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1. ABSTRACT

Cyclin-dependent kinases (Cdks) are
serine/threonine kinases that regulate a number of cellular
processes including the cell cycle and neuronal differentiation.
Accumulating evidence indicates that two distinct Cdk
pathways may have a role in the neuronal loss that is
responsible for Alzheimer’s disease. One pathway involves
the aberrant reactivation of the cell cycle, a process believed
to be incompatible with neuronal function. A second involves
dysregulation of Cdk5, a member of this kinase family with
no known cell cycle functions, but prominently expressed in
postmitotic neurons. Reports supporting the involvement of
both pathways are plentiful, but the story is not yet complete.
In particular, difficulties incorporating the extended latency of
AD into model approaches persist. Despite this, the theory
that Cdks are involved in the pathogenesis of AD has
generated considerable interest.

2. INTRODUCTION

Alzheimer’s disease (AD) is a chronic
neurodegenerative affliction characterized histopathologically
by the presence of extracellular amyloid plaques and
intracellular neurofibrillary tangles (1). It is believed that
between 1 and 5 million people in the United States have the
disease, with around 360,000 new cases diagnosed each year
(2, 3). Considering the rapid rate at which the aged population
is growing, it is clear that this tremendous public health
problem is becoming worse. However, clinical therapies for
the prevention of AD do not exist and current treatments for
symptomatology are inadequate, due to our limited
understanding of the cause and effect relationships that
underlie the neuronal loss that is central to AD pathology.

Over the last two decades, a theme that has
generated much study is that aberrant activation of protein
kinases, in particular those associated with various forms of
cell stress, is an early event leading to neurodegeneration in
AD (4-12). The cyclin-dependent kinase (Cdk) family, has
garnered intense interest and is the focus of this review.

There are 13 known Cdks encoded by the human genome,
and they are well established regulators of the cell cycle
(Cdks 1-4, 6, 7), but also have important roles in regulating
transcription (Cdks 2, 7-9, 11), neuronal morphogenesis
(Cdks 4, 5, 11), differentiation (Cdks 2, 5, 6, 9), and cell death
(Cdks 1, 2, 4-6, 11). Cdk activity is normally tightly regulated
by post-translational modification and the limiting availability
of regulatory molecules. However, accumulating evidence
indicates that cell cycle Cdks or Cdk5 can become
dysregulated, the results of which are catastrophic, leading to
neuronal demise. Herein, we discuss the data that implicate Cdk
dysregulation as a causal element in the neuronal loss of AD.

3. DISCUSSION

3.1. Cyclin-dependent kinases and their regulation
Comprised of around 300 amino acids, Cdks are

proline directed serine/threonine kinases that are activated
on association with a regulatory partner, typically one of
several cyclins, but also non-cyclin proteins (13, 14). Based
on x-ray crystallographic studies, the general events
surrounding Cdk activation have been elucidated (15-18).
The binding of a regulatory partner initiates Cdk activation
by inducing conformational changes, including movement
of a segment of the protein, called the T-loop, away from a
position blocking the catalytic domain. This also exposes a
critical site (i.e. Thr160 of Cdk2) on the T-loop, and
phosphorylation of this site by Cdk-activating kinase
(CAK) is essential for full activation of the kinase as a
result of further conformational changes. The CAK itself, is
a Cdk/cyclin complex comprised of a Cdk7 and requires
cyclin H as a binding partner (19).

Negative regulation of Cdks is accomplished in a
number of ways, including alterations in the abundance of
the regulatory cyclins/proteins. This process is important in
shaping our understanding of Cdk dysregulation in
neurodegenerative disease, and will be revisited later.
Inhibitory phosphorylation of Cdks 1 and 2 (Thr14/Tyr 15) is
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Figure 1. A simplified model depicting the cell cycle
machinery. G0, G1, S, G2, and M refer to quiescence, the
first gap phase, DNA replication, the second gap phase, and
mitosis. The restriction point (R-point) is shown as the
process by which pRb becomes phosphorylated by G1
phase Cdk activity. INK4 and Cip/Kip are endogenous Cdk
inhibitors that regulate cell cycle Cdk activity.

achieved by Wee1/Myt1 kinases (20). In this way, Cdk1
activity is kept ‘in check’ until it is dephosphorylated by the
dual specificity phosphatase Cdc25. Dephosphorylation of
the T-loop threonine residues offers another level of
regulation, though its physiological relevance remains to be
determined. Endogenous peptide Cdk inhibitors are another
important mode of negative regulation. Through direct
physical interactions, these proteins suppress Cdk function
(21, 22). Two classes of the peptide inhibitors are known: the
INK4 (inhibitors of Cdk4), and the Cip/Kip (Cdk interacting
protein/kinase inhibitory protein) families. Each family has a
distinct specificity for Cdks, INK4 proteins for Cdks4/6 and
Cip/Kip proteins for Cdks2/4. The INK4 family consists of
four known proteins that share common amino acid sequence
motifs: p16INK4a, p15INK4b, p18INK4c, and p19INK4d (23-26).
Inhibition by INK4 proteins is the result of an allosteric
interaction with a site distinct from the Cdk binding site.
Specifically, INK4 protein binding induces a conformational
change that distorts both the cyclin binding site and the ATP
binding site (22). Three proteins comprise the Cip/Kip
family: p21Cip1, p27Kip1, and p57Kip2 (27-31). These Cip/Kip
proteins interact with both the cyclin and Cdk, ultimately
triggering conformational changes that prevent ATP binding
and distort the catalytic domain (18, 21). Interestingly,
Cdk4/cyclin D can sequester p21Cip1 and p27Kip1 without
affecting the activity of the complex (32). When the D-type
cyclins become less abundant due to reduced mitogenic
stimuli, p21 and p27 are released to act on Cdk2 complexes.

