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1. ABSTRACT

Aging is characterized by a proinflammatory
state that contributes to the onset of disability and age-
related diseases. Proinflammatory cytokines play a central
role in mediating cellular and physiological responses. The
levels of these cytokines may reflect immune system
effectiveness. Studies of the effects of aging on
inflammatory response show interleukin-6 (IL-6), tumor
necrosis factor-alpha (TNF-alpha) and interleukin–1beta
(IL-1beta) to be important. In this review, age-related

changes in inflammatory cytokines, T and NK cells, and
the biology of IL-6 and TNF-alpha and their relevance to
senescence are considered.

2. INTRODUCTION

For living organisms, aging is the consequence of
time (1). Since Hayflick (2) assessed it in human diploid
fibroblasts in 1961, the concept of senescence has been
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Table 1 . Other inflammatory mediators associated with aging
Inflammatory mediators Group Name
Cytokines Type 1 IL-2

IFN-?
IL-12

Type 2 IL-4
IL-5
IL-10

Other GM-CSF
IL-1ß
IL-7
IL-13
IL-17
GCSF

Chemokines CXCa IL-8
MCP-1
MIP-1a

  MIP-1ß

extended to endothelial cells, T lymphocytes, epidermal
keratinocytes, adrenocortical cells, smooth muscle cells,
glial cells, lens epithelial cells and, recently, human
pancreatic β-cells – all of which undergo senescence (3). T
cell and Natural Killer (NK) cell senescence is also
associated with changes in function (4).

Cytokines are central to immune cell
communication. Therefore, age-related changes in cytokine
profiles contribute to many changes in the immune system
(5). Inflammatory cytokines, primarily macrophage
products (first identified as acute phase responses to
bacterial infection - but also associated with other
conditions common in old age) (6) – have multisystem
effects (7).

Chronic inflammation is a pathophysiological
mechanism leading to age-associated diseases and declines
in physical function (8, 9). The paradigm of immune
dysregulation involving cytokines has been applied to the
concept of frailty, a physiological decline occuring during
aging, and the associated dysregulation of systems (10).

Aging is associated with an elevation in
proinflammatory cytokines, such as IL-6 and TNF-a. Other
cytokines/chemokines (see Table 1) are also associated
with advanced age (11-20). Age-associated changes in
these cytokines/chemokines are complex so it will not be
practical to review them in depth. We focus on IL-6 and
TNF-a (and their effects on age-associated diseases) and on
T and NK cell changes.

3. IMMUNE SYSTEM AND AGING

The deterioration of immune function with age is
called immune senescence, which reduces resistance to
infection and, possibly, to cancer (21). Chronic activation
of the immune system (e.g., autoimmune diseases, cancer,
HIV, and other chronic infections) induces changes in
immune response paralleling those in elderly individuals
(22). Classically, although “immunosenescence” is an age-
related decline in immune response, dysregulation (rather
than simple “decline”) is more characteristic.

Because chronic inflammatory activity is
associated with aging (23), there have been efforts to
determine the mechanisms of age-related immune
dysregulation and chronic inflammation (10, 24). Age-
associated changes in the immune system (25) include
reduced in vitro responsiveness and impaired response to
vaccination and acute infection (e.g., the influenza vaccine
is only 30-40% effective in frail elderly people). Infectious
disease ranks eighth among causes of deaths in the USA
overall, but fourth in persons over age 65. Cancer
incidence, partly related to ineffective surveillance by NK
cells, increases after age 30 (1).

Cytokines, which affect hematopoiesis,
inflammation, and wound healing, are soluble proteins
secreted by cells of the immune system. These proteins
alter the behavior and properties of different T cell types
(26). In addition to being cell-to-cell communicators,
cytokines have systemic effects (such as fever,
intravascular coagulation, and shock). These conditions are
often due to the production of cytokines in infectious,
inflammatory, and neoplastic states (27). Cytokines often
function as complexes, with one inducing another in a
cascade (28).

3.1. IL-6 and aging
IL-6 is the prototypic member of a family of

cytokines that includes leukemia inhibitory factor (LIF),
oncostatin M (OSM), ciliary neurotrophic factor (CNTF),
and interleukin-11 (IL-11) (29, 30); members of this family
are termed “interleukin-6 type cytokines.” They are
involved in immunity, bone metabolism, reproduction,
arthritis, neoplasia, and aging; and they are regulated by a
variety of factors, including steroid hormones, in
transcription, and post-transcription. IL-6 operates through
a ligand-specific IL-6 receptor (IL-6R). Unlike most other
cytokine receptors, the IL-6R is active in both membrane
bound and soluble forms (31).

The major role of IL-6 is to mediate acute
inflammatory responses. These include inflammatory cell,
lymphocyte activation, and hepatocellular stimulation of
acute phase protein synthesis (7). Evidence relates IL-6
increases to an age-associated loss of T cell
immunoregulation and menopausal loss of estrogen; and
these increases produce changes typical of chronic
inflammation (4). Thus, elevated IL-6 serum levels are
associated with disease, disability, and mortality in the
elderly (32-34).

Genetic studies have identified two
polymorphisms in the promoter region of the IL-6 gene: -
174G/C and -572G/C (35, 36). A variable number of
tandem repeat (VNTR) polymorphisms were found in the 3'
flanking region of the IL-6 gene (C allele) (37, 38). In
humans, a polymorphism in the IL-6 promoter (a/c
polymorphism at position -174) altered IL-6 gene
transcription rates in vitro and IL-6 levels in vivo (35, 36).
Genetic variation in the IL-6 gene involved in immune
response is an attractive focus in elucidating the molecular
mechanisms involved with immunosenescence.
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Table 2. Interleukin 6 and aging
IL-6

Results
Specimens Species Stumulus Time Assay Author Publish Ref

? Serum MRL/lpr Mice FCS 48h RIA Tang et al 1991 49
? Plasma Fischer  344 rats LPS 90 min RIA Foster et al 1992 50

? Supernateants (B cell
hybridoma 7TD1)

GH treated C57BL/6 male
Mice

ConA 48h RIA Goya et al 1992 51

? Plasma Humans none none RIA Wei et al 1992 52

? Spleen cells and lymph
nodes

BALB/c and 3H/HeN
Mice

Nutridoma-SR 24h ELISA Daynes et al 1993 53

? Serum Humans Nutridoma-SR 24h ELISA Daynes et al 1993 53

? Serum soluble IL-6R MRL/lpr Mice none none ELISA Suzuki et al 1993 54
? Spleen cells C57BL/6J Mice ConA or LPS 24-72h RIA Zhou et al 1993 55
? Plasma Humans Mitogen 96h ELISA Sindermann et al 1993 56

? PBMC Humans PMA and PMA 24-72h ELISA Fagiolo et al 1993 32
? Plasma Rhesus monkeys none none RIA Ershler et al 1993 7

? Plasma Humans none none RIA Ershler et al 1993 7
= Serum Humans none none RIA Peterson et al 1994 57

? Plasma Humans none none ELISA Kania et al 1995 48
? Plasma Humans none none ELISA James et al 1997 47

? PBMC Humans LPS 90min ELISA Cakman et al 1997 58
? Plasma Humans none none ELISA Cohen 1997 59

? PBMC Humans ConA and PWM 72-120h ELISA Bernstein et al 1998 60
= PBMC Humans PHA and ConA 48h ELISA Beharka et al 2001 61

= Peritoneal macrophages C57BL/6NCrlBR Mice PHA and ConA 48h ELISA Beharka et al 2001 61

?: IL-6 level increased; = IL-6 level no change

3.1.1. IL-6 structure and function
The human IL-6 gene is found on chromosome

7p21 (39) and has 5 exons and 4 introns (40, 41). Human
IL-6 contains 212 amino acids, including a hydrophobic
signal sequence of 28 amino acids and two N-glycosylation
sites. Murine IL-6 has 211 amino acids with a signal
sequence of 24 residues. It has no N-glycosylation, but
several O-glycosylation, sites  (42).

