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1. ABSTRACT 

Trigonella foenum-graecum (fenugreek) is 
an important medicinal plant, well known for its anti-
inflammatory properties. However, the underlying 
cellular and molecular mechanisms of its action 
remain largely unknown. The apoptosis associated 
speck like protein containing a caspase recruitment 
domain (CARD) (ASC) is central to inflammatory and 
cell death pathways in innate and adaptive immunity. 
Here, we show that fenugreek seed extract provides 
cytoprotection to bacterial lipopolysaccharide (LPS) 
inflammed and nanosilica-treated fibroblasts via a 
reactive oxygen species independent pathway. All atom 
molecular dynamics simulations of ASC-ligand complex 
reveal that individual phytochemicals in fenugreek can 
bind to ASC via specific non-covalent interactions. 
These data show that a synergistic effect of fenugreek 
phytochemicals with the ASC protein alters its molecular 
properties resulting in altered cellular function. Such 
information is crucial to the development of targeted 
therapeutic interventions for inflammatory diseases.

2. INTRODUCTION

Inflammation is a complex biological response 
to injury, pathogens, or irritants. Dysregulated 
inflammation is central to seemingly unrelated diseases 
such as; cancer, autoimmune diseases, allergy, 
metabolic and cardiovascular disease. Trigonella 
foenum-graecum or fenugreek is widely accepted 
as an anti-inflammatory agent with cytoprotective 
effects. However, the underlying cellular and molecular 
mechanisms of fenugreek-mediated cytoprotection are 

largely unknown (1). Fenugreek extracts act as potent 
anti-microbial and anti-inflammatory agents (2, 3). 
These extracts are beneficial against diabetes, cancer 
and hypercholesterolemia (4-6). Some of the important 
phytochemicals in fenugreek include trigonelline, 
diosgenin, tigogenin, luteolin-7-O-glucoside (henceforth, 
referred to as luteolin), kaempferol and apigenin. In a 
rat model of diabetes, the hydro-alcoholic extract of 
fenugreek, reduced inflammatory markers including; 
tumor necrosis factor-α (TNF-α) and interleukin-1β 
(IL-1β) (7). A similar reduction in the levels of TNF-α, 
IL-1α, IL-1β, IL-6 was observed when rats injected 
with Freund’s complete adjuvant were treated with 
fenugreek extract (8). Additionally, the levels of IL-
4, an anti-inflammatory cytokine, were restored with 
fenugreek treatment (3). While there are many studies 
describing the cytoprotective and anti-inflammatory 
effects of various fenugreek phytochemicals and 
extracts, there is a dearth of mechanistic insight. 

The NLR (nucleotide-binding oligomerization 
domain receptors) family of proteins acts as pattern 
recognition receptors in innate and adaptive immunity 
(9). Dysregulated NLR signaling is central to the 
pathology of several inflammatory and autoimmune 
diseases including cardiovascular disease, diabetes, 
multiple sclerosis and cancer (10). NLRs, aid in 
recognition of damage associated molecular patterns 
(DAMPs) such as; ATP, uric acid, amyloid -β, hyaluronan 
and heparan sulfate, pathogen associated molecular 
patterns (PAMPs) such as; bacterial and viral nucleic 
acids and irritants such as; silica, asbestos and alum. 

Trigonella seed extract ameliorates inflammation via regulation of the inflammasome adaptor pro-
tein, ASC

Nidhi Sharma1, Samyuktha Suresh2, Ananya Debnath3, Sushmita Jha1

1Department of Biology, Indian Institute of Technology Jodhpur, Old Residency Road, Ratanada, Jodhpur, 
Rajasthan, India 342011, 2Department of Biotechnology, School of Bioengineering, SRM University,  
Kattankulathur, Chennai, Tamilnadu, India 603203, 3Department of Chemistry, Indian Institute of  
Technology Jodhpur, Old Residency Road, Ratanada, Jodhpur, Rajasthan, India 342011

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Materials and methods
4. Results
5. Discussion
6. Acknowledgements
7. References

[Frontiers In Bioscience, Elite, 9, 246-257, March 1, 2017]



