore, beta-
catenin is also detected in the nucleus, co-localized with
LEF1. This probably leads to changes in mesenchymal
gene expression and determines cell fate during regression
of the Miillerian duct.

Another example of the interaction between sex
hormones and catenins involves the male-specific
hormones AMH, insulin-3 and testosterone, the latter of
which stimulates differentiation of the Wolffian duct
(precursor of epididymis and vas deferens). The expression
of these hormones is regulated by an orphan nuclear
hormone receptor, steroidogenic factor 1(SF-1) (157, 158).
It has been demonstrated that stabilization of beta-catenin
enhances SF-1-mediated transcription, which in turn
increases hormone secretion (159).

5. DESMOSOMAL CELL-CELL ADHESION

Desomosomes are button-like intercellular
contacts found particularly in tissues subjected to
mechanical stress (e.g. epithelia and the myocardium).
They rivet the cells together by anchoring the intermediate
filament cytoskeleton to the cell junctions, in which
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Intermediate filaments

— Inner dense plaque (IDP)

— Outer dense plaque (ODP)

Plasma membrane

— Extracellular core or desmoglea

Plasma membrane

— Outer dense plaque (ODP)

— Inner dense plaque (IDP)

Intermediate filaments

Figure 3. At the electron-microscopic level, desmosomes reveal a common symmetric ultrastructure composed of disc-like
sandwiches of electron-dense and electron-lucent layers. The desmosomal plaque consists of an extracellular core or desmoglea,
and two intracellular electron-dense discs that are orientated parallel to the plasma membrane: the outer dense plaque (ODP) and
a less dense inner plaque (IDP). The latter joins the desmosomal plaque to the intermediate filaments. Desmosomes are highly
organized structures composed of members of three protein families: desmosomal cadherins in two classes: desmogleins (Dsg)
and desmocollins (Dsc), armadillo proteins comprising plakoglobin (Pg) and plakophilins (PKP) 1-3, and desmoplakins (DPI and
DPII) (modified after ref. (180)). CK, cytokeratin; N, aminoterminal domain.

desmosomal cadherins mediate homotypic cell-cell
adhesion. The importance of this structural function is
evidenced by gene knockout experiments, and by the
occurrence of diseases in which tissue integrity 1is
comprised by gene defects or auto-immune antibodies
targeting desmosomal components (160).

5.1. Molecular architecture of desmosomes

At the electron-microscopic level, desmosomes
reveal a symmetric ultrastructure of disc-like sandwiches of
electron-dense and electron-lucent layers. The desmosomal
plaque consists of an extracellular core or desmoglea that
corresponds to the extracellular space between the two
apposing cell membranes, and two intracellular electron-
dense discs that are oriented parallel to the plasma
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membrane: the outer dense plaque (ODP) and a less dense
inner plaque (IDP) (161, 162). The latter joins the
desmosomal plaque to the intermediate filaments.
Desmosomes are highly organized structures composed of
members of three protein families: cadherins, armadillo
proteins and plakins (Figure 3).

Desmoglea, the protein-rich midline between two
cells, represent a zipper-like adhesive interface established
by desmosomal cadherins from apposing cell-surfaces.
Desmosomal cadherins are further sub-divided into
desmogleins (Dsg) and desmocollins (Dsc) (8, 11). The
extracellular domains of desmogleins and desmocollins are
composed of a membrane-proximal anchor domain and
four Ca®*-binding cadherin-repeats of about 110 AA. The
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major difference between desmocollins and desmogleins
resides in their cytoplasmic domains. Specific for
desmogleins is the extended intracellular domain
containing a proline-rich linker region, followed by a
repeated unit of 29 AA (RUD) and a glycine-rich Dsg-
terminal domain (DTD). But both types of desmosomal
cadherins can bind members of the armadillo protein
family, which are indispensable for their linkage to the
cytoskeleton (163-165).

Plakoglobin is an important component of the
desmosomal outer plaque, where it mediates the binding of
desmosomal cadherins to the cytoskeleton via their binding
to plakins. Plakoglobin is highly homologous with the
adherens junction protein beta-catenin (164). But, despite
their high homology, plakoglobin and beta-catenin are
distributed differently: plakoglobin is localized at both the
desmosomes and adherens junctions, whereas endogeneous
beta-catenin is mainly restricted to the adherens junctions,
and is normally not present in the desmosomal plaque (166,
167). Binding of plakoglobin to Dsg requires amino acids
within Arm repeat 1-4 and sequences at the carboxy-
terminus, whereas efficient Dsg-binding to plakoglobin
depends on the complete Arm-repeat domain (168-171).
The overlap of this desmosomal cadherin binding site of
plakoglobin with its alpha-catenin binding site may explain
the lack of beta-catenin in the desmosomes. A deletion of
the plakoglobin C-terminal end induces an increase in
desmosome size, suggesting a role for plakoglobin in an
unknown mechanism controlling desmosomal size (172).