3.1.2. IL-6 receptor structure and function
IL-6R was first cloned from a human NK–like cell

line, YT (43), followed by cloning from a hepatoma cell line,
HepG2 (44). The IL-6 Receptor (IL-6R, also known as gp80 or
IL-6Rα subunit) is an 80-kDa protein with 467 amino acids.
Located on chromosome 1 band q21 (45), the IL-6R gene
encodes for a 5-kb mRNA (43). The IL-6R has a binding alpha
chain and a signal transducer, gp130, shared by receptors of
the IL-6 cytokine subfamily. Sharing a receptor subunit is a
feature of cytokine receptors and is the molecular basis for the
functional redundancy of cytokines (46).

3.1.3. IL-6 and “normal” aging.
IL-6 is called “a cytokine for gerontologists” (4)

because age is associated with increased production. While
initial studies supported this contention (47, 48, 4), once the
individual’s health was considered, it was accepted that
changes in IL-6 levels reflected the inflammatory processes
associated with aging – not aging itself.

High levels of IL-6 have been reported in aged
mice and humans in vivo (see Table 2) (49-56, 32, 7, 57,

48, 47, 58-61). Epidemiological studies found increased
circulating IL-6 in healthy elderly—including centenarians
(62-64, 53) and indicated that IL-6 levels increase with age
(65). It is detected in culture supernatants of unstimulated
lymphoid cells from aged donors. Increased IL-6 released
by isolated monocytes from the elderly is consistent with
increased serum IL-6 levels and with production by
peripheral mononuclear cells (53, 7, 66, 67). This suggests
that dysregulation of IL-6 production is due to aging.

Bonafe (68) studied IL-6 promoter genetic
variability at the -174 C/G locus and its effect on IL-6
levels in 700 people aged 60 to 110 years, including 323
centenarians. The proportion of homozygotes for the G
allele at the -174 locus decreased in centenarian males – but
not females. Only males homozygous for the G allele have
higher IL-6 serum levels than C allele carriers. This
suggests that a gender-dependent genetic predisposition to
produce high levels of IL-6 reduces longevity.

3.1.4. IL-6 and Frailty or Disability
Frailty is associated with chronic inflammation and

activation of coagulation pathways. Proteins (e.g., IL-6) in
these pathways are biomarkers of frailty and disability.
Therefore, these pathways may be involved in the age
progression of chronic disability and death (69, 70, 24). They
could be targets for “regenerative medicine,” which is directed
toward increasing function in elderly patients (71).
Regenerative medicine intervenes at a fundamental biological
level (e.g., altering production of tissue-specific growth
factors) that may reverse age-related functional loss.
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Population studies identified IL-6 levels as a
predictor of disability (and mortality) in the elderly (72).
Ferrucci (8) tested the hypothesis that, in older persons with
no disability, high levels of IL-6 predict a physical decline.
Cases with the highest IL-6 levels were 1.76 (95% CI,
1.17-2.64) times more likely to develop mobility-disability
and 1.62 (95% CI, 1.02-2.60) times more likely to develop
mobility plus Activities of Daily Living (ADL)-disability
(compared to the lowest IL-6). This was little changed by
adjusting for confounders.

The increased risk of mobility-disability had a
non-linear relation to IL-6 levels, with risk rising rapidly
beyond levels of 2.5 pg/ml. Some diseases that are
characterized by chronic inflammation and high levels of IL-6
accelerate the catabolism of proteins and muscle-wasting (73,
74). This may be due to the effect of IL-6 on muscle tissue
and/or to the pathophysiologic role played by IL-6. Other
studies found increased levels of this protein associated with
age and impairment of basic and instrumental activities of
daily living (IADL) (34). Cohen (59) showed that this situation
ocurred independent of disease and suggested an age-related
dysregulatory phenomenon. In the Women's Health and Aging
Study (75), high IL-6 levels were an independent risk factor for
an accelerated decline in physical function. Ferrucci (76) found
that older women with high IL-6 levels have a greater risk of
disability – and a faster decline in walking ability – than those
with lower levels. These effects are partly explained by a
decline in muscle strength.

3.1.5. IL-6 and age-related diseases
IL-6 dysregulation is involved in age-related

diseases such as cancer, lymphoma, cardiovascular disease
(CVD), osteoporosis, Alzheimer's disease (AD), diabetes,
and atherosclerosis (77-80).

3.1.5.1. IL-6 and cancer
In humans, IL-6 dysregulation is implicated in

lymphoma (81), myeloma (82-85), and non-lymphoid
tumors (86, 87).

For tumors without IL-6 receptors, IL-6 showed
anti-tumor activity (due either to T cell-enhancing effects
[88] or to non-specific anti-inflammatory effects [89]). In
most cancers, however, IL-6 accelerates cancer cell growth.
Increased production of IL-6 in the elderly may promote
the proliferation and survival of malignant myelomas and
may induce cell resistance against therapy-stimulating
apoptosis (90). Increased IL-6 may cause tumor
progression by action on cellular motility and adhesion (91)
and may cause cell proliferation and expression of tumor-
specific antigens (92). Melanomas (93), renal cell
carcinoma (94), prostate (95) and ovarian (96) cancer are
stimulated by IL-6. In many tumors, an increase in IL-6
receptors also induces proliferation (31). Elevated serum
levels suggest an important role for IL-6 in
cholangiocarcinoma. Inhibition of IL-6 signaling blocks
anchorage independent growth of a malignant
cholangiocyte cell line (97).

Increased levels of IL-6 may affect lymphoma
risk in old mice (98). IL-6 stimulates B cell maturation and

proliferation, and overproduction is found in many B-cell
malignancies (e.g., multiple myeloma [82, 83, 99], non-
hodgkins lymphoma [100, 101], and chronic lymphocytic
leukemia [102]). Other lymphoproliferative diseases,
including Castleman’s disease (103, 104), Hodgkin’s
disease (101,105), angioimmunoblastic lymphadenopathy
with dysproteinemia (106), and certain non-B cell
lymphomas (107) are also associated with high IL-6 levels.

3.1.5.2. IL-6 and CVD
IL-6–mediated inflammation is involved in CVD.

IL-6 levels may predict CVD events. Elevated levels of IL-
6 are associated with increased risk of CVD death in
elderly people (72, 108, 109) and myocardial infarction
(MI) in middle-aged men (108). Included conditions are
coronary artery disease (110-113), stroke (111), and
congestive heart failure (CHF) (114).

Using data from Framingham, Roubenoff (66)
found production of IL-6 by peripheral blood mononuclear
cells to be higher in older non-disabled persons. This was
due to overproduction of cytokines associated with chronic
medical conditions that are prevalent in older persons (such
as angina pectoris, MI, CHF, diabetes mellitus, and cancer).
There is evidence of dysregulation in the mechanisms
modulating cytokine response (76). Lindmark et al (115)
reported that elevated IL-6 predicts CVD mortality and is
an independent marker of increased mortality in unstable
coronary artery disease (CAD) identifying patients eligible
for invasive management.