Trigonella seed extract ameliorates inflammation via ASC

247 © 1996-2017

On sensing DAMPs, PAMPs or irritants, NLRs associate 
with the adapter protein, Apoptosis associated speck 
like protein containing CARD (ASC) and procaspase-1 
to form multi-protein complexes called inflammasomes. 
ASC is central to several inflammatory and cell death-
associated pathways in innate and adaptive immune 
responses (11). ASC consists of a PYRIN domain 
at its N-terminus and a CARD at its C-terminus. The 
PYRIN domain belongs to the DD (Death domain) 
superfamily and is essential for protein interactions 
associated with apoptosis, inflammation and innate 
immune signaling pathways. The ASC PYRIN domain 
comprises of six anti-parallel helices. The PYRIN 
domain interacts through homotypic protein-protein 
interactions, contributing significantly to the regulation of 
inflammasome signaling. ASC utilizes its CARD domain 
to recruit pro-caspase-1 via homotypic interactions. In 
the inflammasome complex, the inactive procaspase-1 
undergoes autocatalytic cleavage to form active 
caspase-1 (12). The activated caspase-1 in turn can 
cleave and activate more than 70 substrates, ranging 
from chaperones, cytoskeletal and translation machinery, 
glycolysis proteins to immune proteins such as the 
proinflammatory cytokines; IL-1β and IL-18 (13, 14). 
Stimuli that induce the activation of caspase-1 to process 
cytokines do not necessarily cause cell death (15). 

Computational methods such as molecular 
docking and molecular dynamics simulation have 
been employed in association with atomic force 
microscopy (AFM) and solution nuclear magnetic 
resonance (NMR) to investigate the binding modes 
and interactions of fenugreek phytochemicals with the 
enzyme aldol reductase for its role in hyperglycemia 

(16). Both PYRIN and CARD domain of ASC are 
independent domains, connected by a linker with a 
residual structure favoring a back-to-back structure of 
domains. This topology avoids steric interference of 
each domain with the binding sites of the other and 
facilitates a specific protein binding partner (17, 18). 
The charged and hydrophobic residues contribute 
significantly to the nature of helical interactions between 
PYRIN domains (19-21). The helices can open up 
and expose the hydrophobic residues resulting in a 
symmetric dimerization mode revealed by the X-ray 
structure (22). Intrinsic flexibility of the PYRIN domain 
is found to be a key factor in influencing their function 
under physiological conditions (23). In fact, particular 
protonation states of acidic side chains are crucial for 
stabilizing the tertiary structure of ASC by forming salt 
bridges at low pH (24). Molecular simulations reveal 
that unlike NLRP1, the ASC PYRIN domain has a six-
helix bundle structure with a specific loop between 
helix 2 and 3 without a significant increment in internal 
motion (25, 26). In support of the structure-function 
relationship of ASC PYRIN domain with its ligands, the 
current study sheds light on the molecular interactions 
of fenugreek with ASC to mediate cytoprotection 
in fibroblasts. The present study sought to assess 
fenugreek-mediated regulation of ASC expression 
during inflammation in fibroblasts. 

The effect of fenugreek extract on nanosilica 
mediated cytotoxicity and bacterial lipopolysaccharide 
(LPS) mediated inflammation (27, 28) was investigated 
using experimental biology and molecular dynamics 
(Figure 1). Such an interdisciplinary approach allowed 
us to understand the cellular as well as molecular 

Figure 1. Analytic workflow for study of fenugreek-induced anti-inflammatory effects and possible interactions with ASC protein targeting in-vitro and 
in- silico approaches
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effects of fenugreek on inflammation. We provide 
evidence that fenugreek regulates nanosilica mediated 
cytotoxicity via the interaction of the constituent 
phytochemicals with the inflammasome adaptor 
protein, ASC. While the cellular studies provide insight 
into the amelioration of cell death by fenugreek, the 
molecular dynamics analyses reveal specific residues 
and nature of interactions underlying the same allowing 
for the use of fenugreek in development of targeted 
therapeutics for inflammation. 

3. MATERIALS AND METHODS

3.1. Cell culture

Chinese hamster ovary cells (CHO) 
were cultured in DMEM, high glucose medium, 
supplemented with 10% Fetal Bovine Serum and 
1 % antibiotic antimycotic stabilized solution. Cells, 
culture media and supplements including DMEM, high 
glucose (AL007S), fetal bovine serum (RM10432) 
and antibiotics antimycotic solution (A5955) were 
purchased from Himedia (India).