Finally, compartmentalization serves to
segregrate Cdk activity from potential substrates (33). For
example, while cyclin A can trigger DNA replication,
centrosome duplication, and mitosis, cyclin B can only
induce mitosis (34). Indeed, in interphase cells cyclins A
and B are located in distinct cellular compartments, the
nucleus and the cytosol, respectively (35). However, a
chimeric cyclin B, containing the cyclin E nuclear
localization sequence, can enter the nucleus and induce
DNA replication (36). These findings suggest that rather

than merely conferring unique substrate specificities, the
cellular cyclin library is degenerate with multiple layers of
regulation to ensure that Cdk/cyclin complexes are active
when and where they are needed (33). Although many of
these regulatory mechanisms are conserved among the
different Cdk/cyclin complexes, Cdk5 demonstrates
noteworthy variations of these themes.

Unlike other Cdks, Cdk5 is activated through
complex formation with one of several non-cyclin proteins:
p35 and p39 (13, 14), or their proteolytic cleavage products
p25 and p29 (37, 38), respectively. As with the cyclins,
changes in the abundance of Cdk5 regulatory proteins, via
increased or decreased expression and degradation, are an
important mode of regulation (39-44). Although Cdk5
activating proteins share little amino acid sequence
homology with cyclins, they exhibit cyclin-like tertiary
structure (45, 46). However, whereas most Cdks require
phosphorylation of the T-loop to become fully active,
binding alone of Cdk5 to its activators results in an
activated T-loop conformational change that is virtually
indistinguishable from that of Thr160 phosphorylated
Cdk2/cyclin A (46). In fact, although a similar
phosphorylation event can occur at Ser159, it is not a
requirement for full Cdk5 activation (47, 48) and may
actually hinder association with p35 (46). Threonine 14 and
Tyr15 are also regulated sites of phosphorylation on Cdk5,
but not by the Wee1 kinase (48). Phosphorylation of Thr14
by an unknown kinase, purified from bovine thymus, is
inhibitory (49), while phosphorylation of Tyr15 by the c-
Abl kinase or the src-family member Fyn is stimulatory
(50, 51). p35 and p39 possess consensus sequences for
post-translational myristoylation of their N-termini (37),
which confers upon these proteins a membrane localization.
Indeed, both are enriched in cellular membrane fractions
(52-54). In this way, Cdk5 activity is normally limited to
substrates that are co-localized near the cell membrane.

Collectively, this multifaceted system of
regulation highlights the importance of strictly controlling
Cdk/cyclin complex activity to maintain cellular
homeostasis. As such, it is not difficult to appreciate that
dysregulation of these processes could be catastrophic.
Although classically associated with cell cycle regulation,
Cdks also have important roles in transcription, neuronal
development, differentiation, and cell death. Aberrant
reactivation of cell cycle Cdks (1-4, 6, 7) and dysregulation
of the Cdk that functions in mature neurons (Cdk5) are
associated with human neurodegenerative diseases like AD.

3.2. Cyclin-dependent kinases and the cell cycle
Cell division is a carefully orchestrated sequence of

events that ensures the faithful replication and conduction of
genetic material from parent to daughter cell. It is typically
divided into four phases beginning with the first gap phase
(G1), proceeding to a DNA replication phase (S), a second gap
phase (G2), and ultimately mitosis (M) (55). Regulation of
these events is a function of Cdk/cyclin complex activity (55,
56) and much work has contributed to the elucidation of a
basic sequential framework by which they subserve this role
since their initial discovery over two decades ago (57) (Figure
1). In general, during different phases of the cell cycle, unique
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Cdk/cyclin complexes are formed and catalyze
phosphorylation of a discrete subset of substrates (58-60). The
temporal control of their subsequent degradation by the
ubiquitin proteosome pathway (61, 62) is necessary to
proceed through to the end of mitosis (63). Extrinsic
mitogenic factors activate signaling cascades, inducing D-type
cyclin expression (64-68). Transition from quiescence (Go)
into early G1 is marked by the formation of complexes
between these D-type cyclins and Cdks 4 or 6 (69). Their
major function is to inactivate the retinoblastoma protein
(pRb) by altering its phosphorylation state. In general, pRb
can exist in two states: hypophosphorylated or
hyperphosphorylated. When hypophosphorylated, pRb
physically interacts with members of the E2F family of
transcription factors and suppresses their transcriptional
activity (70). Upon phosphorylation by activated Cdks 4 and
6, the affinity of pRb for E2F is reduced, E2F is released, and
E2F-mediated gene expression required for advancement
through later cell cycle phases occurs (71). This critical
regulatory function of Cdk4-6/cyclin D complexes is
confirmed by the observation that, in cells lacking pRb, this
early G1 phase Cdk activity is not required for cell cycle
progression (72). These early pRb-related events constitute
the ‘restriction point’, the point after which mitogenic stimuli
are no longer required for completion of cell cycle events
(73).

