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1. ABSTRACT

Salmonella infections are a principal source
of gastroenteritis and enteric fever in a variety of
animals, including humans. An essential step in the
development of Salmonella pathogenesis is the entry
of bacteria into non-phagocytic cells, including those
that line the intestinal epithelium. As a consequence
of specific cues from the host intestinal micro-
environment, Salmonella entry into the intestinal
epithelium is the product of a multistep process that
culminates in host cell membrane ruffling, and
subsequent bacterial uptake. The events that trigger
the internalization event appear to require an array of
bacterial secreted proteins, exemplified by the
formation of bacterial surface  appendages
(invasomes) which are important for the induction of
host-cell signal transduction pathways that lead to
membrane ruffling. In addition, during intestinal
disease states induced by Salmonella typhimurium,
transepithelial  migration of neutrophils rapidly
follows attachment of the bacteria to the epithelia
membrane. Current evidence indicates that
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the intestina epitheium plays a key role in
orchestrating the inflammatory response to surface
attached S. typhimurium. In this review, we explore
current insights on the molecular pathways
utilized by Salmonella spp. in cell binding that are
important not only in the processes of Salmonella
internalization but also in the generation of signals
which lead to active states of intestinal inflammation.

2. INTRODUCTION

Salmonella typhimurium is the most
common serotype isolated from humans suffering
from infectious gastroenteritis and correspondingly
has long been recognized as a public health problem.
Contact between the epithelial cell apica membrane
elicits a variety of epithelial responses. Such
epithelial responses are likely triggered by specific
contact-dependent, bacterial derived signals which
are themselves modulated by physical characteristics
of the microenvironment such as oxygen tension and
osmolarity (1-5). Subsequent to such alterations,
Salmonella may be internalized in a membrane bound
vacuole and may translocate across the intestinal
epithelium (6-7). The details of how such
Salmonellarintestinal  epithelial contacts evoke the
classical histogical lesion of neutrophil transepithelial
migration are incomplete (7-10). However, it is clear
that transepithelial migration of neutrophils occurs
early after Salmonella and epithelia contact (7), and
well before the epithelium loses its structura
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integrity (8). Such observations, however, imply that
contact between the bacterial outer membrane and the
epithelial apical membrane results in the generation
of signals which directs the subsequent trafficking of
neutrophils. Thus, current paradigm suggests that the
host cell plays an active role in both Samonella
internalization, as well as in the orchestration of
inflammatory responses. What follows is a brief
review of the molecular pathways used by Salmonella
in epithelial cell binding which govern the
mechanisms of Salmonella internalization and the
promoation of intestinal inflammation.

3. THE NATURE OF
INTESTINAL INTERACTIONS

SALMONELLA-

3.1 Salmonella and environmental cues

Salmonella spp. are facultative intracellular
pathogens that cause a variety of diseases in both
humans and animals, which range from a self-limiting
enterocolitis (food poisoning) to more systemic
illnesses such as typhoid fever. The type of diseases
caused by these organisms depends not only on the
serovar or species of the infecting bacteria but also on
the species of the infected host. Some serotypes such
as S. typhi are host adapted, in this case for humans,
while others, such as S. typhimurium and S.
enteritidis, can cause disease in a large variety of
hosts (11). S. typhimurium, for example, will
specifically cause self-limited gastroenteritis in
immuno-competant humans, while in mice it will
cause a severe systemic illness, much like typhoid
fever. Salmonella infection is initiated when bacteria
enter a host via contaminated food or water.
Following passage through the stomach, the
organisms move into the gastrointestinal tract of the
host, and upon reaching the distal ileum, establish
contact with a cellular target within the intestinal
mucosa. As a result of such associations Salmonella
are able to initiate passage through the intestinal
epithelium where they can gain access to the
reticuloendothelial system, thus providing an avenue
for the dissemination to the lymph nodes, spleen,
liver, and blood (12).

Once in the gastrointestinal microenvi-
ronment, the microorganism may interact with the
apical membranes of columnar intestinal epithelia (7)
or with specialized cells, termed M cells, which lie
over the Peyer's patches (7, 13-14). The relative
contributions of these interactions to the pathogenesis
of disease is uncertain. In mice, evidence suggests
that early entry of S. typhimurium appears to be via
transepithelial transport by M cells to the Peyer's
patiches (12-13). M cells represent a minor
constituent of the epithelial surface (far less than 1%)
(15), and are specialized epithelia cells that appear
to be designed for taking up large particles and, in
addition, are believed to be important in antigen
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sampling. Some pathogens which are able to
associate with and translocate across columnar
intestinal epithelia use the M cell pathway to enter
the host (for instance reovirus) (16). Moreover,
enterocytes can aso be invaded by S. typhimurium,
providing an additional portal of entry (7). Columnar
epithelia cells of the intestine constitute the major
portion of surface area (15), are known to bind
Salmonella and internalize it, and are the site at
which neutrophil transmigration in response to such
surface colonization is known to occur (7-10). Thus,
it appears that while a number of microorganisms are
able to enter the host through the M cells, invasion of
enterocytes seems to be a less restricted more
prevaent route. Although M cell and Salmonella
associations play a role in host immunity to this
organism, the bulk of procaryotic/eucaryotic
interactions in primary colonization of the intestine
by Salmonella likely occurs over the genera
columnar epithelial surface as suggested by studies of
Takeuchi (7).