3.2. Trigonella foenum-graecum (fenugreek) seed 
extract 

The fenugreek seed extract (Viscous liquid; 
aqueous soluble) was purchased from Sigma-India. 
(Grade - Kosher, Natural, W248606). The anti-
cytotoxicity and anti-inflammatory effects of fenugreek 
upon nanosilica-induced toxicity were measured using 
various concentrations (0-3000µg/mL) of fenugreek for 
0-12 hour exposure times (Supplementary Figure- 1B). 

3.3. Nanosilica exposure 

CHO cells were primed overnight with 0.5. 
µg/mL of LPS from Escherichia coli 026: B6 (Sigma, 
India, L4391) (29, 30). After LPS stimulation, cells 
were washed with serum free media. Fresh serum 
free media was added before exposure to nanosilica. 
Ludox® silica nanoparticles, HS-40 (420816; Sigma) 
with an average size of 12nm were used. The 
nanosilica exposure was optimized at 200µg/mL for 
60 minutes, after exposure time and dose-dependent 
analysis (Supplementary Figure- 1A). 

3.4. ROS inhibition 

N-acetyl-L-Cysteine (NAC) (Sigma, India, 
A9165) treatment for 20 minutes was used to inhibit 
ROS production as described previously (31). 

3.5. Cytotoxicity screening 

The cell cytotoxicity assessment was 
performed using MTT assay (Sigma, India, M5655) as 
per manufacturer’s instructions. 

3.6. ASC Immunocytochemistry 

Cells were stained for ASC (Cell Signaling 
Technologies, India, Rabbit mAb, 13833S)  as described 
previously (32). 4’, 6’-diamidino-2-phenylindole (DAPI) 
(Sigma, India, F6057) was used to stain nuclei blue. 
Immunopositive cells with an observable DAPI stained 
nucleus were counted blindly twice. ASC speck 
quantification was done using ImageJ (NIH, free 
license) software.

3.7. Simulation method

The phytochemical groups chosen for 
molecular simulation studies of fenugreek-ASC complex 
are listed in Table 2. To obtain the initial configurations 
of fenugreek-ASC complex for molecular dynamics 
simulations, molecular docking tool - AutoDock Vina 
was employed (33). ASC PYRIN domain structure 
was obtained from NMR (PDB ID: 1UCP). Since polar 
hydrogen has electrostatic importance during docking, 
it was added before the simulation if not present in the 
PDB file. The structure files of ligands (Table 2) were 
downloaded from PubChem (tigogenin - CID99516, 
apigenin- CID5280443, trigonelline - CID5570, 
diosgenin- CID99474, kaempferol- CID5280863, 
luteolin- CID5291488). The fenugreek-ASC complex 
(individual phytochemicals of fenugreek with ASC) 
was docked to generate different conformations. Since 
the docked conformations show the most suitable 
orientation of ligands to ASC with strong binding modes 
(without the effect of the environment), these were used 
as the starting configuration of molecular dynamics 
simulations (34). The simulations were carried out using 
the GROMOS53a6 force-field parameters (35) for the 
protein and the SPC model for water (36). The force-
field parameters for the ligands were generated from 
Automated Topology Builder (ATB) and repository (37-
39). Seven sets of simulations were carried out where 
one set includes only ASC protein and the other six 
sets include ASC protein with six individual fenugreek 
phytochemicals as ligands. All systems were solvated 
with shell of water molecules and two molecules of 
sodium ions were added to neutralize each system. 
The systems were energy minimized using the steepest 
descent algorithm, followed by a 100ps NVT run using 
V-rescale temperature coupling method (40) with a 
coupling constant of 0.1.ps. 100ps NPT runs were 
carried out using Berendsen thermostat (41) with a 
coupling constant of 0.1.ps by Parrinello-Rahman 
method (42).

4. RESULTS

4.1. Fenugreek extract ameliorates lipopolysac-
charide and nanosilica mediated cell cytotoxicity

ASC is essential for LPS-induced activation 
of procaspase-1 independently of TLR-associated 
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signal adaptor molecules (43). Chinese hamster 
ovary (CHO) fibroblast cells were stimulated overnight 
with bacterial lipopolysaccharide (LPS: 0.5. µg/mL) 
to induce inflammation. Following LPS stimulation, 
fibroblasts were then treated either with nanosilica 
(200 µg/mL), to induce cell death, or a combination 
of nanosilica and fenugreek, to evaluate the effect of 
fenugreek on nanosilica mediated inflammation and 
cell death. After the dose-response analysis, fenugreek 
concentrations of 800-3000 µg/mL were utilized for 60 
minutes. Morphological analysis using phase contrast 
microscopy showed that nanosilica induced cell death 
is significantly reduced when the cells are treated with 
fenugreek extract (Figure 2 (B, E)). 