There is controversy about whether or not the -
174 G/C polymorphism modulates IL-6 levels; one study
found that the C/C genotype is associated with higher IL-6
levels in patients who have an abdominal aortic aneurysm
(116). In three other studies, the –174 C allele predicted
higher coronary heart disease (CHD) mortality (116-118).
However, the Ludwigshafen Risk and Cardiovascular
Health (LURIC) study indicated that the IL-6 G (-174) C
promoter polymorphism is not associated with CAD or MI
and does not explain CVD risk (119). Jenny et al (120)
assessed IL-6 levels and the -174G/C genotype in a
case-control study of men and women (average age 73
years) in the Cardiovascular Health Study. IL-6 levels
differentiated those with sub-clinical CVD from those
without. Although the -174C allele was not associated with
incident events, associations of the genotype with
inflammation and MI, combined with the IL-6 level,
suggest that IL-6 predisposes patients to atherosclerosis.
The –174 C and –572 C genotypes likely have biological
significance in atherosclerosis, thrombosis, and CHD. The -
174 C polymorphism is important since IL-6 levels are
influenced by the G/C genotype, which was correlated with
higher IL-6 in Caucasians who were undergoing coronary
revascularization (35, 121).

3.1.5.3. IL-6 and Osteoporosis
IL-6 and IL-6R contribute to bone remodeling

(122-124). The parathyroid hormone, an inducer of bone
resorption, stimulates IL-6 (125-127), which is produced by
osteoblasts, monocytes, and T cells and which promotes
osteoclast differentiation and activation (128). IL-6 also
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stimulates osteoclasts and affects bone loss associated with
estrogen deficiency (85, 81). Giuliani et al (129) examined
220 women (25 to 104 years of age) to examine changes in
the levels of IL-6 and soluble receptors (sIL-6R and
gp130). IL-6, sIL-6R, and sgp130 showed different age-
and menopause-related changes. Hence, IL-6 activity may
increase with age and affect osteoporosis. Ferrari et al
(130) found that IL-6 polymorphisms  -572 and -174 G→C
regulating gene expression are associated with C-reactive
protein (CRP) levels and bone resorption in
postmenopausal women. Findings suggest that IL-6 levels
can identify individuals genetically predisposed to
osteoporosis (131-133).

3.1.5.4. IL-6 and Alzheimer’s disease (AD)
Chronic inflammation and astrocytosis are

histopathological AD features (134). IL-6 is produced
primarily by astrocytes and microglia, but also by neurons
(135, 136). It affects CNS development (137, 138) and
acute inflammatory response (139). Inflammation is central
to AD degenerative changes (140-143). Weaver (144)
suggests a relation between elevated IL-6 and a decline in
cognition. This is consistent with a relation of brain
inflammation, as measured by elevated IL-6, to
neuropathology. Transgenic mice over expressing IL-6 in
the CNS exhibited neuropathology (145). IL-6 was also
detected in the CNS of human patients with
neurodegeneration, including Multiple Sclerosis (MS) and
Acquired Immune Deficiency Syndrome (AIDS). IL-6
inhibited long-term potentiation in hippocampal neurons
(146), and progressive neuropathological manifestations of
IL-6 expression were also related to deficits in avoidance
learning (147).

The association of AD with the -174G/C and -
572G/C polymorphisms of the IL-6 gene promoter is
controversial. Pola et al (148) evaluated the association of
AD with -174G/C polymorphism in Italians. Frequency of
the G/G genotype was higher in patients with AD, while
people with the C/C genotype had reduced risk. Using
polymerase chain reaction-restriction fragment length
polymorphism (PCR-RFLP), Shibata et al (149) examined
the C allele of the “IL-6 variable number of tandem repeat
polymorphism” (IL-6vntr) and the G/C allele of the IL-6
gene promoter region (IL-6prom) polymorphisms in 128
Japanese AD cases and 83 controls. Frequency of the
IL-6prom G allele was significantly increased in AD cases,
while the IL-6vntr polymorphism was not. IL-6 levels in
AD cases were significantly higher than in controls. IL-
6prom G allele-positive AD patients had higher IL-6.
Several studies also reported an association of IL-6vntr
polymorphisms in the 3'flanking region of the IL-6 gene (C
allele) with AD (37, 38, 150). Boojak et al (151) screened
late-onset AD cases and age-matched controls to evaluate
IL-6 –174 polymorphisms, but found no significant
association. The G/C polymorphism at position -174 was
examined in 102 AD patients and in control groups of 191
healthy and 160 depressed patients. There was no evidence
of association between the IL-6 promoter polymorphism
and earlier age of AD onset. Analysis showed a strong link
to disequilibrium by comparing haplotype frequencies
under the hypothesis of no allelic association and of allelic

association between IL-6vntr and IL-6prom and interaction
of IL-6vntr and IL-6prom modifying AD risk (37).

The role of IL-6 in aging is still a source of
contention: Is it a result of inflammatory processes
associated with aging, or with aging itself? This is a
challenge for researchers.

3.2. TNF-a and aging
Aging is associated with increased TNF-a. TNF

is a multifunctional proinflammatory cytokine produced by
various cell types (including activated macrophages and
lymphocytes) that affect lipid metabolism, coagulation,
insulin resistance, and endothelial function. It stimulates
the proliferation of normal cells, exerts cytolytic or
cytostatic activity against tumor cells, and causes
inflammatory, antiviral, and immunoregulatory effects
(152, 153). TNF-a is a monocyte-derived tumor necrosis
factor; TNF-ß is a lymphocyte-derived tumor necrosis
factor.

3.2.1. TNF-a structure and function
Gearing et al (154) reported that TNF-a is

initially expressed as a 233-amino-acid membrane-
anchored precursor proteolytically processed to yield the
157-amino-acid cytokine. Processing of the TNF-a
precursor is dependent on at least one matrix
metalloproteinase-like enzyme, inhibition of which
represents a therapeutic mechanism for interfering with
TNF-a production. Interest in TNF was based on its
potential as an anti-cancer drug. With the availability of
purified TNF, it became evident that TNF not only induces
necrosis of tumor tissue, but it also produces systemic
endotoxic activity leading to fever, hypotension, and shock
(155). TNF is a potent inflammatory mediator and is central
in inflammatory reactions of innate immune systems
(including induction of cytokine production, activation or
expression of adhesion molecules, and growth stimulation
[156]).

3.2.2. TNF receptor: structure and function
Different forms of TNF signals through two cell

surface receptors: – TNF-R1(p55/p60) and TNF-R2
(p75/p80) (157-159). TNF-R1 initiates most of TNF's
biological activity. Binding of TNF to TNF-R1 triggers
intracellular events activating two transcription factors:
nuclear factor ?B (NF-?B) and c-Jun. These induce
expression of genes that is important for a variety of
biological processes, including cell growth and death;
development; oncogenesis; and immune, inflammatory, and
stress responses (160).

3.2.3. TNF-a and Mortality
TNF levels in elderly institutionalized patients

may predict early mortality (161). Bruunsgarrd (162)
hypothesized that TNF-a predicts mortality. To investigate
if TNF-a levels were associated with mortality -
independent of IL-6- in 333 healthy 80-year-olds, Cox
regression was used to explore TNF-a and IL-6 effects on
survival over 6 years. TNF-a was associated with mortality
in men, but not women. IL-6 elevation was associated with
mortality in both sexes. TNF-a explained only 7% of the
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variability in IL-6. The effects of the two cytokines were
independent of each other – and other risk factors (such as
smoking, blood pressure, exercise, cholesterol, co-
morbidity, body mass index [BMI], and the use of anti-
inflammatory drugs). This suggests different biological
effects of the cytokines in age-associated mortality (162).