Once  within the  gastrointestina
microenvironment, the bacterium is exposed to
extremes of temperature and pH, oxygen tension, bile
sats, digestive enzymes, and a multitude of diverse,
competing microorganisms.  Such distinct, and
seemingly hostile environments, are not only
tolerated by the bacteria but importantly, serve as
environmental signals for the microbe to initiate
transcription of genes specifically adapted for host-
microbe interactions. Thus, it is not suprising that the
expresson of S. typhimurium virulence factors
important to interactions with epithelia is influenced
by various environmental stimuli including oxygen
(17), osmoalarity (2, 18), and growth phase (1, 3, 18);
conditions known to have effects on the level of DNA
superhelicity (2). For example, previous reports have
indicated that Salmonella adherence to and
subsequent invasion into cultured epithelial cells was
greatest either during the late logarithmic phase of
growth, presumably due to oxygen limitation, or
when the bacteria were grown either anaerobically or
incubated with cells under anaerobic conditions (1,
3). Furthermore, an assay in which a short bacterium-
cell interaction period was used, also concluded that
only Salmonella grown under low oxygen conditions,
but not bacteria from stationary phase cultures,
elicited rapid changes in cell morphology, internal
actin filament rearrangement, and cell entry(17).
Recent work (5), however, has subsequently
demonstrated that invasion of S. typhimurium by
epithelial cells could be reduced during utilization of
carbohydrates and that the repression of cell
association by certain carbohydrates (i.e. glucose) was
greater during aerobic growth of the bacteria. Thus,
this study suggests that previous reports of greater
cell invasion by S. typhimurium during anaerobic
growth may have risen from the use of media
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containing carbohydrates which were found to be
more repressive during aerobic growth of the
bacterium (5). Nonetheless, depletion of a preferred
carbohydrate substrate in the presence of other
potential carbon energy sources represents a nutrient
limitation that can stimulate a responsive change and
adds to the record of environmental stimuli that
control the capability of Salmonellae to associate with
and invade epithelial cellsin vitro (5).

S. typhimurium virulence can aso be
controlled, at least in part, by the global regulatory
network, PhoP/PhoQ (19-22). Such two component
regulators are members of a family of environmental
sensors (PhoQ) and transcriptional activators (PhoP)
that are required for the expression of genes termed
pag (phoP-activated-genes) (23-25). pag are
transcriptionally  activated  within  acidified
macrophage phagosomes several hours after
phagocytosis and are required for intracellular
survival (20, 24, 26). In addition to the ability to
transcriptionally activate pag, PhoP/PhoQ can repress
the synthesis of proteins encoded by genes designated
prg (phoP repressed-genes) (19 21). prg products are
likely to play important roles in S. typhimurium
signaing to eucaryctic cells which include; (i)
induction of macrophage generalized membrane
ruffling, macro-pinocytosis and internalization of
bacteria within spacious phagosomes (27-28); (ii)
induction of bacterial mediated endocytosis (BME) by
epithelial cells (11); and (iii) induction of
polymorphonuclear leukocyte transmigration across
polarized epithelia cell monolayers (29) (see below).
Recent evidence aso indicates that Mg® is an
extracellular environmental signal that controls the
PhoP/PhoQ regulon (30).