The cytotoxicity data analysis shows that 
fibroblasts treated with nanosilica and LPS undergo 
rapid cell death but are protected in the presence of 
fenugreek seed extract in a dose dependent manner in 
the presence (Figure 3B) and absence of LPS induced 
inflammation (Figure 3A). We next investigated if 
fenugreek treatment prior to nanosilica exposure would 
provide protection from nanosilica induced cytotoxicity. 
However, pretreatment with fenugreek extract, 6 hours 
and 12 hours, prior to nanosilica exposure did not 
prevent nanosilica induced cytotoxicity (Figure 3 (C, 
D)). Suggesting that the presence of phytochemicals 
in the fenugreek extract and not cellular mechanisms 

elicited by fenugreek exposure are involved in 
fenugreek-mediated protection from nanosilica-
induced cell death.

4.2. Mechanism of Fenugreek mediated suppres-
sion of cytotoxicity is independent of reactive 
oxygen species

Free radicals are implied in a number of 
diseases and health conditions like cancer, chronic 
inflammation and neurodegenerative diseases. 
Fenugreek seed extract is also known to scavenge free 
radicals (44). Fenugreek seeds restore the levels of anti-
oxidants such as; glutathione (GSH) and Ascorbate, 
anti-oxidant enzymes such as; glutathione peroxidase 
(GPx), glutathione-S transferase (GST), catalase 
(CAT) and superoxide dismutase (SOD) and oxidative 
stress markers such as malondialdehyde (2, 3, 45). 
Mucilage extracted from fenugreek reduces the levels 
of inflammatory markers such as cyclooxygenase-2 
(COX-2), lipoxygenase-2, myeloperoxidase, C-reactive 
protein and nitrite in adjuvant induced arthritis in rats 
(2). Next, to investigate if fenugreek seed extract 
provides protection against nanosilica by suppression 
of reactive oxygen species (ROS), we utilized N-Acetyl-
l-cysteine (NAC), a ROS scavenger (46). Interestingly, 
NAC could not rescue nanosilica-induced cell death 
suggesting that here fenugreek mediated cytoprotective 

Table 1. ASC protein residues forming hydrogen bonds or contacts with the individual phytochemical ligands

Major nutrients Phytochemicals

Alkaloids Trigonelline 

Saponins
Tigogenin 

Diosgenin 

Flavonoids 

Apigenin 

Kaempferol

Luteolin 

Phytochemical 
ligands

Residues of ASC protein

Hydrogen bonds Contacts

Apigenin 38ARG, 41ARG, 32LEU, 33ARG, 29SER, 34GLU, 30VAL, 
35GLY, 37GLY, 36TYR, 39ILE

34GLU, 32LEU, 38ARG, 29SER, 41ARG, 35GLY,  37GLY, 
36TYR, 33ARG, 39ILE 30VAL

Trigonelline 38ARG, 41ARG, 29SER, 26LYS, 1MET, 37GLY, 42GLY, 
43ALA, 64TYR, 71ASN

37GLY, 38ARG, 29SER, 1MET,   26LYS, 71ASN , 41ARG, 
46SER, 42GLY, 64TYR, 43ALA

Diosgenin 3ARG, 84GLN, 7ALA, 6ASP,10ASP 19GLU, 84GLN, 16THR, 10ASP, 7ALA, 3ARG, 6ASP,

Luteolin 33ARG, 31PRO, 64TYR, 36TYR, 89THR, 71ASN, 91GLN, 
67GLU

31 PRO, 33ARG, 64TYR, 89THR, 71ASN, 67GLU  36TYR, 
91GLN

Kaempferol 33ARG, 67GLU, 71ASN, 75ASP, 26LYS, 29SER, 64TYR, 
31PRO

67GLU, 75ASP, 33ARG , 29SER, 71ASN,  64TYR, 31PRO, 
26LYS

Tigogenin 6ASP, 10ASP, 7ALA, 84GLN, 3ARG 16THR, 19GLU,14ASN, 84GLN, 10ASP, 7ALA, 3ARG,  6ASP

The contact residues which are also forming hydrogen bonds are shown in italics while other residues forming contacts are in bold