TNF-a levels relate to the level of inflammation,
CVD, dementia, and frailty in very old people (163). TNF-
a was associated with mortality, independent of CVD. It
was also associated with mortality in centenarians,
independent of comorbidity, although comorbidity affected
the hazard. Elevated levels of TNF-a, but not IL-6, were
associated with mortality in Danish centenarians (164).
Although high TNF-a levels strongly predicted mortality in
centenarians with dementia, TNF-a was associated with
mortality in a Cox regression model including dementia
(165). Low-grade elevations of TNF-a are independent risk
factors of morbidity and mortality in the elderly. (166).

3.2.4. TNF-a and age-related diseases
TNF-a initiates the inflammatory cascade and is

linked to age-associated disorders (162). Increased levels of
TNF-a were reported in aged humans (167-169). TNF-a
has been associated with the development of AD (164),
CVD (e.g.,CHD), CHF (170), Type 2 diabetes mellitus
(164), Rheumatoid arthritis (171) and cancer (172, 173).
TNF-a levels increase with age, providing a unifying basis
for these disorders (169).

3.2.4.1. TNF-a and AD
Cytokines, especially TNF-a, are related to

neurotoxicity (174, 175). Increased levels of TNF-a have
been reported in cerebrospinal fluid, cortex (176), and glial
cell cultures from AD patients (177). It is suggested that
amyloidogenesis may be caused by an acute-phase
response in the brain (mediated by proinflammatory
cytokines [178]).

High levels of TNF-a were associated with a high
prevalence of AD in older individuals. In 126 Danish
centenarians the highest TNF-a levels were in individuals
with moderate to severe dementia, as measured by the
clinical dementia rating scale (179). The association
remained when centenarians with other medical disorders
were excluded, indicating that an association of TNF-a and
dementia. Associations between TNF-a levels and
dementia in centenarians may reflect a whole-body increase
in concentrations of proinflammatory cytokines. Damage to
brain tissue may be an effect of increased peripheral
concentrations of cytokines, such as TNF-a (180).

3.2.4.2. TNF-a and CVD
TNF-a affects CVD risk factors such as insulin

resistance (181), dyslipidemia (182), endothelial
dysfunction (183), and endothelial upregulation of cellular
adhesion molecules (CAMs) (184). Circulating levels of
cytokines were associated with a low (less than 0.9) ankle-
brachial blood pressure index (ABI) that is indicative of
generalized atherosclerosis (185-188), increased risk for
CVD (189), and death (190, 191). In octogenarians, high
levels of TNF-a correlated with high levels of triglycerides

and a low rate of atherogenesis and thromboembolic
complications. Elevated TNF-a levels were associated with
early-onset atherosclerosis in apparently healthy middle-
aged men (192). High levels of TNF-a after MI were
associated with risk of recurrent coronary events (193).

Endothelial dysfunction may be an early warning
sign of atherosclerosis (194). Bruunsgaard found that TNF-
a impairs endothelium-dependent relaxation in humans
(183) and causes endothelial up-regulation of CAMs,
mediating attachment and transmigraton of leukocytes
through the endothelium (184). One hundred thirty home-
living octogenarians were divided into groups with low,
intermediate, and high levels of TNF-α. In those with high
TNF-a, a significantly larger population of patients had a
history of atherosclerostic CVD.

To investigate the predictive value of
inflammatory markers on the incidence of cardiovascular
events in well-functioning older persons, 2,225 persons
aged 70 to 79 years, without baseline CVD, were selected
for the Health, Aging, and Body Composition study.
Incident CHD, stroke, and CHF were detected during an
average follow-up of 3.6 years. Results showed that IL-6
and CRP, TNF-a levels were independent predictors of
CVD events (170). This suggests that increased levels of
TNF-a promote atherogenesis and may be a marker of its
severity.

3.2.4.3. TNF-a and Type 2 diabetes mellitus
Because of a decline in insulin action, aging is

frequently associated with impaired glucose handling (195-
197). High TNF-a levels also correlated with body fat and
insulin insensitivity (169). TNF-a levels rise with age and
might be related to metabolic control in Type 2 diabetes
mellitus. Lechleitner et al (198) studied the relation of
TNF-a levels to glycemic control in elderly patients with
Type 2 diabetes over two years. TNF-a levels increased - a
possible factor for the reduction of glycemic control in
Type 2 diabetes.

Clausell et al (199) demonstrated that TNF-a
expression was significantly increased in type 2 diabetic
atherosclerotic lesions (compared with non-diabetic
lesions). A minimal degree of immunostaining for this
cytokine was apparent in the majority of non-diabetic
lesions. Increased accumulation of TNF-a levels
distinguished the two types of lesions. TNF-a induced
obesity-linked insulin resistance, endothelial dysfunction,
and dyslipidemia. TNF-a may also reflect the enhanced
inflammatory activity associated with the development of
vascular lesions in type 2 diabetic patients and with the
impairment of insulin action with age (169).

In conclusion, studies show that circulating levels
of TNF-a are the best predictor of morbidity and mortality
in the elderly. Lifestyle factors and co-morbidities
modulate these levels.

3.3. T cells and aging
Immune system alterations during aging are

complex and pleiotropic, suggestive of remodeling, or
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altered regulation, not deficiency. The most dramatic
changes with age occur in the T cell compartment and are
consistent with increased incidence and severity of
infection and cancer in the elderly (200).

3.3.1. Thymic involution
The thymus is important in T cell development

and the effect of T cells on aging. It provides a
microenvironment in which bone-marrow-derived
progenitors proliferate, mature, and undergo selection to
create a population of major histocompatibility complex
(MHC)-restricted, self-tolerant T cells (201).

3.3.1.1. Thymic aging
Thymic involution is the most prominent age-

associated change in the immune system. In mice, this
process occurs between the ages 4 and 9 months. It can be
observed in mice and humans as the loss of thymus size,
mass, cortical T cells and also as the loss of epithelial cells
and stroma (202).

Gross anatomical thymic changes with age were
recognized before its immune function was discovered (1,
203). As the thymus atrophies with age, there are fewer
naive T cells to respond to new pathogens and neoantigens,
with accumulation of oligoclonally expanded memory
CD8+CD28-CD57+T cells.

T cells influence the thymus by providing
survival signals for the medullary microenvironment (204).
As production of naive T lymphocytes decreases,
cell-mediated and humoral immunity depending on T
lymphocytes declines. Production of B lymphocytes by
bone marrow in mammals also declines with age. The
extent, rate, nature, and reversibility of the age-related
decline in thymic function in humans are debated (205-
207). Aging is associated with decreased thymic epithelial
space. The decrease begins in late adolescence and
continues throughout life. The etiology of involution is not
clear; but, because young thymic cells can be repopulated
in aging hosts (208), it appears to involve genetic
programs. In centenarians thymic involution may shield the
T cell system from genetic instability (209) because
centenarians show DNA stability – and well-preserved
immune function (210).

Histological studies of the thymus in mice and
humans suggest that, although organ size may decrease (in
mice) or the lymphoid compartment be replaced by fat (in
humans), there remains tissue with youthful cortical and
medullary architecture. Analysis of the proportions of different
T cell subsets in the murine thymus suggests that the earliest
(CD44+ CD25-) thymocyte population is preserved, while
later populations decline (211). In fetal thymic organ cultures,
CD44+ CD25- cells isolated from old mice generate mature
thymocyte populations as efficiently as those from young
mice. This suggests an age-related decline in thymic stromal
function, as does administration of IL-7 to aged mice
(increasing thymic subsets and the proportion of peripheral
naïve-phenotype CD4+ T cells [203]). IL-7 may affect the
peripheral naïve T cell pool or extra-thymic sources of T
cells (e.g., the intestine).

