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1. ABSTRACT

BRIP1 encodes a protein belonging to the 
RecQ DEAH helicase family. It interacts with BRCA1, 
and is involved in the repair of DNA damage and tumor 
suppression. Aberrations in BRIP1 have been mainly 
associated with the development of breast cancer (BC), 
ovarian cancer, and type J Fanconi anemia. Based on 
recent work, we hypothesize that BRIP1 might be the 
gene involved in the onset of BC in families that do not 
show BRACA1/2 mutations. This review will focus on 
the findings supporting this hypothesis, the mechanisms 
linking BRIP1 to the onset of BC, and the potential clinical 
relevance of its various inhibitors.

2. INTRODUCTION

The FANC genes involved in the production 
of proteins that regulate Fanconi anemia (FA) signaling 
pathway, detect DNA damage, specifically inter-strand 
cross-links and stimulate its repair (1). Sixteen FA or 
FA-like genes have been identified including, FANCA, 
FANCB, FANCC, FANCD1 (BRCA2), FANCD2, FANCE, 
FANCF, FANCG, FANCI, FANCJ (BRIP1), FANCL, 
FANCM, FANCN (PALB2), FANCP, RAD51C, and 
XPF (1). The FA core complex, the main component of 
the FA pathway, consists of eight FANC proteins (Fanca, 
Fancb, Fancc, Fance, Fancf, Fancg, Fancl, and Fancm) 
and two additional proteins called Fanconi anemia-
associated proteins (Faaps) (1). Upon recognition of 
the DNA damage, FANCD2 and FANC1 are activated 
by mono-ubiquitination, and bind together to form the 
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ID complex attracting DNA repair proteins to the site of 
damage, thus allowing the replication to continue (1, 2). 
However, BRIP1 is not needed for Fancd2 mono-
ubiquitination, indicating that BRIP1 acts downstream of 
FAncd2 (3) in later stages of the Fanconi anemia pathway, 
post Fancd2 ubiquitination (4). Thus, aberrations in any 
of the FANC genes abrupt the DNA repair mechanisms, 
resulting in Fanconi Anemia, a disorder characterized 
by physical abnormalities, loss of bone marrow function 
and elevated risk of cancer, particularly breast cancer 
(BC) (2). However, similar to BRCA2, BRIP1, or PALB2, 
some FANC gene mutations are specifically associated 
with the early onset of cancers of the breast, the ovaries 
and the pancreas.

BRCA1 interacting protein C-terminal helicase1 
(BRIP1), also known as BACH1 or FANCJ was initially 
identified for its physical interaction with BRCA1. It 
consists of 20 exons spanning a region greater than 
180 kb on chromosome 17q22 (5). The initial proof for 
the clinical importance of BRIP1 was the identification of 
germ-line mutations within BRIP1 in patients associated 
with early BC, showing normal genotypes for BRCA1 
and BRCA2; thus suggesting a link between BRIP1 
mutations and low penetrance breast and ovarian 
cancers (5-7).

Here we discuss the current knowledge of 
these mechanisms by various research analyses and the 
progress in understanding the multiple roles of BRIP1.
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3. STRUCTURE OF BRIP1

BRIP1, member of FANC (Fanconi anemia, 
complementation groups) family, is located on the 
long arm of chromosome 17 (17q22; from base pair 
61,679,185 to base pair 61,863,558), encompassing 
180.7.7 kb of DNA including 19 introns and 20 exons (8). 
While, it is normally confined within the cytoplasm, 
nuclear envelope and the nucleus, post DNA damage 
translocates BRIP1/RPA1 complex to the nucleus (5).

BRIP1 protein consists of 1249 amino acids 
involved in DNA damage repair as well as a conserved 
helicase ATP-core binding domain, comprised of eight 
motifs (Q(0), I, Ia, II, III, IV, V, VI) (9) (Table 1). The principal 
motif is the iron-sulfur (Fe-S) cluster, characterized by four 
conserved cysteine residues; 4Fe-4S iron-sulfur-binding 
is essential for helicase activity to occur (10, 11). The 
other conserved motif, Q (DEAH box DNA helicase type), 
crucial for coordinating ATP binding, BRIP1 catalytic 
activity and DNA repair function (12, 13), contributes to 
the onset of Fancomi anemia and BC. The C-terminal of 
BRIP1 interacts with BRCA1 through BRCT repeats (14) 
(Figure 1).

4. FUNCTIONS OF BRIP1

Physiologically, BRIP1 is expressed in both 
malignant and normal cells. The following sections will 
discuss the role of BRIP1 in both normal and malignant 
cells.