Table 2. Major phytochemicals present in the fenugreek seed extract
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Figure 2. Inhibitory effect of fenugreek on nanosilica-induced cytotoxicity. The above panel shows reduced cytotoxicity and cell death in LPS-primed 
fibroblast cells upon exposure to nanosilica and fenugreek (B-E). Scale bar: 100µm. (F) ASC expression visualized in fibroblast cells exposed to 
fenugreek along with nanosilica. Right panel - ASC expression in control (a), LPS treated (b), fenugreek treated (c), nanosilica treated (d) and nanosilica 
and fenugreek treated (e) fibroblast cells are visualized by using immunofluorescence microscopy for ASC (red) and DAPI to stain nuclei blue. Scale 
bar-50µm. The right panel shows inset images of fenugreek treated (f) and both nanosilica and fenugreek treated (g) fibroblast cells respectively at higher 
magnification. Scale bar-20µm. Graph shows ASC speck quantification in LPS-primed, silica and fenugreek treated cells. Data is presented as mean ± 
SD; *p value < 0.0.5., **p value < 0.0.0.5. by t-test analysis

Figure 3. Effect of fenugreek seed extract on nanosilica-induced cytotoxicity. Dose-dependent decrease in cytotoxicity caused by nanosilica (200 µg/
mL) was observed in presence of fenugreek both in untreated fibroblasts (A) and LPS-primed (0.5. µg/mL) fibroblasts (B). Pretreatment of fibroblasts 
with fenugreek for 6h or 12h prior to nanosilica exposure did not offer any cytoprotection both in the absence (C) and presence of LPS priming (D). 
Pretreatment with NAC (1-4mM) did not inhibit nanosilica-induced cytotoxicity.Instead, resulted in increased cytotoxicity levels in dose-dependent manner 
(E). Data is presented as mean ± SD; *p value < 0.0.5., **p value < 0.0.0.5. by t-test analysis
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mechanism must be independent of reactive oxygen 
species (Figure 3E).

4.3. Expression of ASC protein increases follow-
ing fenugreek treatment

LPS induces formation of ASC supramolecular 
assembly referred to as apoptotic speck or pyroptosome 
(47). In the bone marrow derived macrophages, 
ASC speck formation is required for processing of 
IL-1β but dispensable for pyroptosis induction. ASC 
oligomerization creates multiple caspase-1 activation 
sites, serving as a mechanism for signal amplification 
of inflammasome dependent cytokine production (48). 
To assess ASC protein expression following fenugreek 
treatment, we carried out immunofluorescence for 
ASC (Figure 2F (a-g). The cytoplasmic and diffuse 
expression of ASC in untreated fibroblasts increases 
upon LPS stimulation. Nanosilica treated cells undergo 
rapid cell death, show nuclear condensation and 
presence of cytoplasmic as well as perinuclear specks. 
Strikingly, fenugreek and nanosilica treated fibroblasts 
remain viable, show absence of nuclear condensation 
and increased ASC expression with several cytoplasmic 
and perinuclear specks (Figure 2- Graph).

4.4. Interaction of ASC protein with individual 
fenugreek phytochemicals 

In silico approaches were utilized to gain 
molecular insights into the cytoprotective effect 
of fenugreek. All atom molecular dynamics (MD) 
simulations of individual fenugreek phytochemicals 
(trigonelline, diosgenin, luteolin, kaempferol, tigogenin 
and apigenin) with ASC were carried out to observe 
protein-ligand interactions. ASC interacts with NLRP3 
via homotypic PYRIN-PYRIN interactions and recruits 
procaspase-1 via homotypic CARD-CARD interactions. 
Therefore, both PYRIN and CARD domains were 
docked with individual phytochemicals. Since the 
PYRIN domain expressed higher affinity towards ASC 
ligand binding as observed in previous reports (25), 
we used this domain for MD simulations with preferred 
orientations of the individual fenugreek phytochemicals 
as obtained from docking studies. Fluctuations of the 
protein residues due to ligand binding were identified 
by root mean square fluctuations (RMSF) of protein 
residues. The RMSF values were calculated after 
a least square fitting to a reference frame of starting 
structure of the 30 ns trajectory. The RMSF for ASC 
protein residues both in the absence and presence of 
six ligands are shown in Figure 4a. Higher fluctuations 
were observed for residues in the loop regions and in 
the 1st and 5th helices, in case of apigenin, kaempferol, 
trigonelline and luteolin. This indicates that ASC does 
not change its global structure while interacting with the 
individual phytochemicals and the probable locations 
of the binding domains are either in the loop regions or 
in the 1st or 5th helices.