3.3.1.2. Recent thymic emigrants (RTEs) and T cell
receptor excision circles (TRECs)

CD4+ and CD8+ T cells progress through several
stages in their lifespan. Mature CD4+ and CD8+ thymocytes
emigrate from the thymus to the periphery as recent thymic
emigrants (RTEs) (212). After RTEs mature, they are
classified as naive T cells that circulate through blood and
lymphoid tissues. The rate of RTE production by the
thymus contributes  to the peripheral T cell pool. It is
important to monitor thymic production under conditions
influencing T cell depletion and reconstitution (e.g., human
immunodeficiency virus [HIV]-1 infection, bone marrow
transplantation, and immunosuppressive therapy [213]).
The property of immunity most sensitive to aging is the
production and export of T cells from the thymus. This is
manifested as  a decrease in the peripheral levels of naive
RTEs with age (206, 212), which (if a proportion of RTEs
were tumor specific) could influence the precursor
frequency of the functional cytotoxic T lymphocyte (CTL) .

T cell receptor excision circles (TRECs) are used
to measure RTE levels, to assess thymic output in aging
and disease (207, 214), and to study age changes in the
frequency of RTEs in HIV-1 infection (206). TREC levels
change with age (206, 215-220). It is  unclear whether
TREC concentrations are affected by thymic output or
peripheral T cell events. Douek et al (206) and Patel et al
(207) found a sharp decline in TREC levels with age; on
the other hand, Zhang et al (217) found a gradual decline,
with stable output in the first 5 years of life. Steffens (221)
determined that CD45RA+CD45RO- can be enriched for
TRECs in adults, providing evidence of intact thymic
function in adults.

3.3.2. Effect of age on peripheral T lymphocytes
The peripheral immune system changes with age.

Previous studies noted age-associated changes in T
lymphocyte subsets (222-225). Many studies report
alterations in the distribution of subsets (e.g., increased
CD45RO “memory” and NK cells (226) and a decrease of
CD45RA naïve T cells (227). T-lymphocytes display
reduced proliferative capacity, increases of CD8+, and
decreases of CD19+ cells (228). The proportion of perforin-
expressing CD8+ T cells decreases (229), as does the
secretory capacity of transforming growth factor-β (TGF-
β), which alters regulation (230).

3.3.2.1. Naïve phenotype cells
Most T cells in children resemble naïve cells

freshly emigrated from the thymus to peripheral immune
organs. Aging causes a shift from naive cells1 to an
increase in antigen-experienced memory subsets (231-233).
In mice, the shift accounts for age-related declines in
response to mitogen in vitro (233) and contributes to
declines with age of in vivo responsiveness to new antigens.

The frequency of naive T cells2 declines with
age, as does functional capacity, shown by decreased
numbers of sequential replications in response to
stimulation. Variability in the capacity of naive cells
suggests a mosaic of reactive and anergic cells. (Anergy is
related to microenvironmental and intrinsic cell properties.)
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Microenvironmental effects (such as increased
membrane-cholesterol-to-phospholipid ratio reducing
membrane fluidity) on the proliferation of peripheral blood
lymphocytes might be related to aging, but are potentially
reversible by decreasing the proportion of lipids [234]).
Other molecular changes in naive T cells include alterations
in phosphorylating enzymes. That enzymes are altered,
rather than simply declining (235), suggests age-related
remodeling.

3.3.2.2. Memory phenotype cells
An increased population of memory T cells in old

humans and mice exemplifies age-related immune
alterations. The shift from naive T cells reflects cumulative
exposure to pathogens. It might also represent a
compensatory homeostatic response to reduced numbers of
naive T cells generated in the thymus, intrinsic cellular
differential sensitivities to apoptosis, and the effects of the
environment – all of which promote the appearance and
dominance of memory cells (236).

Most studies of memory T cells were done on
whole spleen or peripheral blood lymphocyte populations.
Because the frequency of memory cells in the aged is
increased, it is unknown if alterations in cytokine
production by the T cells from elderly individuals are
linked to changes in the frequencies of naïve/memory T
cell subsets. According to Pawelec et al (237), many
studies compared the behavior of predominantly naive cells
from young organisms with that of predominantly memory
cells from old ones (238). The results indicate significant
decreases in naïve T cells and increases in memory T cells
in the elderly. Defects in TH1 and TH2 cytokine production
were not significantly correlated with frequencies of
naïve/memory T cells. Elderly people with normal
frequencies of naïve/memory T cells exhibited decreases in
cytokine production comparable to reductions observed for
elderly donors. They also exhibited changes in the
frequencies of naïve/memory T cells (239). Whether
accumulation of memory T cells in the elderly is a
biological marker of changes in T cell biochemical or of
functional properties is yet to be determined (239, 240).

3.3.3. Effect of aging on signal transduction related to T
cell activation

Changes in signal transduction may be
responsible for the impairment of T cell function as people
age. T cell activation is initiated when an antigenic peptide
is recognized by the T cell receptor. This activates
signaling molecules (such as kinases, phosphates, and
adaptor proteins) that couple stimulatory signals from the T
cell receptor (TCR) to intracellular signaling pathways.
Activation of signaling stimulates transcription factors and
the expression of genes that is crucial to regulating T cell
function (241).

Studies of early activation reveal that T cells
from aged mice show abnormalities soon after stimulation,
including reduced activation of Raf-1/MEK/ERK kinases,
JNK protein kinase, and an influx of calcium (242). Despite
a three-fold decline with age in the tyrosine
phosphorylation of CD3 ?, the Zap-70 kinase associated

with the CD3? chain doubles with age in resting CD4 T
cells. There is no effect of aging on the Zap-70 kinase
function in activated T cells in vitro. Age-related
impairment of the translocation of PKC? from cytoplasm to
the site of T cell interaction with antigen-presenting cells
may underlie downstream defects in activation (235).

In humans, CD3-stimulated T cells from 50% of
old subjects showed reduced mitogen-activated-protein-
kinase (MAPK) activation (243). Stimulation with phorbol
ester with calcium ionophore activated MAPK in old cells,
but less than in young cells (243) suggesting signaling
deficits between TCR and inducers of MAPK. Similar
findings were reported in mice using CD3/CD4-mAb-
stimulation of T cells (244). Other signaling pathways may
also be affected by aging. Liu et al (245) reported that
extracellular signal-regulated kinase (ERK) and c-Jun N-
terminal kinase (JNK) were diminished in CD3/PMA-
stimulated T cells from elderly humans. ERK and JNK
were accompanied by decreased Raf-1 kinase activation.
ERK2 activation correlated with IL-2 production and may
be a rate-limiting step for production by old T cells (245).
Similar findings apply to rat (246) and mouse T cells (247,
248).

Signal transduction initiates physiological signals
for growth and proliferation and for programmed cell death
and is important for T cell development and function.
Studies suggest that changes in signal transduction cause
age-related declines in T cell function. Alterations in early
signaling events (e.g., calcium mobilization, tyrosine
phosphorylation, retrovirus-associated sequence [RAS],
and MAPK activation) are linked to age decreases in IL-2
expression and T cell proliferation. Impairment of signaling
molecules in the cell membrane or cytoplasmic level may
contribute to the secondary defects of downstream nuclear
events such as transcription. Although much is known
about how signaling pathways lead to T cell growth and
function, an understanding of how aging alters activation of
signaling molecules (diminishing T cell responsiveness) is
not yet complete (249, 250).