Later in G1, a second wave of Cdk activity ensues
as cyclin E/Cdk2 complexes form (74, 75). By further
phosphorylating pRb (76) and regulating centrosome
duplication (77), these complexes contribute to the G1/S
transition. Near the beginning of S phase, cyclin E is
degraded (78) and cyclin A replaces it in a complex with
Cdk2. Cdk2/cyclin A phosphorylates a number of
substrates that are critical for the regulation of DNA
replication. For instance, Cdc6, a regulator of initiation of
DNA replication, is phosphorylated by Cdk2/cyclin A (79).
The result is that Cdc6 translocates from the nucleus to the
cytoplasm, constraining DNA replication to one round.
Near the end of G2, cyclin A is degraded and Cdk1/cyclin
B complexes are generated to regulate the transition into M
phase. Cyclin B must eventually be degraded to complete
mitosis and enter into another round of replication or
proceed to quiescence (Go). Ultimately, successful
production of daughter cells requires that the sequential
activity of Cdk/cyclin complexes be tightly coordinated by
checkpoints, such that initiation of subsequent steps
requires completion of the previous.

3.3. Neuronal development and cyclin-dependent kinase 5
Based on its distinct binding partners, substrate

specificity profile, and mode of regulation, it is clear that
Cdk5 is a unique member of the Cdk family. Cdk5 was first
identified from bovine brain (80) and by virtue of its ~60%
homology to Cdk 1 (81). While several Cdks have
prominent roles in cell division, Cdk5 is highly expressed
and active in post-mitotic neurons (82-84). A crucial role
for Cdk5 in the developing mammalian nervous system is
evidenced by the disturbances that result in its absence.
Cdk5 knockout mice demonstrate perinatal mortality
associated with perturbed cortical laminar organization and
cerebellar foliation, as well as abnormal neuronal migration

and neuronal pathology (85). p35 knockouts display a
similar, albeit less severe phenotype (86), consistent with
the functional redundancy of Cdk5 activation provided by
p39. These observations indicate that neurons are
dependent upon Cdk5 activity to establish normal nervous
system patterning. However, much subsequent work
demonstrates the multifunctional nature of this kinase, as it
phosphorylates substrates that are critical for processes as
diverse as synaptic neurotransmission and the maintenance
of cellular architecture (Table 1). In light of this ever
increasing list of potential substrates, it becomes important
to consider the temporal and spatial patterns of Cdk5
activity within a cell. In other words, Cdk5 can be expected
to regulate distinct processes at distinct times during
neuronal maturation, and a unique subset of substrates will
be targeted at particular developmental phases.

3.4. Cell cycle reactivation in Alzheimer’s disease
It is widely accepted that the symptomatology of

AD is the result the extensive neuronal loss occurring in
discrete brain regions over the course of many years, not
merely the presence of senile plaques or NFTs. Elucidating
the root causes of the death process inspires the efforts of
many scientists. Neurons differ from many other cell types
because their highly specialized functions require that their
population be long-lived and relatively static. This enables
them to subserve the complex task of controlling an
organism’s response to its environment. Not surprisingly
then, one of the longest enduring dogmas of neuroscience is
that neurons, once born, lose their proliferative capacity as
they acquire highly specialized functions. Indeed, cancers
of the CNS of neuronal origin are virtually unknown.
Moreover, experimental work in which neuronal cell
division was artificially induced by the addition of an
oncogene (SV40 Large T antigen) or a mutant tumor
suppressor gene (pRb) to transgenic mice shows that,
unlike other tissues in which these genetic alterations
would be expected to produce uncontrolled cellular
proliferation, developing neuronal populations undergo
substantial cell death (87-92). These observations led to the
theory that neurons, once postmitotic, are incapable of
sustaining cell cycle activity, and instead enter a default
death pathway. On this basis, a little more than a decade
ago, it was hypothesized that aberrant reactivation of the
cell cycle is part of a death effector pathway in irreversibly
postmitotic neurons (93). An abundance of experimental
evidence, both in vitro and in vivo, supports this hypothesis.