The root mean square deviations (RMSD) of 
the protein was calculated after least square complete 
fitting (translation and rotation) of the Cα atoms to 
their corresponding initial structures of the production 
runs (Figure 4b). In the presence of kaempferol, 
apigenin and trigonelline, the RMSD values of ASC 
are enhanced as compared to the initial configuration, 
but not significantly high enough to predict any 
conformational change in protein due to ligand binding. 
This reaffirms that ASC does not deviate from its 
reference conformation to bind these phytochemicals.

To identify the interactions between fenugreek 
ligands and ASC protein, probability of hydrogen bond 
formation is calculated between all possible donors 
and acceptors of the protein and the individual ligands, 
using well-established geometric criteria: r ≤ 3.5.A°, 
α ≤ 30°, where r is the distance between donor and 
acceptor and α is the angle between hydrogen donor 
and acceptor. Figure 5a describes the distribution 
of hydrogen bonds with respect to the number of 
hydrogen bonds between individual phytochemical 
ligands and the ASC protein. The plot clearly shows 
that all ligands participate in hydrogen bonding where 
luteolin-bound ASC forms the highest number of 
hydrogen bonds. Minimum distance calculation was 
done between individual ligands and ASC with a 
distance cut-off of 0.3. nm (data not shown). Table 1 
shows the list of residues that form contacts with the 
protein due to non-covalent interactions which can be 
ion-dipole, dipole-dipole or hydrogen bonding. Most of 
the protein contacts are formed by the same residues 
that participate in hydrogen bonding with the ligands 
(shown in italics, Table 1). Only trigonelline, diosgenin 
and tigogenin formed few additional contacts with the 
protein which are not part of the hydrogen bonds. 
These contacts are formed either by a charged residue 
(GLU) or a polar residue (THR/ASN) of the protein due 
to either ion-dipole or dipole-dipole interactions (Table 
1). Several of the interacting residues suggested by our 
studies are identical or adjacent to residues essential 
for filament formation and oligomerization of ASC as 
reported earlier (19).

The residues that form H-bonds or contacts 
(Table 1) with six phytochemical ligands are located 
either in the loop region between the 2nd and the 3rd 

helix or at the initial or end points of the helices of ASC 
(Figure 5b). Also, no ligands are sandwiched between 
two helices to interact with the protein residues (Figure 
5(c-h)). This interaction scenario is possible, when two 
helices are located back-to-back in such a way that the 
inner surface between two helices are not perturbed 
by the presence of the ligands and the outer surface is 
open for the ligand binding through the regions near the 
loops or bends. The interacting residues of the helices 
mostly occur in the 1st and 5th helices (C-terminal side), 
which is consistent with the higher RMSF values of the 
N/C terminal residues (shown in Figure 4a). The higher 
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Figure 4. (a) Root mean square fluctuations of ASC protein residues. (b) Root mean square deviation of ASC protein are shown with respect to simulation 
time. The graphs show ASC protein residues without any ligand (black) and in the presence of six individual ligands (Apigenin: orange, Diosgenin: green, 
Kaempferol: red, Luteolin: turquoise blue, Trigonelline: magenta, Tigogenin: blue)

fluctuations of the residues in between N/C termini 
occur in the loop or bend regions to form h-bonds or 
contacts with the ligands. The RMSD of the protein in 
the presence of apigenin, kaempferol and trigonelline 
are above 0.2.5 nm since the residues (Table 1) 
forming h-bonds/contacts with these three ligands 
reside mostly in a loop or partly in all helices except the 
4th one. However, a secondary structure analysis of the 
protein in the presence of these ligands reveals that 
the helical domains (2nd, 3rd and 5th helix) do not unfold 
during the interactions (data not shown). Therefore, to 
bind with these ligands, the protein has to deviate from 
its reference structure without any unfolding of these 
helices. 