Activation of the transcription factors of NF-?B
is regulated by alterations in intracellular reduction-
oxidation (redox). NF-?B regulates the genes that are
necessary for T cell responses (IL-2, IL-6, IL-8, and T cell
surface receptors). Diminished NF-?B activity occurs in T
cells with aging (251), suggesting impaired activation of
NF-?B in cellular senescence. Disruption of NF-?B activity
is implicated in diseases involving immune or
inflammatory processes (e.g., atherosclerosis [252, 253],
aging [254, 255], and HIV-1 infection [256, 257]). The role
of reactive oxygen species (ROS) as secondary messengers
for divergent T cell signals is complicated because T cell
lines and peripheral blood T cells, which differ in NF-?B,
are induced by ROS. The pathways of NF-?B activation are
based on indirect evidence provided by experiments using
antioxidants to inhibit NF-?B. Activation of T cells
requires signals, stimulating increases in intracellular
calcium and in enzymatic processes including kinases
(258).
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3.3.4. Effect of aging on T cell apoptosis
Apoptosis tends to increase with age (259-262),

but it is unclear if alterations in T cell apoptosis are due to
aging. Loss of the ability to regulate apoptosis may impact
life span and normal aging (For example, cancer incidence
and the onset of many neurodegenerative diseases are
associated with aging). How diseases are initiated is
unknown, but it is known that changes in apoptotic
behavior contribute (263).

Animal models suggest that age-associated
immune dysfunction correlates with defects in T cell
apoptosis. An increased apoptosis was observed in the
splenocytes and thymocytes from aged rats (264). Old
lymphocytes are susceptible to activation-induced
apoptosis (265); and aging humans demonstrated increased
apoptosis of T cells (CD3+ CD45RO-) compared to younger
ones in in vitro cultures of lymphocytes (266). Age
modulates expression of cell death genes. An increased
expression of Fas and Fas ligand and a decreased expression of
Bcl-2 were observed in the memory cells of CD4+ and CD8+ T
subsets from elderly people as compared with young controls.
An increased proportion of CD4+ and CD8+ T subsets
underwent apoptosis following anti-Fas Ab treatment in the
elderly (261). Increased apoptosis is also responsible for
lymphopenia and T cell deficiency in humans (267).

Prior to clonal deletion by apoptosis, CD4+ T cell
clones manifest an age-increasing susceptibility to activation-
induced cell death (AICD), possibly related to decreased CD28
expression (and co-stimulators) and IL-2 secretion (268).
When they are mediated by fas/fas-ligand interactions - even
with exogenous IL-2 - these T cell clones show susceptibility
to AICD. Clones show an age increase in fas-ligand mRNA,
rather than an age increase in CD95 (fas) density (young
clones express large amounts of fas), which may enhance
susceptibility to AICD (269, 21). The situation in vivo is not
clear. While studies report increased susceptibility to apoptosis
of CD4+ cells, there is disagreement on CD8.

In the senescent immune system, age-related
biochemical alterations may trigger apoptosis (265).
Transmembrane signaling defects (270-272), differential
expression of genes in cell cycle control (273, 274),
diminished activity of transcription factors regulating
lymphokine gene expression (271), poor IL-2 production
(275), defective IL-2 receptor expression (275, 276), and
inappropriate activation of the sphingomyelin-ceramide
pathway (277) may lead to untimely and/or excessive cell
death and age-related immune dysfunction.

3.3.5. Effect of aging on Telomerase and Telomeres
Telomeres are composed of simple repetitive

DNA. In mammals this is (TTAGGG)n. Repeats are
elongated by telomerase, a ribonucleoprotein enzyme that
extends the 3’ end of telomeres. In immortal eukaryotic
cells, telomerase balances telomere loss with de novo
synthesis of DNA (278). Blasco (279), using a murine
model with genetically engineered telomerase deficiency,
found telomere shortening in successive generations,
resulting in germ cell failure and sterility.

In telomerase-deficient mice, the immune
response is compromised. This implies a role for
maintenance of telomerase-dependent telomere length in
sustaining germ cell formation and T cell-dependent B cell
antibody responses (280). Successive generations of the
telomerase knockout mouse, Terc-/-, show telomere
dysfunction with critically short telomeres and end-to-end
chromosomal fusion. An analysis of telomerase-deficient
mice points to immunological defects as causes of poor
health and death.

Telomere shortening during in vitro aging of
human somatic cells may play a role in cellular senescence.
Weng et al (281) reported that mean telomere lengths of
naïve and memory human T cells shorten 0.3 population
doublings each year. More study on T cell subsets and
heterogeneity is needed to determine if the T cell pool
contains outliers with potential for self–renewal.
Activation-induced apoptosis of T cells has been reported
to either increase (282) or decrease (283) with age. Old
transgenic mice in which T cells express apoptosis-
promoting the Fas ligand retain the T cell proliferation and
cytokine production of youthful mice (283). This could
yield insight into the pathways that regulate the functional
capacity of age-sensitive T cell subsets.

In fibroblasts from centenarians, telomere length
is indistinguishable from that of fibroblasts from young
donors. Replications of dermal fibroblasts in in vivo aging
and in the skin of centenarians are lower than that of (most)
lymphocytes. Old and very old people have a mosaic of
cells with different replicative potential. This has
consequences for cell aging and age-related diseases. A
mosaic represents localized heterogeneity (284). Cawthon
et al (285) assessed the relation of telomere length to
mortality in 143 individuals over age 60. Those with
shorter telomeres had a poorer survival rate, with a 3.18-
fold higher heart disease mortality (95% CI 1.36–7.45,
P=0.0079) and 8.54-fold higher infectious disease mortality
(1.52–47.9, P=0.015).

Introducing telomerase catalytic protein into
normal human cells resulted in telomerase activity. Normal
human cells expressing transfected telomerase can maintain
telomere length and exceed maximum lifespan by fivefold.
The longevity-determination mechanism of telomere
shortening in human cells thus can be circumvented —
evidence for telomere shortening in cell senescence and of
telomerase expression in cell immortality (286). Mondello
(287) analyzed the mean length of terminal restriction
fragments (TRF) in fibroblasts from 4 healthy centenarians
in cells aged in vivo and from 11 individuals of different
ages. No correlation between mean TRF length and donor
age was found. Telomere shortening was detected during in
vitro propagation of centenarian fibroblasts (suggesting that
in fibroblasts aged in vivo, telomeres can be far from a
critical length). Chromosome analysis did not show the
presence of telomeric associations in early passage
centenarian fibroblasts. In blood cells, an inverse
correlation of mean TRF length and donor age was found.
Substantial differences (2 kb) between the telomere lengths
of the two cell types were observed in centenarians.
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Expression analysis of three senescence-induced
genes (i.e., fibronectin, apolipoprotein J, and p21) revealed
a positive correlation with donor age for fibronectin.
Mondello (287) suggests that: (1) telomere shortening plays
different roles in different T cell types and (2) the
characteristics of fibroblasts aged in vitro might not
represent what occurs in vivo.

3.3.6. Effect of aging on co-stimulatory pathways
Following the engagement of TCR, CD28

molecules provide a co-stimulatory signal (288). Studies
show a population of CD28- cells in the elderly. This is
correlated with an increased expression of CD95 in CD28-

cells (289). Down-regulation is associated with shorter
telomeres in CD28 cells (290, 291); shorter telomere are
susceptible to apoptosis (292).