4.1. Physiological functions of BRIP1 in normal 
cells

The principal function of BRIP1 is in the 
maintenance of genome integrity by regulating replication 
stress responses and, homologous recombination 
and cross-link repair (15). Upon its binding with RPA, 
BRIP1 removes DNA-bound proteins in order to stabilize 
the replication fork and unwind the substitutive DNA 
structures that can obstruct normal DNA functions, 
thus providing genomic stability (16, 17). Also, BRIP1 
interacts with MLHI, a mismatch repair protein and along 
with FANCA, they localize to the sites of DNA crosslinks 
to unwind DNA and restore stalled replication forks (18). 
Interestingly, a study showed that the effect of BRIP1 
catalytic activity on Bloom syndrome (BLM) protein 
stability, is one of the factors required for maintaining 
genome stability and preventing replication stress (19).

Table 1. BRIP1 domains and motifs
Exon Domains Motifs

3 ATP Dependent RNA helicase CHL1
Ding
DEXDc2 (ABC_ATPase superfamily)

Ps00197: 2Fe2s_FER_1 (Iron Sulphur binding region)

4 Ps01177: Anaphylotoxin_1 domain

7 DEAD_2
ATP Dependent RNA helicase CHL1
Ding
DEXDc2 (ABC_ATPase superfamily)

8 DEAD_2
ATP Dependent RNA helicase CHL1
DEXDc2

Ps00197: 2Fe2s_FER_1 (Iron Sulphur binding region)

9 DEAD_2 Ps00197: 2Fe2s_FER_1 (Iron Sulphur binding region)
Ps00022: EGF like domain

12 Ps01208: VWFC domain

13 ATP Dependent RNA helicase CHL1
Ding

15 Ps00099: Thiolase

16 Helic_c2, Helicase_c2
ATP Dependent RNA helicase CHL1
Ding (ABC_ATPase superfamily)

19 Ps00197: 2Fe2s_FER_1 (Iron Sulphur binding region)
Ps01177: Anaphylotoxin_1 domain

20 Pfam13900 GVQW motif Ps00197: 2Fe2s_FER_1 (Iron Sulphur binding region)
Ps00022: EGF like domain
Ps00099: Thiolase
ps00956: Hydrophobin
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More interestingly, BRIP1 contains the 
information needed for the production of a protein 
regulating the repair of DNA damage. It is a DNA dependent 
ATPase and DNA helicase, which interacts with BRCA1 
to repair DNA double-strand breaks by homologous 
recombination ultimately leading to chromosome stability. 
The BRIP1 protein acts as a helicase and interacts with 
the BRCT domain of BRCA1 during DNA damage; BRIP1 
unwinds the two strands of DNA double helix and BRIP1-
BRCA1 complex repairs DNA damage. Thus, BRIP1 
protein interacts with the BRCA1 gene protein, within 
the cell nucleus, to repair broken strands of DNA during 
G2-M phase of the cell cycle; thus BRIP1 and BRCA1 
proteins appear as tumor suppressors (20). However, in 
certain conditions, when BRIP1 fails to bind to BRCA1, it 
facilitates poleta-dependent bypass (21). With the marked 
association between BRCA1 and BRIP1; cells lacking 
BRIP1 are sensitive to both DNA cross-linking agents 
and ionizing radiation and, are deficient in homologous 
recombination repair of double strand breaks (3). A recent 
study demonstrated that while, FANCD2 was required for 
BRIP1 chromatin localization; BRIP1 in turn was required 
for regulating FANCD2 localization onto chromatins in 
response to mitomycin C-induced DNA damage (22).

A few BRIP1 phosphorylation sites have been 
identified that promote interactions to regulate DNA repair 
and checkpoint responses. The first phosphorylation 
site identified was Ser-990, where BRIP1 binds to the 
BRCT repeats, indicating BRCT domain as a phosphor-
protein binding domain (23); lack of this site inhibits 
homologous recombination (21). Interestingly, this site 
also overlaps with the binding to BLM protein, suggesting 
this interaction is influenced by phosphorSer-990 (19). 
BRIP1, while known to disrupt a RAD51-single-stranded 
DNA and impede RAD51 strand exchange, a major 
process in regulating DNA repair through homologous 
recombination (16); it interacts with TOPBP1 at Thr-133 
for ATR-dependent phosphorylation as a consequence of 
stalled replication fork (24). Furthermore, in normal cells, 

following DNA damage, acetylation of BRIP1 at lysine 
1249 enhances DNA damage repair and checkpoint 
signaling (25).