A comparative analysis of the fluctuations 
of ASC (RMSD and RMSF) protein residues in the 
presence and absence of phytochemical ligands, 
suggests possible interactions between the ASC and 
phytochemicals. In the presence of phytochemicals, 
ASC depicts higher RMSD only in the loop and the 

N/C terminal domains due to their flexible and exposed 
nature, whereas rests of the helical residues remain 
stable with a RMSD value of 0.1.5 nm. The RMSF 
of ASC reaches a plateau below 0.2. nm for all 
ligands except kaempferol, apigenin and trigonelline 
where the fluctuations are little enhanced (near 
0.3. nm). However, no significant fluctuations are 
observed which may indicate an unraveling of folded 
conformation of ASC to bind these specific ligands. 
Our simulations demonstrate that ASC binds to all 
individual phytochemical ligands via specific non-
covalent interactions such as hydrogen bonding, where 
luteolin forms the highest number of hydrogen bonds. 
Moreover, few contacts have been found between ASC 
- diosgenin and - tigogenin in addition to the hydrogen 
bonds where ion-dipole or dipole-dipole interactions 
might be the stabilizing factors. A comparison of the 
secondary structure sequence and the location of 
hydrogen bond or contact forming residues (Figure 
5 (b-h)) reveal that the binding sites mostly occur in 
the loop regions or at the start or end points of all 
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helices except the 4th helix. Although these interacting 
domains have enhanced RMSD values, they do not 
change their secondary structures significantly. 

5. DISCUSSION

Although specific non-covalent interactions 
are found to be responsible for individual 
phytochemical-ASC binding, the structure of ASC 
remains unaltered. Interestingly, none of the ligand’s 
interaction with ASC can be held solely responsible 
for the cytoprotective effects of fenugreek. This is also 
supported by the earlier findings where fenugreek 
crude seed extract was selectively toxic to cancer cell 
lines and not harmful to the normal counterparts but 
purified components such as diosgenin were toxic to 
both normal and cancer cell lines (49). This selective 
cytotoxicity was also observed in the oil extracted from 
fenugreek seeds (50). Recently, Dick et al., reported 
the mechanism of ASC filament formation and signal 
amplification for inflammasome mediated cytokine 
production (48). The study provides evidence that 
formation of ASC specks requires the entire PYRIN 
domain. Importantly, their mutational analyses confirm, 
the residues listed by us as critical for interaction 
with fenugreek phytochemicals are important for 
inflammasome signaling but not cell death. For 

example, the K26 residue interacts with trigonelline 
and kaempferol and is essential for speck formation. 
The Y36 residue that interacts with apigenin and 
luteolin has an intermediate role in speck formation 
while the R41 residue that interacts with Apigenin and 
Trigonelline is important for induction of downstream 
inflammasome signaling. 

Endogenous decoy proteins containing only 
the PYRIN domain (POPs) are suggested to interfere 
with NLRs and ASC interaction thus preventing 
inflammasome activation. Srimathi et al, mapped the 
binding site of PYRIN domain-only protein 1 (POP1) 
on ASC (51). Interestingly, Y36 and R41 are listed as 
important for interaction of POP1 with ASC (52). En 
toto these findings suggest a cumulative interaction 
of fenugreek phytochemicals with the ASC protein to 
affect change in the molecular properties resulting in 
altered cellular function. The interaction of ASC PYRIN 
domain with the phytochemicals raises possibility 
of fenugreek components affecting ASC activity by 
modulating its structure or function. These interactions 
might also introduce regulatory changes in ASC-
associated inflammation and cell death pathways. In 
this respect, our present study lays the foundation 
for a future investigation of synergetic effect of 
fenugreek-mediated regulation of ASC, which may 

Figure 5. (a) Hydrogen bond distribution between individual phytochemical ligands and ASC protein. (b) Sequence of ASC PYRIN domain shows 6 helical 
regions. Yellow blocks denote the residues interacting with six phytochemical ligands. (c-h) Snapshot depicting interactions between ASC protein and 
phytochemical ligands
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offer an opportunity for development of therapeutic 
interventions for many inflammatory diseases by 
establishing their structure-function relationship.
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