3.2 Salmonella pathogenesis and host cell invasion

The ability to penetrate the cells of the
intestinal epithelium is an essentia step in the
pathogenic cycle of the enteric pathogen Salmonella
(7). The Salmonella invasion process is thought to
involve the interaction of determinants on the surface
of the bacteria with the host cell, triggering an event
that resembles macropinocytosis, referred to as
bacterial mediated endocytosis. Observations by
Takeuchi (7) first provided the groundwork for
understanding the sequence of events that leads to the
entry of Salmonella into intestinal epithelial cells.
Via electron microscopic studies, he was able to
demonstrated that the microvilli of the intestinal
epithelium underwent dramatic changes after
Salmonella came into close proximity to the brush
border. Such changes, exemplified by membrane
ruffles, localized to the point of bacterial contact and
were transient, since after internalization of the
bacterium the microvilli recovered their normal,
preinfected appearance. Neither the molecular basis
for this phenomenon, which appears to be unique to
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Salmonella and Shigella , nor the significance of this
event, are completely understood. Our current
understanding is that the ability of Salmonella to
induce formation of membrane ruffles is critica for
entry since mutants unable to induce these changes
are severely impeded in their ability to enter cultured
mammalian cells (31, 32). Salmonella are then
subsequently internalized via membrane bound
vacuoles formed from such membrane ruffles. This
process is termed macropinocytosis, and results in the
formation of spacious phagosomes (26-28, 33-34).
The appearance of membrane ruffles on the surface is
accompanied by profound cytoskeleta rearran-
gements at the point of bacterial- host cell contact,
which require a number of cytoskeletal proteins,
including actin, apha-actinin, talin, tubulin, tropo-
mysin, and ezrin (35). Although the significance of
the recruitment of several of these proteinsis unclear,
actin is likely to play a role in the formation of
membrane ruffles since inhibitors of actin
microfilament function blocks Salmonella entry (36-
37). Other organisms have also been shown to induce
cytoskeletal alterations. Listeria monocytogenes, for
example, continues to generate interest by virtue of
its ability to induce locomotion through directional
actin assembly within the host cells (38-41). Previous
results have demonstrated that actin-rich rocket tails
trailing behind motile bacteria became anchored in
the cytoplasm (38, 42-43). Such rocket tails create
physically confining boundaries that control the
direction of bacterial movement. Yersinia spp. can
also influence host cytoskeletal proteins. Entry of
enteropathogenic Yersinia into cultured mammalian
cells has been described as parasite-specified
phagocytosis (44), in which movement of the host
cytoskeleton in response to signals is sent from a
transmembrane receptor that is recognized by
bacterially encoded ligands. For example, previous
results have indicated that actin, and actin associated
proteins, such as filamin and talin, accumulate around
the entering bacterium (45). Yersinia invasin is
responsible for such activity, and this observation is
consistent with the finding that invasin recognizes
multiple beta 1 integrins (46).

S. typhimurium infection of cultured
epithelial cells is also accompanied by a marked
increase in [Ca?*]i flux (32, 47), an event which is
most likely necessary for internalization and may play
a role in the formation of membrane ruffles. Other
cellular responses include tyrosine phosphorylation of
a number of host proteins along with the epidermal
growth factor receptor and the initiation of signal
transduction pathways which ultimately lead to the
activation of phospholipase A2, and production of
arachidonate metabolites (47). However, Francis et a
(28) found that invasive Salmonella €licited
characteristic ruffles in Swiss 3T3 fibroblast and NR-
6 cells, a 3T3 derivative that does not express the
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EGF receptor. Moreover, invasive Salmonella also
elicited membrane ruffling in rat basophilic leukemia
cells, despite failure of EGF to dlicit ruffling in these
cells (28). Thus, this study suggests that the EGFR is
not required for S. typhimurium invasion, athough
there may be aternative (paralel) pathways that
cause either direct or indirect phosphorylation of the
EGF receptor during Salmonella-induced ruffling.
Nonetheless, it is interesting to note that the events of
membrane ruffling, cytoskeletal rearrangements, and
Ca”" influxes also occur as part of a global cellular
response to mitogens, oncogene expression, and
growth factors (48-50) and are associated with
enhanced pinocytosis (48). Thus, the formation of
membrane ruffles comprises the macropinocytotic
machinery mediating pinocytosis, and is subverted by
Salmonella so as to enter into diverse mammalian
cells, perhaps reflecting the existence of a common
pathway for ruffle induction.
3.3 Salmonella entry into epithelial cells is
determined by genetically defined factors

