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1. ABSTRACT

L-3,4-Dihydroxyphenylalanine (L-DOPA) 
remains the most effective symptomatic treatment 
of Parkinson’s disease (PD). However, the long-
term use of L-DOPA causes, in combination with 
disease progression, the development of motor 
complications termed L-DOPA-induced dyskinesia 
(LID). LID is the result of profound modifications 
in the functional organization of the basal ganglia 
circuitry. There is increasing evidence of the 
involvement of non-dopaminergic systems on the 
pathophysiology of LID. This raises the possibility 
of novel promising therapeutic approaches in 
the future, including agents that interfere with 
glutamatergic, serotonergic, adenosine, adrenergic, 
and cholinergic neurotransmission that are currently 
in preclinical testing or clinical development. 
Herein, we summarize the current knowledge of the 
pharmacology of LID in PD. More importantly, this 

review attempts to highlight the role of nitric oxide 
(NO) in PD and provide a comprehensive picture of 
recent preclinical findings from our group and others 
showing its potential involvement in dyskinesia.

2. INTRODUCTION

Parkinson’s disease (PD) is a chronic and 
progressive neurological disorder characterized by 
selective degeneration of dopaminergic (DAergic) 
neurons in the substantia nigra pars compacta 
(SNc) and subsequent decrease of dopamine 
(DA) levels in the striatum. PD is now thought as 
a complex motor disorder related to degeneration 
of the DAergic system (featuring bradykinesia, 
tremor, rigidity and postural instability), but also a 
progressive multisystem disease with non-motor 
deficiencies (impaired olfaction, gastrointestinal, 
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genitourinary, cardiovascular and respiratory 
dysfunctions, sleep, sensory, visual and 
neuropsychiatric disorder). Although the motor 
symptoms of PD are well defined, the non-motor 
features of this disorder are under-recognized 
and, consequently, undertreated. Recent studies 
suggested a non-motor preclinical phase spanning 
up to 20 years or more (1, 2). The causes of non-
motor symptoms in PD are multifactorial and 
partially linked to widespread distribution of alfa-
synuclein (alfaSyn), the basic pathological protein 
aggregated in neurons, neurites, presynaptic 
terminals and glia as a hallmark in PD and other 
synucleinopathies (3). Non-motor symptoms may 
impair parkinsonian quality of life, particularly 
in advanced stages of the disease, and most 
of them do not respond to dopaminergic drugs. 
The pharmacotherapy of these motor and non-
motor symptoms is complex and complicates 
long-term therapy of the disease, due to possible 
drug interactions and side effects. Moreover, 
antiparkinsonian compounds themselves contribute 
to the onset of some these motor and non-motor 
symptoms to a considerable extent (3, 4).

L-DOPA is the naturally occurring L-isomer 
of the amino acid D,L-dihydroxyphenylalanine. 
L-DOPA therapy has revolutionized the treatment of 
PD. Birkmayer and Hornykiewicz (5) carried out in 
1961 the first clinical trial with L-DOPA that showed 
dramatic anti-akinetic effects after intravenous (i.v.) 
administration in PD patients. The use of L-DOPA 
in clinical routine became definitely established in 
1967, when Cotzias and colleagues (6) introduced 
the chronic, high dose oral L-DOPA regimen, which 
is basically still practiced today. It provides marked 
motor symptomatic benefits to virtually all patients 
with PD. Although L-DOPA replacement therapy 
long-term use is associated with the appearance 
of motor complications including L-DOPA-induced 
dyskinesia (LID) and other side effects.

3. L-DOPA-INDUCED DYSKINESIA

There are many unsolved questions 
concerning the cause of L-DOPA treatment side 
effects. Several studies have examined the 
potential of L-DOPA to induce toxicity in normal 
animals and humans, as well as in animal models 
of PD. L-DOPA can generate cytotoxic reactive 
oxygen species (ROS) by way of the oxidative 
metabolism of DA or via autoxidation. L-DOPA 
can be toxic to cultured dopaminergic neurons (7). 
No reduction in the number of DAergic neurons 

was observed in the SNc of normal rats or mice 
chronically treated with high doses of L-DOPA (8). 
Similarly, there is no evidence of L-DOPA-induced 
neurodegeneration in normal primates (9) or non-
parkinsonian humans (10). L-DOPA has also been 
tested in rats with dopaminergic lesions induced 
by 6-hydroxydopamine (6-OHDA) and instead of 
the previous toxicity observed in DA neurons in the 
ventral tegmental area (11) different studies showed 
that L-DOPA also promoted recovery of DA neurons 
with increased striatal innervation (12). Therefore, 
there is little or no evidence from in vivo studies 
to suggest that L-DOPA treatment damages nigral 
neurons in PD.