4.2. Physiological functions of BRIP1 in 
Fancomi anemia type J (FA-J)

A number of germline mutations have been 
found in the genes of the FA signaling pathway linked 
to Fanconi anemia, characterized by hypersensitivity 
to DNA-damaging agents, increased chromosome 
breakage and impaired DNA repair process. Individuals 
affected with FA are at a higher risk of developing solid 
tumors of the head and neck, and of gynecological 
systems (26).

Initially, BRIP1 was identified by positional 
cloning as a gene mutated in Fanconi anemia type J 
(FA-J) (8), a rare disorder resulting in bone marrow failure, 
anemia, leukopenia and thrombopenia, hematologic and 
developmental abnormalities (cardiac, renal, skeletal 
and limb malformations), abnormal pigmentation, as 
well as high risk for the development of cancer (2, 26). 
A recurrent nonsense mutation (2392C→T), R798X (exon 
17; deletion of helicase motif IV and BRCA1-interacting 
region) was identified in 5 alleles from 4 different ethnic 
background individuals, thus indicating to either be a 
hot-spot or a primeval mutation (8). Furthermore, three 
splice mutations in the intervening sequence (IVS) were 
identified; IVS3+5G→T (deletion of exon 3 encoding 
helicase motif I), IVS17+2insT (deficiency of exons 
17 or 18; partial deletion of helicase motif VI) and, 
IVS11-498A→T (intronic nucleotide substitution; affected 
helix motifs between II and III) (8). From the remaining 
mutations, three were missense (1941G→C (exon 14; 
between motifs III and IV), 2119C→T (exon 15; motif IV) 
and, 765G→T (exon 7; helicase motif IA) and one was 
a frameshift mutation (2255-2256delAA) resulting in a 
premature stop codon (exon 15; inside motif V) (8). These 
mutations linked BRIP1 with the onset and development 
of FA-J.

Figure 1. Schematic representation of BRIP1 structure and its mutations.
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Any mutation or loss of the following members 
of the RecQ DEAH helicase family including BLM, 
WRN and RECQL4 results in chromosomal instability 
syndromes which can confer a high risk of developing 
cancer (8, 27). Similar to these homologs is BRIP1 whose 
loss or deficiency can be associated with DNA repair 
defect and predispose to breast, ovarian and pancreatic 
cancers (26).

4.3. Physiological functions of BRIP1 in cancer
As mentioned above, BRIP1 binds directly 

to the BRCT domains of BRCA1 and functions as a 
tumor suppressor. Mutations in BRIP1 increase the 
risk for development of BC and Fanconi anemia (5, 8). 
The following sections will highlight the various findings 
linking BRIP1 to the development of BC.

4.3.1. Physiological functions of BRIP1 in 
breast cancer

BRIP1 has been considered as a low-penetrance 
BC predisposing gene (28). Although, several studies 
have been carried out to investigate the role of BRIP1 
in the onset of BC, the underlying mechanisms remain 
nascent. Several studies have laid the platform to explain 
the role of BRIP1 in DNA repair mechanisms and genetic 
stability. Familial cases of BC lacking BRCA mutations 
can possibly be explained by the identification of low/
moderate penetrance genes like BRIP1 (29). Rahman 
and colleagues were the first to provide evidence of 
BRIP1 gene as a BC susceptibility gene by carrying out 
mutational screening of the whole BRIP1 gene sequence 
in a British group of familial BC cases and controls (30). 
Alterations in low penetrance genes such as BRIP1 result 
in defects in DNA damage repair mechanisms, causing 
sporadic BC. Interestingly, haplo-insufficiency of BRIP1 
results in a short non-functional BRIP1 protein which fails 
to interact with BRCA1 protein to repair DNA damage, 
and stimulate cell growth and proliferation, leading to the 
onset of BC.

Previous studies have revealed potential 
associations between BRIP1 variants and the onset of 
BC, and have identified truncating mutations in BRIP1, 
indicating the high-risk of non-BRCA1/BRCA2 families to 
BC (7). Mutation analysis or genotyping of BRIP1 have 
identified SNPs and two alternatively spliced human 
isoforms for BRIP1 are involved in various molecular 
and biological functions including ATP-dependent DNA 
helicase activity, protein binding, DNA binding, double-
strand break repair, DNA damage checkpoint, DNA 
duplex unwinding (5, 7). Furthermore, BRIP 2392C>T 
mutation was found to be rare in the Irish population (31) 
as compared to its frequency in other populations (7), 
thus indicating BRIP1 as a low-penetrance gene. A recent 
study among Korean patients identified one novel 
truncating mutation (1018C > T) in one patient, while 8 
missense mutations were observed in 15 individuals (32). 
Among the missense mutations, 5 (787C > T, 1421T > C, 

1442G > A, 2543G > A, and 2854A > G) were novel and 
3 (430G > A, 587A > G, and 2830C > G) were known to 
be previously described (32).