Animal cells in culture as wel as
transformed human cell lines have become popular in
vitro models for studying attachment to and invasion
into epithelial cells (6, 51-58). Although, genetic
approaches have been used to identify the Salmonella
factors that directly interact with the epithelial cells
and facilitate invasion, such studies have indicated
that the genetics controlling these processes are
complex and involve multiple chromosomal loci (59-
62). For example, S. typhi genes have been identified
which, when cloned into Escherichia coli K-12, alow
this normaly non-invasive bacterium to enter
cultured cells (63). In addition, Stone et al., (62) has
identified a number of TnphoA mutants of S.
enteritidis that render these organisms defective for
invasion into cultured epithelial cells. Such mutants
mapped to 9 different loci on the chromosome and
affected entry to different degrees. Using a similar
technique, Betts and Finlay (59) isolated transposon
mutants from S. typhimurium in 4 distinct loci that
also rendered these organisms deficient for entry into
epithelia cells. Together these studies imply that
Salmonella may encode aternative entry pathways
since it has not been determined whether these
different loci are functionally related. Moreover Lee
et al., developed a strategy which selected for
mutants of S. typhimurium which were competent for
cell entry into epithelia cells only under non-
physiologic  conditions  (i.e. during non
microaerophilic growth) (61). Such a strategy
identified the hil locus which is essentia to bacterial
entry into cultured epithelial cells, and which
presumably encodes a regulatory factor required for
proper expression of entry determinants. The PhoP-
repressed locus prgH was also previously identified
as being important for signaling epithelial cells to
endocytose S. typhimurium. Characterization of prgH
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revealed that it is an operon of four genes prgHIJK,
strongly linked to the hil locus (19). Synthesis of the
transcript was repressed in bacteria that activate
PhoP/PhoQ, thus indicating that PhoP/PhoQ regulates
prgHIJK by transcriptional repression. Another
successful strategy for the detection of Salmonella
invasion genes, was developed by Galan and Curtiss
who identified a S. typhimurium genetic locus, inv,
based on its ability to complement a non-invasive
strain of S. typhimurium (60). Subsequent analysis of
this locus has identified at least 14 genes, which upon
mutation affected the ability of Salmonella spp. to
enter cultured epithelial cells, without affecting the
ability of these cells to attach, suggesting that
attachment and entry are genetically separate events
in Salmonella. These genes are apparently arranged
in the same transcriptional unit and were mapped to
59 min on the Salmonella chromosome (31) near the
hil (64) and prgHIXK loci (19). Subsequent to the
discovery of inv, a new assemblage of genes
responsible for invasion properties of Salmonella
were identified which were remarkably similar in
order, arrangement and sequence to the gene cluster
controlling the presentation of surface antigens (spa)
on the virulence plasmid of Shigella (46). In
Salmonella, this chromosomally encoded complex,
also called spa, consists of over 12 overlapping or
adjoining genes with the inv locus, suggesting a
single transcription unit (inv/spa complex) (65).

To date some 25 invasion genes, as shown
in Figure 1, have been found to be clustered near
minute 63 of the S. typhimurium chromosome (19,
31, 61-63, 65), and 40 kb of unique DNA may be
necessary for entry of Salmonella into mammalian
cells. Interestingly, the finding that a non-invasive
spa mutant of Salmonella could be rescued by the
corresponding Shigella homologue, provided the
initial evidence that spa, perhaps, promotes
equivalent functions in Shigella and Salmonella
(Figure 1). Presumably, this gene cluster has been
acquired independently by each genus yet displays
motifs used by diverse antigen export systems
including those required for flagellar assembly and
protein secretion (65). For example, a number of
predicted inv gene products have been identified and
are similar to proteins thought to be involved in
export and assembly of bacterial flagellar components
(65-68). Among these homologues are proteins
involved in flagellar assembly in E. coli (FIhA, Flil,
FliJ, and FliN), Bacillus subtilis (FIiP and flaA
locus), as well as in bacteriophage assembly (Protein
IV and Pf3). Furthermore, recent observations have
indicated that 12 of these genes, invG, invE, invA,
invB, invC/spalL, spaM, spaN, spaO, spaP, spaQ,
spaR, and spa$S, have the identical gene order and
significant sequence similarity to the Shigella mxi
and spa genes (31, 65-70). The mxi and spa genes are
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Figure 1. Similarities between the genetic organization of the invasion genes clusters from Salmonella typhimurium
and Shigella flexneri. This map shows the relative positions and the transcriptional directions of the genesiillustrated,
as indicated by the position of the arrow. Gene clusters which are conserved both in sequence and in gene order are
indicated by the following key: inv/spa;mxi/spa (open/white bars), prglJK;mxiHIJ (diagonal stripped bars), and
ipa;sip (stippling). Black bars indicate genes with no homologues within the respective regions. The map
organization was compiled from information published by the following investigators (65, 69, 74, 84-85, 88).

encoded on the large Shigella virulence plasmid and
are required for export of lpa proteins (invasion
protein antigens) which facilitate Shigella entry into
mammalian cells (68-69, 71-73). Additionally, the
role of the prgHIJK operon in BME was supported
further by the finding that some of its predicted gene
products of this locus were similar to S. flexneri
secretion determinants that are essential for epithelial
cell invasion. For example, the prgl, prgJ, and prgK
predicted gene products of S. typhimurium were
recently found to be similar to the MxiH, and Mxil,
and MxiJ proteins, respectively, of S. flexneri (74).
The relationship of such genetic organization of the
invasion genes between S. typhimurium and S.
flexneri is depicted in Figure 1. Such Salmonellae
genes also show sequence similarity to several genes
that encode proteins involved in the surface
presentation and/or secretion of a variety of molecules
in a number of other organisms including, Yersinia
(LerD, LerE, and  YscA), Kilebsiella  (PulD),
Aeromonas hydrophila (ExeD), and Xanthomonas
campestris (PefD). The significance of these findings
is that these homologies indicate that Salmonella may
externalize invasion proteins by a mechanism that is
functionally similar to that involved in flagellar
export and assembly, such that Salmonella, like
Yersinia, may assemble a supramolecular structure on
its surface, in order to induce its internalization into
mammalian cells.