Following NGF withdrawal in neuronally
differentiated PC12 cells, an apoptotic stimulus, cyclin D1
expression is induced early in the process of cell death (94).
The aberrant expression of cyclin D1 suggested that G1
phase cell cycle events (i.e. phosphorylation of pRb by
Cdks 4 and 6) could be occurring. Consistent with this,
overexpression of the endogenous Cdk inhibitor p16INK4a or
dominant negative mutants of Cdks 4 and 6 are
neuroprotective (95, 96), indicating that Cdk activity is
critical for death. Likewise, KCl withdrawal in cerebellar
granule neurons, another apoptotic stimulus, generates
increases in the amounts of cyclins D and E, as well as their
associated Cdk activities, prior to evidence of cell death
(97). Moreover, this aberrant cell cycle activity corresponds
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Table 1. Reported Cdk5 Substrates
Cdk5 Substrate Putative Function
Tau Regulation of microtubule stability (170, 171)
Microtubule associated protein 2 Regulation of microtubule stability (129)
Synapsin 1 Regulation of synaptic transmission (172)
Neurofilament Maintenance of cytoskeletal structure (173, 174)
Microtubule associated protein 1b Regulation of microtubule stability (39, 41)
Retinoblastoma protein Neuronal differentiation and apoptosis (175)
PAK1 Regulation of PAK1 activity, actin dynamics (176, 177)
Munc18 Disrupts Munc18/syntaxin 1A interaction (178, 179)
p35/p39 Promotes ubiquitin-mediated degradation (40, 52)
c-Src Regulation of cell adhesion, actin dynamics, integrin signaling (180)
DARPP-32 Regulation of dopaminergic-mediated PKA signaling (181)
NUDEL Regulates dynein-mediated axonal transport (53, 182)
beta-amyloid precursor protein Regulation of APP localization (145)
Pgamma Regulation of retinal phosphodiesterase activity (183, 184)
Cables Regulation of interaction with c-Abl (50)
beta-catenin Regulation of Presinilin 1 binding (147)
ErbB Regulation of signaling at the neuromuscular junction (54)
NMDA receptor subunit 2a Up-regulates NMDA receptor activity (185, 186)
Protein phosphatase 1 inhibitor-1 Modulation of cAMP-mediated signaling (187)
Amphyphysin 1 Regulation of synaptic vesicle endocytosis (188)
Protein phosphatase 1 inhibitor-2 Activation of inhibitor-2 (189)
Disabled 1 Regulation of cell positioning (190)
Presenilin 1 Regulation of Presenilin 1 metabolism (146)
P/Q-type Ca2+ channel Downregulates channel activity (191)
c-Jun N-terminal kinase 3 Inhibition of JNK/c-Jun signaling (192)
Pctaire1 Enhances kinase activity35 (193)
MAP kinase kinase-1 Inhibition of kinase activity (194)
p53 Regulates stability and transcriptional activity (195)
Canoe Regulation of Canoe function (196)
Myocyte enhancing factor 2 Inhibits prosurvival transcriptional activity (197)
Nestin Modulation of nestin dynamics (198)
Cdk5/p35 regulated kinase Inhibition of kinase activity (199)
Ezrin Regulation of membrane-cytoskeletal signaling (200)
Focal adhesion kinase Regulation of neuronal migration (201)
Dynamin I Regulation of synaptic vesicle endocytosis (202)
Synaptojanin Regulation of synaptic vesicle endocytosis (202)
Outer dense fibers Regulation of sperm tail development (203)
Postsynaptic density 95 Regulation of PSD-95 clustering (204)

with increases in pRb phosphorylation (97), an event
consistent with the transition from G0 to G1. A trophic
withdrawal paradigm has also been modeled in vivo. In two
mouse neurological mutants, staggerer and lurcher, the
absence of Purkinje neurons in the cerebellar cortex results
in massive granule neuron death (98-100). Further, the
resulting target deprived granule neuron death is
accompanied by cyclin D expression and evidence of cell
cycle activity (101). These are but a few examples of the
myriad death stimuli that yield evidence of neuronal cell
cycle reactivation, including: DNA damage (102, 103),
cerebral ischemia and excitotoxicity (104-107), and
oxidative stress (108). For these examples to be relevant to
the pathogenesis of AD, evidence of cell cycle reactivation
must be detectable in AD tissue. Numerous investigators
have established the presence of cell cycle markers in AD
brains (Table 2). Indeed, several cyclins (109-111), Cdks
(110-112), and endogenous Cdk inhibitors (112-114), as
well as other markers of the cell cycle (111, 115, 116), are

significantly increased AD versus controls. These
differences occur in brain regions known to be affected by
AD, are predictive of neuropathology, and correspond to
the presence NFTs. Moreover, in individuals with mild
cognitive impairment, a putative prodromal stage of AD,
evidence of lethal cell cycle changes is also evident (117).
These cell cycle changes are not simply unrelated
artifactual events, as they are sufficiently coordinated to
allow for DNA replication (118). Thus, the preponderance
of evidence supports a role for cell cycle dysregulation as a
marker of AD, though causation has not been shown. For
example, the events leading to abnormal cell cycle
reactivation remain to be determined. Also, the data do not
address how reactivation of cell cycle-elements mediates
neuronal pathology. Several theories regarding these points
are noteworthy.