Studies shed light on CD28 co-stimulation – not
only in T cell proliferation, but in survival (293). A CD28–
related receptor, thymphocyte-associated antigen 4 (CTLA-
4), may be involved in deleting activated cells. Leng et al
(294) measured the intracellular levels of CTLA-4, a
negative regulator of T cells, in 53 healthy individuals
(aged 18-94). They found a significant correlation between
age and the percentage of CTLA-4+CD4+ cells (r=0.6,
P<0.001) and between age and the mean fluorescence
intensities of CTLA-4 (i.e., the number of molecules,
r=0.61, P<0.001). The CTLA-4 levels correlated with
immune activation, as determined by levels of HLA-
DR+CD3+ cells (r=0.55, P<0.001). It is postulated that
immune senescence is caused partly by chronic immune
activation decreasing CD28 co-stimulatory molecules and
increasing inhibitory CTLA-4 molecules. In the T memory
compartment there is an increase in cells that lack CD28
(295) and have short telomeres. In vitro studies show that
senescing T cell clones lose CD28 (296) and that up-
regulation of telomerase is co-stimulation dependent (297).
CD28- cells in the elderly may be reaching the end of their
lifespan and no longer divide.

CD28null T cells indicate immunoincompetence in
humans. Loss of CD28 is due to an inoperative
transcriptional initiator (INR), consisting of non-
overlapping a and ß motifs with protein-binding profiles
functioning as a unit (298). Although CD28 is expressed on
all T cells, CD28null T cells are found in the immune system
of the elderly, in CD8+ (299, 300), and CD4+ (301).
CD28null cells have short telomeres indicating a long
replicative history (302). These cells are highly oligoclonal
(300, 303), occurring at large clonal sizes and contributing
to reduced T cell diversity. Because of the limited
replicative lifespan of T cells (304), CD28null cells indicate
immunosenescence.

CD28null T cells are also found in patients with
rheumatoid arthritis (RA) (304, 305). These patients have
abnormalities in the T cell pool, which has reduced receptor
diversity and large clonal populations. Clonally expanded
CD4+ T cells lose expression of CD28 and express perforin
and granzyme. The profile of expanded CD4+CD28null T
cells is changed and shifted toward tissue-injurious
capabilities. CD4+CD28null T cells are important in patients

with extra-auricular manifestations of RA, where they
produce vascular injury, suggesting either that CD8+ T cells
have a higher turnover than CD4+ T cells or that CD8+ T
cells have a high propensity  for losing CD28. Cultures of
CD4+ and CD8+ T cells resulted in a more rapid decline in
CD28 expression on CD8+ than on CD4+ T cells (306).

Understanding the loss of T cell diversity and the
emergence of CD4+CD28null T cell clonotypes has
implications for autoimmune syndromes (307). To describe
the loss of CD28 in T cells in centenarians, when Effros
(299) compared the expression of CD28 in T cell cultures,
the result was a range of values for their in vitro
proliferative activity. Senescence was accompanied by
reducted CD28. This is in contrast to an undiminished
expression of other T cell markers (CD2, CD3, CD29,
CD11a, CD44, CD45RO) (308). The loss of CD28
expression in cultures reaching proliferative senescence
suggests that CD28- cells in centenarians have undergone
an increased number of cell divisions. Both peripheral
blood T lymphocytes of elderly individuals and cultures of
senescent T cells show declines in the percentage of cells
expressing CD28. High frequencies of CD28null T cells in
vivo are correlated with hypo-responsiveness to
vaccination. Goronzy (309) suggests that such studies allow
molecular dissection of pathway(s) leading to T cell
senescence (297).

3.3.7. Effect of aging on cytokine secretion
T cell aging is characterized by the loss of

autocrine proliferation, often with many population
doublings (PD) before replicative senescence. T cell clones
(TCCs) cannot secrete IL-2 in large amounts, but can be
maintained with exogenous IL-2 (237). Old cells from TCC
retain antigen-specific TCR function, as shown by their
ability to secrete cytokines such as IFN-γ, and IL-10.
Decreased IL-2 secretion with increased IL-10 and constant
IFN-γ production reflects consensus on cytokine secretion
(310). Argentati et al (311) demonstrated that γδT cells
change in aging, with a reduced representation and an
altered cytokine production. γδT deterioration may
represent  “immunosenescence”; therefore, old and very old
subjects have little protection against infections and
cancers.

3.3.8. The remodeling theory of immunoscenscence
Healthy centenarians illustrate successful

physiological aging (210), escaping major age-associated
diseases. Many are in good mental and physical condition.
Franceschi (210) discussed the fact that immune parameters
are preserved, suggesting that immune parameters remodel,
rather than deteriorate, with age. Three paradoxes emerged
when old people and centenarians were studied: (i) a
relatively high number of T cells with an involuted thymus
(312); (ii) absence of organ-specific autoantibodies and an
increase of non organ-specific autoantibodies, with a ten-
fold decrease of circulating B cells and higher IgG and IgA
levels (312, 313); and (iii) increased proinflammatory
cytokines, such as IL-6 and chemokines (Rantes, MCP-1),
and soluble receptors for proinflammatory cytokines
(TNFRI, TNFRII) (32).
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In healthy elderly and centenarians, memory T
cells (CD45RO+, CD95+) (314, 315) and cytotoxic effector
T cells (CD28-) expanded (315). This is more evident in
CD8+ than in CD4+ T lymphocytes (227, 315). Age-related
increases of memory cells occur with the expansion of T
cell clones - mostly memory, but also naive – and
shrinkage of the T cell repertoire (316). This occurs earlier
in CD8+ than CD4+ cells. The paradoxical increase in
circulating T cells in healthy centenarians is due to an
expansion in peripheral T cells, rather than to naïve T cell
development in the thymus.

T cell function is altered in vivo and in vitro in
the elderly (311, 317), reflecting the deterioration of
immune function. Changes in the T-lymphocyte
compartment are the most critical component of
immunological aging.

3.4. NK cell and aging
Immunosenescence affects all compartments of

the immune system. Age changes were demonstrated in T
lymphocytes and in innate immunity (including NK cells).
An increase in NK cells showing a mature phenotype was
found in healthy elderly donors who have an NK-cytotoxic
capacity of total peripheral blood lymphocytes preserved
(318). NK-cell killing of K562 is impaired on a per-cell
basis (K562 is an erythroleukemia cell line derived from a
chronic myeloid leukemia patient in blast crisis). NK cells
from elderly people show a decreased proliferative
response to IL-2 and an impaired expression of CD69
activation antigen. Therefore, phenotypic and functional
alterations are found in the NK cells of healthy elderly
people. Changes are compatible with the expansion of a
mature NK subset (318).

3.4.1. NK cell number and phenotype in the elderly
Normal aging is associated with increased

circulation of NK cells (CD16, CD56) and NK/T cells
(CD16, CD56, or CD57), an increased proportion of T cells
co-expressing NK cell markers (319-321), and decreased
endogeneous and lymphokine-induced NK cell lytic
activities (322). NK cells, with their cytokine and cytolytic
activity, are critical to host defense against invading
organisms and cancer. Using cell surface markers, NK cells
divide into CD16+ CD56dim NK cells and CD16- CD56bright

NK cells (323-326). The two subsets of NK cells have
different functions: CD16+CD56dim cells are effectors of
cytotoxicity and antibody-dependent T cell-mediated
cytotoxicity (ADCC); CD16-CD56bright cells have
immunomodulatory function through cytokine secretion
(327).

Based on the known functions of NK cells, the
association of decreased NK activity with mortality and the
incidence of severe infections in the elderly may be causal
(226). Sansoni (312) showed that, while CD16, CD56, or
CD57 NK numbers did not decline with age, their
proportions increased. NK function on a per-cell basis was
either stable to age 70 (328) or declined with age (319).
Centenarians had higher NK and redirected killing activity
than middle-aged donors (312).