3.4 Salmonella and secreted invasion determinants
To this end, in studies recently performed
by Miller and colleagues (75), analysis of the culture
supernatants  from  wild-type S. typhimurium
demonstrated that at least 25 polypeptides larger than
14 kDa were detected. In contrast, prgH1:TnphoA,
phoP-congtitutive, and hil deletion mutants had
significant defects in their supernatant protein
profiles. These results suggest that PhoP/PhoQ
regulates extracel lular transport of proteins by
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transcriptional repression of secretory determinants
and that secreted proteins may be involved in
signaling the epithelial cells to endocytose bacteria
(69). Because of the similarity between predicted
gene products from the prgHIJK operon and gene
products required for protein secretion in other
bacterial species, an analysis of proteins present in
culture supernatants of S. typhimurium was
performed (75). This analysis suggested that
PhoP/PhoQ could control protein secretion, at least in
part, by repressing prgHIJK, whose product could
form part of a secretion machinery. Since the strains
with altered Ssp profiles were impaired in signaling
epithelial cells, this report suggests that Ssp are
involved in signaling such cells to initiate BME. The
possibility that Salmonella proteins form an apparatus
assembled on the cell surface that is necessary in
order to signal eucaryotic cells was suggested by the
work of Galan and colleagues (67), who demonstrated
that S. typhimurium forms a novel surface structure
which islost as the organism enters membrane ruffles
of epithelia cells. The release of this apparatus from
the cell surface during growth in culture could result
in the detection of these proteins in the supernatant.
Specifically, contact between S. typhimurium and
epithelial cells resulted in the formation of
appendages (invasomes) on the surface of the
bacteria, which did not require de novo protein
synthesis, and was a transient event (67). Such,
appendages were immediately shed or retracted
before or subsequent to signaling the host, since S.
typhimurium associated with membrane ruffles did
not exhibit these surface structures. Moreover, such
surface structures were not seen on organisms
unexposed to the host cells, and S. typhimurium
mutants defective in the transient formation of these
surface appendages were unable to enter into cultured
epithelial cells, suggesting that these structures are
required for bacterial internaization. As a
consequence of this interaction, appendages are
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specificaly assembled on the surface of the
Salmonella, a process which appears to be required
for subsequent triggering of the host cell signal-
transduction pathways that lead to membrane ruffling
and the internalization of these organisms (31, 47,
67). Thus, such intimate interactions represent a
phenomenal example of reciproca biochemical
signaling between a pathogen and the hogt, itself, and
emphasizes the notion that Salmonella can sense
environmental signals from the host cell resulting in
the transient assembly of a surface organelle on the
bacterium.

3.5 Salmonella and the secretion
apparatus

Salmonella entry (internalization) into host
cells has recently been found to require the function
of a dedicated, sec-independent, type Il protein
secretion system encoded in the inv and spa loci
located at minute 59 on the Salmonella chromosome
(76). Presumably, such a translocation apparatus
would actively participate in the host cell contact-
dependent assembly of a supramolecular structure,
presumably required for the presentation and/or
delivery of invasion determinants to the target cell.
Evidence to support this notion is exemplified by the
fact that invasome assembly, itself, requires a
functioning type Ill secretion system. The type Il
secretion systems are usually encoded by genes that
are clustered together on the chromosome
(Salmonella ssp.(76)) or on large plasmids (Shigella,
Yersinia (77, 78)). One protein common to al of the
type Il systems is an ATPase which presumably
energizes the transport system. In Salmonella spp.
this is InvC, which is homologous to spa47 from
Shigella (73) and yscN of Yersinia spp. (79-80).
Another common component of the type 111 systemsis
an outer membrane-associated translocase that is
homologous to PulD from K. oxytoca (81). This
protein is InvG in Salmonella spp. (70), MxiD in
Shigella spp. (69) and YscC in Yersinia spp. (82).
Similar type Il secretion systems are a so required for
the virulence phenotype of other pathogenic bacteria
including Yersinia spp., Shigella spp., and
enteropathogenic E. coli, as well as a number of plant
pathogens from the Xanthomonas, Pseudomonas,
Aeromonas, and Erwinia genera (83-84). Such a
secretion system is distinct from both the type | (sec-
independent) protein secretion system exemplified by
the export of the E. coli heamolysin, and the type |1
(sec-dependent) general secretory pathway of gram
negative bacteria exemplified by the secretion of
pullulanase of Klebsiella oxytoca.