Heintz proposed that abortive cell cycle
reactivation in neurons is triggered in response to tumorogenic



Cyclin-dependent kinases in Alzheimer’s

147

Figure 2. A simplified model depicting dysregulated cell
cycle Cdk activity. Neuronal stress, evoked by various
stimuli, triggers aberrant G1 phase Cdk activity. pRb
becomes phosphorylated, releasing E2F. E2F-regulated
genes are both derepressed (i.e. B- and C-myb) and
transactivated (i.e. Cdk1), resulting in further lethal cell
cycle progression and the post-translational modification of
pro-apoptotic proteins.

Table 2. Select Reports of Cell Cycle Dysregulation in AD
Re-expression of Cdks in AD (110-112, 205)

Cdk1
Cdk4
Cdk7

Re-expression of Cyclins in AD (109-111)
Cyclin B
Cyclin D
Cyclin E

Re-expression of Endogenous Cdk Inhibitors in AD (113, 114)
p15INK4b

p16INK4a

p18INK4c

p19INK4d

stimuli that would cause proliferation in other tissues (93).
In this context, he compared cancer and neurodegeneration.
Both demonstrate remarkable cellular specificity, and just
as distinct etiologic agents produce unique molecular
lesions to yield cell-type specific transformation, similar
insults could trigger abortive cell cycle in particularly
vulnerable neuronal populations. Both cancer and
neurodegeneration exhibit differential latencies, indicating
that multiple insults may have to accumulate before disease

is demonstrable. Finally, both cancer and neurodegenerative
diseases can occur in either a familial or spontaneous
manner. Like cancer, spontaneous neurodegeneration may
be derived from numerous somatic genetic lesions, while
familial disease could result from the combination of a pre-
existing germ-line mutation coupled with a second lesion.
An alternative, proposed by Arendt and Herrup, posits that
neurons in AD affected regions persist in the tenuous
position between differentiation and plasticity (8, 119). Both
states are necessary, not mutually exclusive, and likely
result in a condition of incomplete differentiation.
Differentiation allows for specialization of function and
durability of critical synaptic connections. In contrast,
plasticity allows for adaptation to successfully conduct the
complex tasks of learning and forming new memories. To
remain plastic, neurons must successfully integrate complex
extrinsic signals from the environment. In other tissues,
these signals would modulate positional and proliferative
processes, but in neurons they regulate plasticity. Disturbing
the delicate balance between these two states by any number
of ill-defined insults could cause neurons to revert to an
ineffective program of de-differentiation, and ultimately die.
This notion is consistent with similarities in the factors and
signaling systems governing both proliferation and plasticity
in neuronal systems (8, 119). A particularly appealing
feature of this model is the extended latency of the death
process, which has not been successfully modeled in cell
culture or animal models.

With regard to the final executioners of the death
process, as indicated, pRb serves as the guardian of the
restriction point by sequestering and suppressing the
activity of E2F family transcription factors. Consistent with
this, adenovirus mediated overexpression of E2F1 in
cerebellar granule neurons is sufficient to trigger apoptotic
death (120), whereas dominant negative interference of
E2F activity attenuates cortical and sympathetic neuron
death in response to DNA damaging stimuli. E2F can
function both as a transcriptional activator and repressor.
Evidence from experiments in which a mutant E2F1
construct, only possessing repressor functions, was tested
in several cell culture paradigms indicates that it can
promote death by derepressing the expression of pro-
apoptotic genes (121, 122). Two genes in particular, which
encode the transcription factors B- and C-myb, may be
involved, as their overexpression is sufficient to induce
neuronal apoptosis (121). On the other hand, release of E2F
may regulate the death pathway via transactivation of
additional cell cycle genes. For instance, KCl withdrawal in
cerebellar granule neurons results in E2F1-mediated
expression of Cdk1 (123). Using this same paradigm, it has
been shown that Cdk1 phosphorylates BAD, a pro-apoptotic
member of the Bcl-2 family of proteins, rendering it resistant
to sequestration and degradation (124). Collectively, these
observations suggest that aberrant cell cycle activity in
neurons results in both altered patterns of gene expression
and the post-translation modification of signaling molecules
that are responsible for neuronal death (Figure 2).