CD56 expression in the healthy aging of NK
subpopulations did not reveal phenotypic changes in the
CD56bright subset. CD56dim NK cells from elderly donors
expressed higher levels of HLA-DR and CD95 (Apo1/fas)
and lower levels of CD69 than CD56dim NK cells from
young donors (321). In the elderly, an increase in the of
number NK cells is due to increases in the CD56dim subset.
Because CD56dim represents a mature NK cell subset (329),
this suggests that a phenotypic and functional shift in NK
cell maturity occurs in aging (330).

An age-dependent functional decline of NK-cells
is due to: 1) a decreased response to positive modulators
(IFN-α, IL-2, IL-12) (331), 2) an increased response to
ATP (332), and 3) increased microviscosity of the cell
membrane.

3.4.2. NK cell cytotoxicity in the elderly
NK cells are important to the innate immune

response against viral infections and cancer. Age-
dependent modulation of NK cell activity may alter cell
immunological protection and anti-tumor activity (318).
Because non-MHC–restricted killing of target T cells is
characteristic of NK cells, their cytotoxic capacity has been
analyzed. NK cytotoxicity of total peripheral blood
lymphocytes is not significantly affected in NK cells from
healthy elderly people (333-335, 312). Facchini et al (319)
and Mariani et al (336) showed that circulating NK cells
from elderly people have decreased cytotoxic function –
both after sorting freshly isolated cells and after limiting
dilution and cloning of NK cell precursors. Neither binding
of effector target T cells nor perforin content, distribution
and utilization in lytic assays were different in old and
young (337) organisms. Defective signal transduction may
be important for decreased NK cytotoxic activity. Defective
NK cell cytotoxicity is associated with the decreased
capacity of NK cells to release IP3 after interacting with
target T cells and with delayed hydrolysis of PIP2;
indicating that PKC dependent pathways are affected by
aging (338).

The CD16 molecule (IgG FcγRIIIA receptor)
characteristic of NK cells (339) is a transmembrane protein
with a cytoplasmic domain (340). FcγRIIIA links cellular
and humoral immunity by linking antibody specificity and
cytotoxic effector cell function - leading to ADCC, which
is important in defending against infectious diseases and
cancer (341). ADCC of peripheral blood lymphocytes is
comparable in young and old (342, 343). The CD16-

CD56bright NK subset lacks this function (323). The PI-3-
kinase pathway triggered by CD16 crosslinking is not
significantly affected in NK cells from elderly people,
indicating that transduction pathways in natural or CD16-
dependent NK cytotoxicity are differentially affected by
aging (338).

3.4.3. NK cell response to cytokines in the elderly
NK cells express cytokine and chemokine

receptors (and other immunoregulatory cytokines and
chemokines supporting regulation of immune responses by
promoting downstream adaptive, Th1-mediated responses
to infection). NK cell activation by IL-2 enhances



The Immune System in Aging

203

cytotoxicity and induces the proliferation, production, and
release of cytokines. The overlapping effects of IL-2, IL-
12, IFN-? on human NK cells were mediated by differential
utilization of the signal transducer and the transcription
activator. IL-12 activates cytotoxicity; ADCC does not.
Anti-tumor lytic activity of NK-cells is stimulated by
factors such as IFN-γ, IL-2 and inhibitory factors (e.g.,
prostaglandins [344]).

In vitro activation of NK cells with IL-2 or other
cytokines enhances the killing of NK-sensitive (i.e., K562)
and NK-resistant target T cells (318). The response of NK
cells from elderly individuals to IL-2 or other cytokines
shows decreased proliferation, expression of CD69, and
killing of NK-resistant T cell lines. Early IFN-γ and
chemokine production in response to IL-2 or IL-12 is also
decreased. Aging does not alter other NK cell functions
(such as TNF-α production or perforin induction) in
response to IL-2.

3.4.4. Altered NK cell cytokine production in the elderly
Reduced IFN-? production by leukocytes from

the elderly is associated with a decrease in an IFN-?-
producing cell population (CD45RO+/CD8+ T cells [345]).
There are conflicting results regarding this population (32,
346-350). This may be the result of in vivo preactivation of
cells or cell subsets that are not in circulation (due to
recruitment). This is important because the number of NK
cells increases with aging (312, 346, 350), and NK cells
produce IFN-? (351); cytotoxic activity does not increase
(352).

3.4.5. NK cell activity as a biomarker of healthy aging
NK cell activity changes with age in humans and

mice. The mechanisms responsible for age declines of NK
cell responses have been examined in many studies. The
responses of NK cells to poly (I: C), Con A, and LPS have
been examined in young and aged animals. Through an
impaired production of chemokines, the decreased activity
of NK cells may be involved in an increased incidence of
infections and cancers in the elderly.

Due to differences in the selection criteria for
subjects and study size, there are conflicting reports about
NK cell activity in elderly people (312, 353-357, 320). The
SENIEUR protocol standardized subject selection for
immunological studies (358). In Ogata’s study (359),
although NK cell activity (lytic unit [LU]) did not show an
age-related decrease, absolute NK cell activity (ALU) in
vivo and NK cell activity on a per-cell basis showed an age-
related decrease, suggesting that NK cells are not exempt
from the effects of aging. Hsueh et al (360) observed that
basal and induced NK cell activity declined with age. NK
cell activity is important in human longevity (312) and
predicts mortality in humans (359) and mice (361).
Evidence shows that low NK cell function is related to a
greater risk of infections in elderly subjects (359).

In conclusion, the increase in the number of
“classical” mature NK and NK/T cells in aging is
associated with the defective functional capacity of NK
cells. Low NK cell numbers or function in elderly

individuals is associated with increased mortality and
incidence of severe infections (226).

4. SUMMARY

Aging is associated with a decline in immune
function, increased inflammatory activity, and increased
levels of proinflammatory cytokines (e.g., IL-6, TNF-a).
While the data are not unanimous, IL-6 and TNF-a are
believed to be associated with morbidity and mortality in
the elderly, and IL-6 is the strongest risk marker in healthy
elderly people. Circulating levels of TNF-a are the best
predictor of mortality in frail elderly people (166). This
indicates that, in healthy old populations, increases in
circulating IL-6 represent a systemic response to local
proinflammatory activities; when age-related inflammatory
diseases progress, TNF-a increases and becomes a stronger
risk marker than IL-6. Chronically elevated TNF-a and IL-
6 have different biological functions that trigger age-
associated pathology and mortality (166).

Alterations in the cells of the adaptive and innate
immune system contribute to age-associated morbidity and
mortality, determining the relative roles of these immune
pathways. As we better understand age-associated
inflammatory cytokine and cellular changes, we may
develop immune-based therapies to combat the morbidity
and mortality that are associated with aging. Aging is
accompanied by alterations in most physiological functions
- especially declines in cellular and humoral immunity. T
cells appear more sensitive to aging than other immune
cells. Changes in the T lymphocyte compartment is the
most critical component of immunological aging.
Significant changes in the functional and the phenotypic
profiles of T cells have been documented both in aging
humans and in rodents. NK cells play a significant role in
defending against infections (due to their cytotoxicity and
the cytokines produced - in particular IFN-?). Phenotypic
and functional alterations are found in the NK cells of
healthy elderly people.

A better understanding of the cellular and
molecular basis of age-associated T cell and NK cell
alterations will open new possibilities to manipulate the
immune system in the elderly and will enhance innate and
adaptive immune responses against infectious diseases.
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Footnote: 1. naïve: An undifferentiated immune system
cell. Naive cells are "uncommitted" and respond to general
antigenic stimulation (i.e., not only to a specific antigen). 2.
naive t-cell: a subset of CD4 and CD8 cells, which
proliferate rapidly when exposed to new antigens. A naive
T-cell is not yet "programmed" to stimulate either a cell-
mediated (Th1) or a humoral (Th2) response.
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