Plakophilins are also armadillo proteins present
in the outer plaque of the desmosomes. Three plakophilins
are known to date, PKP1, PKP2 and PKP3 (173-177), and
they all exhibit dual localization, at the desmosomes and in
the nucleus. Plakophilins are composed of an amino-
terminal head domain that mediates the interaction with
different desmosomal proteins (Dsgs, Dscs, plakoglobin,
plakins, intermediate filaments) (178-180), and a carboxy-
terminal domain containing 10 Arm repeats separated by
three conserved short insertions. On the basis of their
primary sequence and the organization of their armadillo
repeats, plakophilins show highest homology to p120ctn
(47). Besides their important role in the formation of
desmosomes, it has been suggested recently that
plakophilins are also involved in actin filament dynamics
(181). Little is known about the nuclear functions of PKPs.

The plakin proteins represent a family of very
large cytolinker proteins that mediate various functions in
the cross-talk between the cytoskeletal networks (182).
Plakins are composed of a coiled coil rod-like central
domain of variable length, flanked on both sides by
globular terminal domains (183). They bind to the
intermediate filaments with their carboxy-terminus (184-
187). In that way they provide the desmosomal plaque with
the necessary link to the cytoskeleton. Four family
members (desmoplakin, periplakin, envoplakin and plectin)
have been localized to desmosomal cell-cell contacts.
Desmoplakin is the most prominent desmosomal plaque
protein, and is required for assembly of the desmosomes
and their association with the intermediate filaments.
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5.2. Desmosome-like junction in the testis

Desmosome-like junctions between Sertoli cells
and various germ cells (spermatogonia, spermatocytes and
non-elongated spermatids) have been observed by electron
microscopy in the adult rat testis. These junctions appear to
be attached to the intermediate filaments in the cytosol of
the Sertoli cells (188).

Wine and Chapin (89) have demonstrated by
immunohistochemistry the presence of desmoglein around
the spermatids. Desmoglein appears to be associated most
prominently with the convex side of elongating spermatids.
Using tyramide amplification, desmoglein
immunoreactivity can be seen in all cells of the
seminiferous epithelium. Another interesting observation,
confirmed by immuno-electron microscopy, is that
desmoglein was present on spermatids that had been
released from the epithelium.

Human desmoglein 4 has recently been identified
and characterized. RT-PCR on multiple tissue cDNA
samples demonstrated that desmoglein 4 has a very specific
tissue expression pattern. The gene was highly expressed in
the testis, prostate and the skin, and was less abundant in
salivary gland, but back then no antibodies were available
for analyzing the localization at the protein level (189).
There is genetic evidence for two additional desmoglein
genes, designated desmoglein 5 and 6 (190). Detailed
expression studies may clarify whether these desmogleins
are also expressed in the testis (190).

There is so far a paucity of data regarding
expression patterns of desmocollins, plakoglobin,
plakophilins or plakins in the testis.

5.3. Regulation of desmosomal adhesion

Many studies suggest that desmosome assembly
is dependent upon the prior formation of adherens
junctions. Blocking the formation of adherens junctions, by
treatment of cultured keratinocytes with an antibody
against the extracellular domain of E-cadherin, inhibits the
formation of desmosomes (191-193). In addition, the
introduction of a dominant-negative mutant of N-cadherin
has been shown to delay desmosomal formation in cultured
keratinocytes (194). Furthermore, E-cadherin may regulate
the expression of desmosomal proteins (195). However,
adhesion mediated by desmosomal cadherins can take place
in the absence of any of the classical cadherins, and in
some cells the requirement for prior adherens junction
formation can be bypassed by downstream signals in the
protein kinase C (PKC) pathway. Apparently, classical
cadherin-mediated adhesion facilitates the formation of
desmosomes by initiating an intracellular signaling
pathway. The PKC protein family comprises several
isoforms of related serine/threonine-specific, phospholipid-
dependent kinases. Activation of PKC, by treatment with
12-O-tetradecanoyl-13-acetate, causes desmosome
formation even in cells grown in low Ca’’-containing
medium or in cells lacking alpha-catenins (45, 196). These
results suggest that PKC signaling pathways are involved in
the formation and maintenance of the desmosomal plaque.
However, PKC also mediates secretion of urokinase-type
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plasminogen activator (uPA) and expression of its receptor
(uPAR). Binding of uPA to uPAR activates the plasmin
proteolytic system, which may then digest the extracellular
domains of desmosomes (196). Together, these findings
suggest that PKC mediates the formation and dissociation
of desmosomes, and increases desmosomal turnover.