3.5. Cyclin-dependent kinase 5 dysregulation in
Alzheimer’s disease

One of the first indications that Cdk5 may have a
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Figure 3. A simplified model depicting dysregulated Cdk5
activity. Following neuronal stress, calcium homeostasis is
disturbed, resulting in activation of calpain, and calpain-
mediated proteolysis of p35 to p25. This triggers increased
and sustained Cdk5 activity that can access a wider array of
previously unavailable substrates (i.e. tau). Altered
regulation of these substrates results in apoptosis.

role in AD neuropathology was the identification of the
microtubule associated protein tau as a substrate (125). In
vitro analyses have extended these initial findings and
identified several proline-directed Ser/Thr sites on tau that
are targets of Cdk5 phosphorylation: Ser202, Thr205, Thr212,
Ser235, Ser396, and Ser404 (126-128). Moreover, many of the
tau sites phosphorylated by Cdk5 in vitro are the same sites
known to be phosphorylated in tau from paired helical
filaments (PHFs) (129). Further support is provided by data
indicating that increased Cdk5 and Cdk5-mediated
phospho-tau immunoreactivity are found in neurons in the
early stages of neurofibrillary tangle (NFT) formation (130,
131). These findings generated cosiderable enthusiasm for
the theory that Cdk5 contributes to the early derangement
of neurons in AD.

Interestingly, physiological Cdk5p/35 activity is
unlikely to be substantially directed against tau. For
example, COS-7 cells co-transfected with a human tau
construct and Cdk5/p35, display little detectable AT8
(Ser202, Ser205) or PHF-1 (Ser396, Ser 404) phospho-tau
immunoreactivity (37). Also, triple transgenic mice
overexpressing p35, Cdk5, and human tau do not
demonstrate increased tau phosphorylation (132). In
marked contrast, Cdk5 efficiently phosphorylates these tau
epitopes when complexed with p25 (37), indicating that
p25 alters the regulation of Cdk5 activity. p25 is a 208

amino acid carboxy-terminal fragment of p35 derived from
proteolysis by the calcium-dependent cysteine protease
calpain (133-135). While p25 is sufficient to activate Cdk5,
it lacks the N-terminal myristoylation that localizes Cdk5 to
cellular membranes and likely restricts its potential
substrate profile to those located in this subcellular region
(37). A similar process can occur with p39, producing the
truncated p29 (38). When complexed with p25, Cdk5
demonstrates a profoundly different cellular distribution.
Instead of being located near the cellular periphery,
Cdk5/p25 is diffusely distributed in the cytoplasm (37),
thus allowing access to a wider array of potential
substrates. The kinetics of Cdk5 catalysis may also be
enhanced by association with p25 (127). In vitro,
phosphorylation of human tau by Cdk5/p25 occurs at a faster
rate when compared to Cdk5/p35 (p25kcat/km>p35kcat/km).
Furthermore, Cdk5/p25 phosphorylates tau with greater
stoichiometry than Cdk5/p35 (3.3 vs. 2.3 moles per mol tau).
Collectively, these observations indicate that dysregulation of
Cdk5 by p25 is the result of enhanced and sustained kinase
activity that is mislocalized and directed against substrates
that are not normally targeted, ultimately bringing about
neuronal death. Consistent with this, expression of
Cdk5/p25 complexes in transfected cells and primary
neurons results in increased tau phosphorylation on AD
specific phosphoepitopes (37). Furthermore, cortical
neurons expressing these complexes demonstrate
morphological and cytoskeletal disruptions, ultimately
leading to apoptosis (37).

But what is the trigger for conversion of p35 to p25?
As calpain mediates the pathogenic cleavage of p35, it is
predictable that insults triggering Ca2+ dyshomeostasis would
be involved. Indeed, neurotoxic injury by maitotoxin,
ischemia, and glutamate excitotoxicity, all known to perturb
Ca2+ regulation, results in calpain activation and the generation
of p25 (133-135). It is important to note that these insults may
not always lead to tau phosphorylation. Treatment of cultured
hippocampal neurons with N-methyl-D-aspartate, glutamate,
or a Ca2+ ionophore, ionomycin increases p25 levels and Cdk5
activity, but does not change the phosphorylation state of tau
(136). β-amyloid, the primary component of senile plaques
(137), also appears to affect p35 regulation. Application of
fibrillogenic β-amyloid peptides to neuronal cultures results in
neurotoxicity accompanied by calpain activation, p25
generation, and tau hyperphosphorylation (133, 138, 139).
However, neuronal pathology in the aged brain likely precedes
the detectable formation of β-amyloid plaques (140-143). Data
regarding soluble β-amyloid, representing a pre-deposit
paradigm, indicate that it too triggers p35 cleavage, increased
Cdk5 activity, and tau hyperphosphorylation (144). Consistent
with the involvement of a Ca2+ mediated process, disturbances
of Cdk5 regulation are largely attenuated by the calcium
channel blocker, verapamil, and calpain inhibitor I (144).
Incidentally, Cdk5 recognizes substrate proteins involved in β-
amyloid processing: β-amyloid precursor protein (βAPP)
(145), Presenilin-1 (146), and β-catenin (147) (Table 1), but it
is not known whether these interactions are involved in the
genesis of senile plaques. This collection of observations is
summarized by the model depicted in Figure 3, linking
neuronal stress, calpain activation, and cleavage of p35 to p25.
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Table 3. Select Transgenic Mouse Models of Cdk5 AD Neuropathology
Transgenic Model AD Associated Neuropathology
Human Cdk5/p35/tau(132) None
βAPP Mutant (Tg2576)(149) β-amyloid plaques, ↑ tau phosphorylation, ↑ p25, astrogliosis, neuronal loss
Double βAPP Mutant (TgCRND8)(150) No changes in Cdk5, p35, p25 immunoreactivity
Human p25(151) ↑ tau & neurofilament phosphorylation, ↑ Cdk5 activity, cytoskeletal disruptions
Human p25(152) ↑ Cdk5 activity, axonal degeneration, ↑ tau phosphorylation, focal tau accumulation
Bovine p25(153) None
Human p25 (p35 knockout background)(155) None
Mouse p25(154) None
Human p25/mutant (P301L) tau(156) ↑ Cdk5 activity, ↑ tau phosphorylation, NFTs, GSK3-tau co-localization
Inducible human p25(160) ↑ Cdk5 activity, ↑ tau phosphorylation, NFTs, cortical & hippocampal