Several proteins have currently been
identified whose secretion into the culture
supernatant of S. typhimurium is dependent on the
type 11l secretion system (85), and in addition have
determined to be potential components of the
invasome structure (67). InvJ was the first identified

protein
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target of the protein secretion apparatus, and
exhibited significant sequence similarity to the EaeB
protein of enteropathogenic E. coli. Initia
observations found that 30% of the product of
invJ(spaN) was recovered in the culture supernatant
of wild-type S. typhimurium but not from that of invG
or invC mutants (86). Moreover, mutations in invC or
invG prevented the assembly of the invasome and
dramatically reduced Salmonella entry into the host
cells, indicating that there is a close correlation
between invasome assembly and the internaization
process. Although the function of InvJ is yet to be
determined, it is thought to be a candidate for either a
structural component of the invasome appendage, or
aternatively, InvJ secretion may precede invasome
formation, serving as a signa to assemble the
appendage (87). Other genes encoding secretion
proteins have been identified and include sipB, sipC,
sipD, and sipA (85-86). Such genes encode
polypeptides that have significant sequence homology
to the IpaB, 1paC, and IpaA proteins of Shigella spp.,
respectively (85-86, 88), and are themselves targets
of the type 111 secretion system (Figure 1).

4. INFLAMMATORY RESPONSES ELICITED
BY SALMONELLA-INTESTINAL EPITHELIAL
INTERACTIONS

4.1 Salmonella coordinates mucosal inflammatory
responses

Despite progress made in understanding the
mechanisms of secretory diarrhea produced by
bacteria toxins, such as cholera toxin, how bacteria
pathogens such as salmonellae cause gastroenteritisis
poorly understood. It has long been recognized that
attachment of non-typhoidal Salmonella serotypes
such as S. typhimurium to the intestina epithelium
provoke an intense intestina inflammatory response,
consisting largely of neutrophil (polymorphonuclear
leukocyte (PMN)) migration across the epithelial
lining of the intestine (7). This inflammatory event
manifests itself as epithelial dysfunction, namely,
diarrhea (7-10, 64, 89). The details of how such S.
typhimurium-intestinal epithelial contacts evoke the
classica  histological legion of  neutrophil
transepithelial migration are not well characterized
(7, 9-10). However, while it is clear that
transepithelial migration of neutrophils occurs early
after Salmonella-epithelial contact (7), and well after
the epithelium loses its structura integrity (8), the
mechanisms and cell types responsible for
coordinating mucosal inflammatory responses to such
pathogens remain largely obscure. Evidence is
emerging, however, that bacterial binding to
eucaryotic cells can influence the program of
transcriptiona regulation for synthesis of biologically
important  eucaryotic products. For example,
Interleukin-6 (IL-6) production is stimulated by the
binding of adherent E. coli to bladder or kidney
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epithelial cells (90), and LPS (lipopolysacchride) has
been shown to stimulate tumor necrosis factor (TNF),
Interleukin-1 (IL-1), IL-6, and Interleukin-8 (IL-8)
production in a host of cell types including
monocytes, fibroblasts, and endothelial cells (91-93).
IL-8 is of particular importance since unlike the other
cytokines listed, it is a potent PMN chemotaxin when
present in a gradient (94). Moreover, a recent report
(95) modeling urinary tract infections (UTls) also
provided direct evidence that urinary epithelia cells
exposed to E. coli secrete IL-8, and such observations
fit well with studies indicating that 1L-8 can be
recovered in the urine of patients suffering with UTI.
Taken together, such observations imply that contact
between the bacterial outer membrane and the cell
apicd membrane results in the generation of a
signal(s) which may be important for the initiation

and amplification of the mucosa inflammatory
response.
4.2 Salmonella contact with the intestinal

epithelium generates signals important for the
initiation and amplification of the mucosal
inflammatory response

How might such transepithelial signaling of
underlying inflammatory responses occur? Recent
studies show that S. typhimurium contact with the
apical pole of intestinal epithelial cells generates
signal(s) which may be responsible for directing the
trafficking of neutrophils across the intestina
epithelium (29, 96-99). The transepithelial migration
of neutrophils in response to luminal pathogens
necessarily involves movement through severa
anatomic compartments, each with their own
complexities: (a) the well recognized rolling, firm
adhesion, and subsequent emigration of neutrophils
from the microvasculature (100-107); (b) subsequent
migration of neutrophils across the lamina propria
and into a subepithelial position; and (c)
transepithelial  migration. While the mechanisms
driving these responses have only recently attracted
attention, it is clear that bacterial binding to epithelial
cells can influence the production of important
regulators of inflammation. For example, McCormick
et al. (99), has previously demonstrated using in vitro
models of intestina inflammation, that apical
attachment of S. typhimurium to intestinal epithelial
monolayers specificaly stimulates physiologicaly
directed neutrophil transepithelial migration. The
signals responsible for orchestration of this response
do not utilize the neutrophil n-formyl peptide receptor
directed migration - the best understood receptor-
mediated pathway from directing neutrophils to a
bacterial target (99). However, among the events
stimulated by such pathogen and host interactions is
the release of chemotaxins which might guide
neutrophils to the site of bacterial-epithelial contact
(96-99). For example, S. typhimurium-intestinal
epithelial cell interactions induce the epithelial
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synthesis and basolateral release of the potent
neutrophil chemotactic peptide IL-8 (96, 98-99). The
mechanisms responsible for such basolateral IL-8
secretion are not well characterized. Eckmann et al.,
(96), however, has suggested that IL-8 secretion
elicited by S. typhimurium contact with the epithelial
cells may require signaling associated with cell entry.
In contrast, recent evidence indicates that such IL-8
stimulated induction by Salmonella may be more
complex. For example, current evidence indicates
Salmonella strains or serotype-related differences in
the ability of salmonellae to induce diffuse enteritis
in human does not correlate well with the ability of
these organisms to be internalized by intestina
epithelial cells. Yet, the ability of Salmonella
interactions with the apica pole of intestina
epithelia cells to dlicit transepithelial signaling to
neutrophils correlates well with Salmonella serotyes
which elicit diffuse enteritis in humans (29). Thus,
such evidence strongly suggests that the ability of
Samonellae to elicit transepithelial signaling to
neutrophils is a key virulence mechanism underlying
Salmonella-€licited enteritis.