Germline mutations affecting either the domain 
activity or the expression of messenger RNA (mRNA) 
of BRIP1 were associated with the early onset and 
susceptibility to BC (5, 10). The first meta-analysis 
study on the polymorphisms identified that while, C47G 
(rs4988351) was heterogeneous and associated with 
an increased risk to BC; polymorphisms, Pro919Ser 
and G64AA had no association with BC (33). A germline 
mutation in exon 20 of BRIP1, c.2992–2995delAAGA, 
disrupted its BRCA1 binding domain leading to a premature 
codon interfering with the stability of the protein and its 
function (5, 28). Interestingly, in another study involving 
high-risk Jewish cases who were negative for mutations 
in both BRCA genes, seven germline mutations were 
identified in BRIP1; three missense (p.Ala745Thr (novel), 
p.Val193Iso and p.Ser919Pro), two silent (Glu879Glu and 
Tyr1137Tyr) and two intronic (c.346+21A>G and c.508-
31C>G) mutations (34). Furthermore, two independent 
germline (missense) mutations P47A and M299I targeting 
the helicase domain of BRIP1 were associated with the 
early onset of familial BC as it disrupts the ATPase and 
helicase activities of the protein, thus causing a decrease 
in the BRIP1 enzyme activity (5). Mutational analysis 
of tumors from Chinese BC patients identified sixteen 
germline mutations, with no protein truncated mutations; 
intronic variants (IVS7+15T>A and, IVS15+19A>C) and 
one localized in the 3’-UTR region (4049C>T) were 
found (35). Furthermore, 3 previously identified silent 
mutations (E879E, S919P and, Y1137Y) (5, 36, 37) along 
with 10 amino acid sequence substitutions (571G>A, 
653G>T, 728A>G, 2564G>C, 2971C>G, 3418C>G, 
3715G>C, 3736G>A, 3798C>A, and 3829G>C) were 
detected. Among these mutations, a novel heterozygous 
missense-type variant (Q944E; 2971C>G; exon 19) was 
also identified and linked with the risk of developing 
BC. However, the variants (4049C>T and, S919P) were 
observed in controls as well and hence were indicated 
not to be significantly associated with BC (35).

Surprisingly, in silico mutational analysis 
of BRIP1 in a breast tumors of Italian men patients 
(BRCA1/2-, CHEK2-, and, PALB2-) identified R264W 
as a pathogenic mutation, however, LoH analysis did 
not show association of this variant and BC risk (38). 
Furthermore, in the same study, a synonymous variant 
E879E (38) and three previously reported variants 
(P919S, IVS4-28G>A and, 3’UTR 4049C>T) among 
females (7, 10) were also described; however, the study 
demonstrated no association between BRIP1 variants 
and BC risk in males (38).

In another study performed on Swedish BC 
patients, one novel (517C-T) and three previously 
reported (2637G-A, 2755C-T and, 3411C-T) (5) 



BRIP1 and non-BRCA1/2 breast cancer

 293 © 1996-2016

polymorphisms were identified (37). The rare, c.517C(T) 
variant resulted in Arg173Cys substitution, leading 
to abnormal protein localization to the nucleus, thus 
indicating its role in the susceptibility of BC (5, 37). 
Interestingly, BRIP P919S mutation was classified as a 
low penetrance BC allele (39); a mutation not detected 
among US individuals affected with BC (40). In a Finnish 
study, a novel heterozygous c.3101C>T (Pro1034Leu) 
variant was identified in both, a BC case as well as a 
control with an unknown cancer status, thus suggesting 
this variant to be a rare disease-related allele (36).

Recently, an evaluation of BRIP1 
polymorphisms as risk factors for BC was performed 
in a Chinese population; complete analysis of possible 
SNPs (rs2048718, rs4988344, rs8077088, rs6504074, 
rs4986764, rs4986763, rs11079454, rs7213430, 
rs34289250, rs4988345, and rs12937080) was performed 
using MassARRAY system; this study established a 
link between the rs7213430 allele and BC risk (41). 
As mentioned above, the BRIP1 missense mutation, 
rs4986764 (Pro919Ser; exon 18); linked to increased risk 
of BC (33, 39), showed a high frequency in BC patients in 
this study, however, association between the rs4986764 
C allele (exon18) and BC was not observed (41). Also, 
Arg173Cys (rs4988345) mutation predisposing to 
BC, (42), was not associated with BC in this study (41). 
Similar to another published findings (43), this study also 
revealed no association between rs4988344 and the 
onset of BC (41). In this study, the previously identified 
polymorphisms, rs2048718 (5ꞌ-UTR)  (37), did not 
find a genetic association to BC (41). Since this study 
did not include some of the crucial SNPs (rs2048718, 
rs4986764, rs4986763, rs11079454, and rs7213430), 
further investigation are required to establish a link 
between these SNPs and the risk of developing BC (41).