neuronal loss, forebrain atrophy, astrogliosis, caspase-3 activation

AD demonstrates extended latency, with disease
manifestation typically apparent during the later decades of
life. As such, in any theory of AD neuropathology latency
must be incorporated. As indicated, one level of Cdk5
regulation involves the availability of p35. This is, in part,
the function of Cdk5 itself, in the form of a negative
feedback loop in which it phosphorylates p35, thereby
targeting it for degradation by the ubiquitin proteosome
pathway (40). The result is a protein with a half-life of ~30
minutes and limited Cdk5 activity. In contrast, p25 possesses
a half-life 5-10 times longer (37). Curiously, the regulation of
p35 phosphorylation, and thus its proteolysis, appear to be
developmentally regulated. For example, p35 in fetal brain
tissue is phosphorylated on two distinct sites (148). One site
promotes proteosomal degradation, while the other confers
resistance to calpain-mediated cleavage. In adult brain, p35 is
not detectably phosphorylated (148). Thus, neurons in the
adult may become susceptible to dysregulation as a result of
an intrinsic maturation-dependent phenomenon.

A number of transgenic mouse models have been
developed in an attempt to model the contribution of
Cdk5/p25 to AD-like pathology, but results have been
conflicting (Table 3). As mentioned previously,
overexpression of p35 in transgenic mice does not induce
tau hyperphosphorylation or brain pathology, despite
increasing Cdk5 activity (132). Again, this supports the
notion that p25 confers upon Cdk5 unique properties,
including distinct substrate availabilities. Mice possessing a
mutant transgene for βAPP (Tg2576) exhibit Cdk5-
dependent tau phosphorylation and p25 accumulation that
accompanies neuronal loss and astrogliosis (149),
consistent with the existence of pathological β-amyloid/p25
signaling. On the other hand, no changes in Cdk5
regulation are detectable in another transgenic mouse strain
which expresses a double mutant form of βAPP
(TgCRND8) (150). Two different p25 overexpressing
transgenic mice show increases in Cdk5 activity and tau
phosphorylation, as well as cytoskeletal disturbances and
axonal degeneration (151, 152). However, in both of these
models, there is no evidence of NFTs, PHFs, or neuronal
loss, indicating that while Cdk5 dysregulation may
contribute to tau hyperphosphorylation, and related
changes, it is, by itself, insufficient to generate NFTs. It is
noteworthy that three additional and independently
generated p25 transgenic mice fail to show significant tau
hyperphosphorylation or neuropathology (153-155), but in

two of these cases this could be attributed to the relatively
low levels of p25 expression produced (154, 155). A
double transgenic mouse overexpressing p25 and mutant
(P301L) human tau exhibits similar Cdk5-mediated tau
changes, but these are accompanied by the presence of
silver-stained NFTs (156). Interestingly, in this transgenic
background, insoluble tau was also co-localized with
glycogen synthase kinase-3 (GSK3), supporting the theory
that phosphorylation by a number of distinct kinases might
contribute to tau derangement (157, 158). This result is also
consistent with evidence supporting a role for GSK3 in tau
hyperphosphorylation and AD neuropathology (i.e. ref.
(159)). More recently, a transgenic animal was developed
utilizing a tetracycline-controlled transactivator system to
generate inducible forebrain expression of p25 during the
postnatal period. In this background, a more complete
recapitulation of AD neuropathology is achieved including:
increases in Cdk5 activity; accumulation of
hyperphosphorylated tau; NFT formation; astrogliosis; and
substantial brain atrophy including neuronal degeneration
of the hippocampus and cerebral cortex (160).