Based on these observations, it is becoming
increasing clear that interactions between intestinal
epithelial cells and S. typhimurium may play a key
role in orchestrating the inflammatory response. This
is further exemplified by studies performed by Jung
et al. (97) who demonstrate that in response to
bacteria invasion of a variety of human colon
epithelial cell lines, a specific array of four
proinflammatory ~ cytokines  (IL-8, = monocyte
chemotactic protein-1(MCP-1), TNF apha, and GM-
CSF), was found to be coordinately expressed and
upregulated in human colon epithelial cell ines (97).
The coordinate expression of these proinflammatory
cytokines seems to be a general property of human
colon epithelia cells since freshly isolated human
colon epithelial cells had identical responses (55),
and suggests that such cytokine production may play
an essential role in intercellular communication by
delivering signals which influence the target cells
upon which they act.

While each of these cytokines plays a
critica role in the initiation and amplification of the
inflammatory response, only IL-8 acts as a potent
neutrophil chemoattractant. Thus, since neutrophils
must initially emigrate from the microvasculature to
the subepithelial compartment (47, 104, 107) it was
originaly hypothesized (22, 99) that a potential role
for such basolateral 1L-8 secretion may be in the
recruitment of neutrophils through the epithelial
matrix to the subepithelial space, rather than in
directing the final movement of neutrophils across the
intestinal epithelium. One unique aspect of the
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Figure 2. Multistep model of transepithelia of
neutrophils across the intestinal mucosa in response
to apically attached S. typhimurium. Such neutrophil
transmigration in response to luminal pathogens
involves movement through severa anatomic
compartments, each with their own complexities.
Step 1: Initidly, neutrophils must migrate from the
microvasculature to the subepithelial lamina propria.
This process is best understood in terms of the
molecular interactions that correspond to the initial
tethering (selectin mediated) and subsequent firm
attachment (b2 integrin mediated) of neutrophils to
the endothelial surface. Set 2: IL-8 is released from
the basolateral aspect of epithelial cellsin response to
adherent S. typhimurium. IL-8 imprints the
subepithelial  matrix with retained haptotactic
gradients sufficient to resist washout effects of the
volume that normally traverses this compartment.
Thus, the primary role for basolateral secretion of IL-
8 is the recruitment of neutrophils through the matrix
to the subepithelial space, rather than directing the
final movement of neutrophils across the epithelium.
Step 3: Recent evidence indicates that an apically
secreted soluble factor with physical characteristics
unlike IL-8 (B. A. McCormick and J. L. Madara),
acts in concert with 1L-8, and appears responsible for
driving this final in neutrophil transepithelial
migration (modified from reference 99).

intestinal  mucosa which might require tandem
signaling events for this process is the presence of a
vascular  countercurrent  arrangement  in  the
subepithelial  compartment (108). As happens for
absorbed solutes, this countercurrent phenomenon
may distort transepithelial solute gradients. For
example, perfusion of mammalian intestinal loops in
vivo with solutions containing fMLP was previously
found to induce neutrophil attachment to endothelial
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cells and structurally defined endothelia activation,
but failed to elicit directed migration across the
lamina propria (Madara, unpublished observations),
suggesting that directed migration may require a more
stable gradient than that afforded by the usual soluble
signals. For example, once present in inflamed tissue,
IL-8 is likely to retain its biologica activity for
several hours, as shown by local intradermal
administration in animals and humans (109-111). In
contrast to IL-8, chemokines such as fMLP or LTB4
are degraded rapidly by oxidation or hydrolysis (112).
Thus, gradients of IL-8 formed across the lamina
propria matrix would likely be relatively resistant to
the distorting effects of the complex solvent flow
patterns which exist in this microenvironment and
could serve to bring PMN into the subepithelial
space. Most importantly for sites like the
subepithelial matrix of intestinal mucosa where
volume flow is extremely high, IL-8, due to its highly
cationic nature, binds avidly to glycosaminoglycans of
the tissue matrix (113), thus making such bound IL-8
gradients particularly resistant to sweeping away
affects of fluid flow.