Furthermore, Rho-like GTPase and Fyn tyrosine
kinase are implicated not only in the regulation of the
adherens junction assembly, but also in the regulation of
desmosomal adhesion (197). Thus the regulation of
adherens junctions by effectors such as growth factors
profoundly affects, even if indirectly, the regulation of
desmosome formation. All these data support the presence
of cross-talk between adherens junctions and desmosomes.

6. MALE CONTRACEPTION BY PERTURBING
THE SERTOLI-GERM CELL JUNCTIONS

The most widely used device for male
contraception today is the condom, a barrier method that
was developed in the 18" century.  Compared to
contraceptive methods used by females, such as the
contraceptive pill, the condom has a relatively high failure
rate. Nonreversible sterilization procedures, such as
vasectomy, have been available for some time. This
procedure, however, is often associated with surgical
complications, unwanted immunological consequences and
other pathological conditions. For the past several decades,
the development of new, safer, reversible contraceptives for
human males has focused largely on hormonal approaches
to interfere with the hypothalamus-pituitary-testicular axis,
and on immunological approaches based on development
of vaccines directed against specific spermatozoal antigens
in order to interfere with motility of sperm cells or with
sperm-egg interactions. Because hormones such as
testosterone cause other physiological changes in addition
to their effects in the testis, their prolonged inhibition may
have undesirable side effects. Alternatively, the use of a
vaccine in either man or woman could have undesirable
immunological consequences. In view of these shortcomings,
more innovative approaches should be developed (198, 199).
Perturbing the Sertoli-germ cell junctions and consequently
inducing early detachment of undifferentiated germ cells may
be a better approach of inducing safe and reversible
aspermatogenesis (66, 67, 69).

Lonidamine is an anti-cancer drug that associates
with biological membranes, causing conformational changes
that disrupt the respiratory process in cells containing
condensed mitochondria, such as tumor cells sensitized by X-
irradiation, and certain types of germ cells. In rats, lonidamine
causes vacuolization and retraction of the apical cytoplasm in
Sertoli cells, thereby inducing release of immature spermatids
into the tubular lumen (200). In vitro, lonidamine can disturb
the assembly of Sertoli-germ cell anchoring junctions (201).
By immunocytochemical and ultrastructural studies performed
on two different cell lines, it has been shown that treatment
with lonidamine induced a remarkable rearrangement of the
actin cytoskeleton with disappearance of the stress fibers (202).
Still, the precise cascade of events leading to disruption of cell-
cell adhesion by this drug is not known. However, high doses

410

of lonidamine are toxic and their antispermatogenic effects are
irreversible; modifications that eliminate these side effects will
be necessary if it is to be developed into a novel male
contraceptive.

Lonidamine’s effects on the Sertoli cell cytoskeletal
network somehow activate the expression of testin, which
appears to be a very useful marker for monitoring the loss of
integrity of Sertoli-germ cell anchoring or communicating
junctions (see section 4.3.3). Based on this unusual feature of
testin, it was used to screen different newly synthesized
analogs of lonidamine for their ability to disrupt Sertoli-germ
cell junctions and induce premature release of germ cells into
the tubular lumen. In this way two new chemical entities, AF-
2364 and AF-2785, have been shown to specifically deplete
spermatids from the seminiferous epithelium without any
noticeable toxicity (203).

7. CONCLUSIONS AND PERSPECTIVES

In this review we have summarized the recent
developments in the study of cadherin-mediated cell-cell
adhesion in the testis and their significance in
spermatogenesis. Although it has been proven that
cadherin-mediated adhesion plays a crucial role in cell-cell
adhesion in epithelia, little is known about the expression
and regulation of cadherins in the testis. The biochemical
and molecular architecture of anchoring junctions in the
testis, such as the ES, TBC and desmosome-like junctions,
remain largely unclear. More resources need to be committed
to investigating the biochemical composition of these
junctions, and how the constituent proteins interact with each
other to regulate anchoring junction restructuring. We have
described some intriguing evidence and models to illustrate
that cadherin-mediated adhesion may play a crucial role in
spermatogenesis. Besides this, we referred to many different
pathways and sets of proteins that may regulate cadherin-
mediated adhesion, such as phosphatases, kinases and small
GTPases. Better understanding of cell-cell interactions during
the migration of the differentiating germ cells will shed more
light on the complex processes of spermatogenesis, fertility
and aspermatogenesis, and provide a framework upon which
new, safer male contraceptives could be developed.
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