If a Cdk5-mediated process is responsible for
neurodegeneration in AD, then the most difficult studies to
reconcile are those in which postmortem human tissue has
been analyzed (Table 4). The first study to examine
postmortem human tissues surveyed samples from 8 patients
with AD, 1 with Huntington’s disease, and 4 controls (37). In
this study, p25 was found to be more abundant in AD tissue,
and it was present in neurons with NFTs. Also, despite
equivalent levels of Cdk5 protein in AD and control brains,
immunoprecipitated Cdk5 kinase activity against histone H1
was increased in AD samples. This group also performed a
larger study on samples from 28 AD patients and 25 age-
matched controls (161). Again, Cdk5 dysregulation correlated
with AD, evidence by increased mean ratios of p25 to p35 in
AD versus controls across all brain regions investigated.
These results lend support to previous in vitro analyses and
transgenic mouse models, but have proven difficult to
reproduce. For example, a second group independently
examined 8 AD samples and 9 age-matched controls (162),
but were unable to discern any differences in the level of p25
between the two groups. Four additional studies also reported
no significant increases in p25 in AD (150, 153, 163, 164).
One of these reports (150) used the same protocol, antibodies,
and antisera as the original study (37). Thus, we are left to
ponder the source of these conflicting data.
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Table 4. Human Postmortem Studies of Cdk5 Dysregulation
#’s AD vs. Ctrl Mean PMI AD vs. Ctrl (hrs) AD Mean Age (yrs) Significant Cdk5 Dysregulation (+/-)

8:4(37) ~14 : ~211 71.5 +
8:9(162) ~3.25 : ~2.351 82.3 -
6:8(163) 26.83±22.32 : 37.38±20.51 61.33±9.42 -
5:5(153) NR 78.8 -

10:10(164) 14.15±3.74 : 16.10±2.89 77.4±2.1 -
28:25(161) 2.66±1.18 : 2.83±0.92 83.8 +
22:11(150) ~11 : ~6.41 68.8±3.8 -

1 Approximations calculated from available published data, NR-not reported

The time following death after which tissue is
obtained is known as the postmortem interval (PMI).
During this time, depending on its length, a number of
changes occur within tissue that could confound analyses
(i.e. proteolysis, pH alterations). Thus, it is likely that PMIs
could affect evidence of Cdk5 dysregulation as determined
by the abundance of p25 or p25/p35 ratios. Patrick and
colleagues (37) suggest that after long PMIs (i.e. 24-hrs),
once detectable alterations in the p25/p35 ratio between AD
samples and controls can diminish, or disappear altogether.
Indeed, after as little as one hour post mortem, and peaking
around 14 hours, p35 is degraded to p25 by artifactual
increases in calpain activity in postmortem tissue (162).
However, in three of the studies that failed to detect
changes in p25 abundance, PMIs were ≤ ~14 hours (150,
162, 164). Another potential confound is the extent of AD
progression. The bulk of the data suggest that the
biochemical events responsible for neuronal degeneration
in AD are likely to occur long before the disease is
diagnosed. This is consistent with one finding in which
tissue from a patient with late-stage AD (i.e. already
extensive neuronal loss) was analyzed and found not to
exhibit increases in p25 similar to other diseased samples
(37). It is interesting to note, however, that tissue from
individuals of diverse ages was utilized in all of these
studies, averages ranging from 61.33 to 83.8. As the
prevalence of AD increases with age from ~1% at age 60,
to nearly 50% by age 80 (165), and the average survival
from disease onset is ~8 years (166), it is unlikely that the
majority of patients from these studies demonstrated late-
stage disease.

4. CONCLUSIONS AND PROSPECTS

Cdks subserve numerous and diverse cellular
processes. As we have discussed, mounting evidence
indicates that when dysregulation of cell cycle Cdks occurs,
neuronal survival is compromised. However, it still remains
to be determined if investigators’ attempts to recapitulate
this process are adequately predictive of human
neuropathology. Specifically, it is important to recognize
that much of the experimental evidence of cell cycle
dysregulation has been limited to the analysis of young,
developing neurons both in vivo and in vitro. In these
paradigms, cell cycle dysregulation results in rapid cell
death, within hours (i.e. (94, 124)). In contrast, aberrant cell
cycle expression and ensuing neuronal death in AD brain
appears to occur over an extended duration, likely days to
months to years, as evidenced by the relatively high
percentages of neurons (4-9%) with detectable cell cycle
changes (111, 118). The same concern can be expressed

with regard to the observations pertaining to Cdk5.
Moreover, it is rather curious that unlike aberrant cell cycle
reactivation, Cdk5 dysregulation has not been reproducibly
detected in AD brain. The reasons for this have yet to be
convincingly explained. What is clear, though, is that the
extended latency of AD persists as a major experimental
obstacle that must be overcome if we are to authentically
model the disease and develop rational therapeutics for AD
sufferers. Despite these difficulties, Cdks remain an attractive
therapeutic target and a number of potent pharmacologic
agents and molecular approaches have already been
identified to inhibit their activity (167-169). For Cdk5
dysregulation in particular, it is unclear whether such
approaches would be efficacious considering its
multifunctionality and broad substrate specificity. Targeted
disruption of Cdk5 would likely affect both normal and
pathologic substrates and could yield undesirable
consequences. Thus, we must acknowledge that additional
study is necessary to develop a complete picture of how Cdks
are involved in this devastating neurodegenerative illness.
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