Consistent with this notion, recent evidence
indicates  that  biophysically confluent T84
cellmonolayers apically colonized by S. typhimurium
resulted in the imprinting of a neutrophil chemotactic
signa on the underlying epithelial-derived matrix
which was primarily due to the basolateral secretion
of the C-X-C- family member, IL-8 (98). Such studies
provided evidence to substantiate the notion that
basolateral IL-8 secretion may act to guide
neutrophils through the matrix to the subepithelial
space. For example, recent investigations (98)
indicate that when underlying matrices were isolated
from biophysically confluent polarized monolayers of
the human intestinal epithelial cell line T84, they
failed to support substantial transmatrix migration of
PMN unless an exogenous chemotactic gradient was
imposed. However, such matrices isolated from
confluent monolayers apicaly colonized with S.
typhimurium, supported spontaneous transmatrix
migration of PMN. Such chemotactic imprinting of
underlying matrices was resistant to volume wash and
as also paralleled by secretion of the known matrix
binding chemokine IL-8. Moreover, such chemotactic
imprinting of the matrix underlying S. Typhimurium
colonized monolayers was found to be independent on
epithelial protein synthesis, was directional implying
the existence of a basolateral-driven gradient, and
was neutralized by antibodies either to IL-8 or to the
IL-8 receptor on PMN. Even an avirulent S.
typhimurium strain, PhoP*, which attaches to
epithelial cells as efficiently as wild-type S.
typhimurium, but fails to induce basolateral secretion
of IL-8, failed to imprint matrices. Together, these
observations clearly indicate that the epithelia
surface can respond to the presence of a lumena
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pathogen and subsequently imprint the subepithelial
matrix with retained IL-8 gradients sufficient to resist
washout effects of the volume flow which normally
traverse this compartment. The impact of such events
may have substantial importance in assisting
movement of neutrophils to the subepithelial space.
Additionaly, it has been noted in patients with cystic
fibrosis that neutrophil elastase can induce IL-8 gene
expression in respiratory epithelia (114), and
inhibition of IL-8 gene expression by aerosolized
secretory leukoprotease inhibitor suppresses both IL-8
secretion and neutrophil infiltration of this epithelium
in this disorder (115). Such data further support the
notion that the primary role for basolateral secretion
of IL-8 by the intestinal, and likely other epithélia, is
recruitment of PMN through the matrix to the
subepithelial space, rather than directing the final
movement of PMN across the epithelium. It is now
speculated that IL-8 may act in concert with a
transcellular chemotactic factor which directs
neutrophil migration across the intestina epithelium
(98). Figure 2 illustrates the current paradigm of
neutrophil emigration in response to apical epithelial
attachment of S. typhimurium. While there is now
substantial  evidence that the epithelial cells
themselves may play a proactive role in
organizing/initiating such inflammatory responses
(95-97, 99), a recent precedent has aso been
established that indicates that products, other than n-
formyl peptides, from enteric bacteria might play a
more complex role in regulating the activity of the
mucosal immune system. Products of E. coli were
shown to regulate lymphocyte activation and cytokine
production, and suggest that these products may have
important influences in modifying gastrointestinal
immune responses to enteric bacterial infection (116).
Additionally, cell bound components of Helicobacter
pylori (gastric inflammatory response) were shown to
release factors that are chemotactic for neutrophils
and/or monocytes (117-122). One study showed that
the N-terminal end of the large subunit of H. pylori
urease was chemotactic for neutrophils (120), and
other, as yet identified, soluble chemotactic factors of
H. pylori have also been described (119, 122-123).

5. PERSPECTIVE

In recent years some eminent advances have
been made in the basic understanding of how
Salmonella interact with intestinal epithelial cells,
their host cell target. Specificaly, this review
examined the current insights on the molecular
pathways utilized by Salmonella spp. in cell binding
that are important for the promotion of Salmonella
disease pathogenesis. The most progress has been
made in the area of the molecular genetic basis of
Samonella entry into mammalian cells. However,
there has recently been an emanation of information
concerning the basic understanding of how
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Salmonella binding to epithelia cells coordinates the
mucosal  inflammatory response.  Importantly, a
common theme to emerge from such fertile areas of
research is that upon Salmonella binding to epithelial
cells, the host cell plays an active role in not only
Salmonella internalization, but aso in generating
proinflammatory signals which lead to active states of
intestinal inflammation. Of course, while many
questions await answers, future investigations can
only shed more light on the pathogenic mechanisms
which govern Salmonella binding to epithelial cells.
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