4.3.2. Physiological functions of BRIP1 in other 
cancers

Several lines of evidence from the literature 
indicate that BRIP1 is also involved in other cancers. 
In fact, whole genome sequencing identified one rare 
mutation in BRIP1 (c.2040_2041insTT), which was 
associated with increased susceptibility to develop 
ovarian cancer by 36% as well as a reduced lifespan by 
3.6. years (6). Furthermore, parallel sequencing of BRIP1 
in tumors collected from patients with ovarian, fallopian 
tube and peritoneal carcinomas identified germline 
loss-of-function mutation (44). On the other hand, in a 
more recent study, BRIP1 was involved in arresting DNA 
synthesis and preventing mutations in melanoma cells 
exposed to UV irradiation, thus suggesting that skin 
tumors could be sensitive to inter-strand cross linking 
agents, one of the characteristic features of FA-J (45).

Interestingly, genotyping of Caucasian patients 
affected with prostate cancer, revealed a truncating 
mutation, R798X in BRIP1 (46). In the same study, further 

analysis of BRIP1 revealed the presence of the SNPs; 
rs6504074 and rs8076727, which were associated with 
the onset of prostate cancer (46). Moreover, a recent 
study, identified a stop-gain c.2392 C>T (p.(Arg798°)) 
mutation in BRIP1 which was first identified in FA (47).

5. POTENTIAL THERAPEUTIC STRATEGIES 
TARGETING BRIP1

Several studies have been carried out to 
develop suitable inhibitors targeting BRIP1 in order to 
guide the design of appropriate therapeutic strategies 
against cancer. Some of these studies have led to 
the development of small molecules targeting BRIP1 
signaling pathways targeting; such as Werner syndrome 
(WRN) helicase inhibitor (48-50). In a recent study, 
5-fluorouracil (5-FU), a known chemotherapeutic 
agent reduced BRIP1 expression, while it increased 
sensitivity to oxaliplatin in gastric tumors (51). However, 
in MLH1-induced colorectal cells, BRIP1 expression 
was upregulated, suggesting tumor cells were resistant 
to 5-FU (52), thus indicating differential expression 
of BRIP1 in different tumors. Furthermore, based on 
BRIP1’s interaction with BLM, BLM helicase inhibitors 
could promote sister chromatid exchange (19).

Other strategies include use of PARP1 
inhibitors involved in repairing single strand breaks and 
sensitizing BRIP1 induced tumors (53). Interestingly, 
cells deficient in BRIP1 are sensitive to treatment with 
cisplatin (54). While BRIP1 is known to be involved in 
repairing DNA inter-strand crosslinks, it also plays a role 
in G4-DNA, thus suggesting that BRIP1 induced tumors 
is sensitive to telomestatin, a G4-DNA ligand regulating 
the stabilization of G4-DNA structures (53). All these 
attempts emphasize the importance of understanding the 
underlying mechanisms of BRIP1 in cancer in order to 
establish appropriate and efficient therapeutic strategies. 
As a matter of fact, enzymes (S990A) targeting BRIP1 
signaling pathways particularly involved in over-reactivity 
of helicases such as Fe-S domain can pave the way 
towards the design of useful strategies for cancer 
treatment (53).

6. SUMMARY AND PERSPECTIVE

BRCA1/2 are the major susceptibility genes for 
the onset BC. Based on various mutations (truncated, 
germ-line and missense) identified in breast tumors from 
patients in different populations studied, BRIP1 appears 
to play a major role in the development of BC. However, 
the pathogenicity of BRIP1 mutations requires further 
investigation. In a polygenic setting, several moderate-
risk and/or low-risk BC susceptibility alleles contribute, 
together, to increased risk of BC. The majority of familial 
BC clustering could be explained by polygenic BC 
susceptibility (55). BRIP1 interacts with several proteins 
involved in regulating DNA damage responses and 
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checkpoint signaling, which are crucial for maintaining 
chromosomal and genomic stability. Therefore, further 
investigations targeting non-BRCA1/2 mutation cases, 
will ultimately lead to a better understanding of BRIP1-
signaling mechanism involved in BC tumor suppression 
function. Validating BRIP1 as breast tumor suppressor 
will pave the way to the design of specific therapeutic 
strategies against BC.
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