Indeed, there is evidence suggesting 
that under some circumstances L-DOPA might be 
protective and have trophic effects (13). Chronic 
L-DOPA administration promotes the expression of 
the trophic factor pleiotrophin in rats with moderate 
nigrostriatal lesions (14). Pleiotrophin, a secreted 
heparin-binding growth factor that is highly expressed 
during early post-natal brain development  (15), 
has been shown to promote neurite outgrowth 
and the survival of DAergic neurons in embryonic 
mesencephalic cultures (16). Although the final 
conclusions of a recent clinical trial of L-DOPA in 
patients with PD remains unclear, the study did not 
show any clinical evidence that the drug has an 
adverse effect on disease progression (17). Further 
clinical and imaging studies to help clarify whether or 
not L-DOPA is toxic in PD are warranted. Therefore, 
L-DOPA remains as the ‘‘gold standard’’ for the 
treatment of patients with PD.

The occurrence of dyskinesia limits the 
ability to optimize the treatment regimen, affects 
functional disability, and impacts the patient quality 
of life. Hyperkinetic choreiform and/or dystonic 
abnormal involuntary movements characterize 
L-DOPA induced dyskinesia (LID). This might 
influence specific parts of the body or become 
generalized and seriously compromising. LIDS may 
affect up to 40% of PD patients treated with L-DOPA 
over a period of 5 years; the percentage of dyskinetic 
patients can reach up to 90% after a period of 
10 years  (18, 19). Table 1 summarizes clinical 
presentation and available treatments for LIDs in 
PD patients. Over the last years, new evidence has 
extended our understanding of the pathophysiology 
of LIDs and there is increasing evidence of 
the involvement of other non-dopaminergic 
systems (18). This raises the possibility for novel 
promising therapeutic approaches, including the 
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use of agents that interfere with glutamatergic, 
serotonergic, adenosine, adrenergic, and cholinergic 
neurotransmission, which could be used to prevent 
or decrease the severity of LIDs.

The pathophysiology of LIDs is complex 
and many factors are involved (for recent reviews, 
see (19, 20)). The current strategies for prevention 
and management and of LIDs include: delaying the 
use of L-DOPA and initiating therapy with DAergic 
agonists, discontinuation or decreasing individual 
doses of L-DOPA and adjusting the schedule time of 
drug intake, and the use of antidyskinetic agents (21) 
(Table 1). For patients presenting with severe motor 

complications these drug interventions are usually 
insufficient, and more aggressive and expensive 
strategies may be indicated (22). Stereotactic 
interventions in the basal ganglia with the use of 
ablative techniques or deep brain stimulation (DBS) 
implantation are effective to reduce LIDs, but they 
have restricted criteria to be indicated and technical 
problems were commonplace and intensive 
postoperative monitoring is necessary (23). They 
are also not free of adverse effects and include 
cognitive decline, speech difficulty, instability, gait 
disorders and depression (24). In conclusion, the 
clinical therapeutic strategies to prevent or reduce 
the intensity of LIDs are still limited.

Table 1. Clinical presentations and current treatment strategies of L‑DOPA‑induced dyskinesia in 
patients with Parkinson’s disease*
Type of dyskinesia Temporal profile Clinical aspects Treatment strategies

Peak‑dose 
dyskinesia

Dyskinesias are present 
at the peak of plasma 
levels of L‑DOPA

Predominantly asymmetric generalized 
choreiform type movements, being more 
prominent in the most affected side;
After taking L‑DOPA the patient 
begins to improve, soon thereafter he 
develops dyskinesias that after some 
time diminish or disappear (pattern IDI: 
“Improvement‑Dyskinesia‑Improvement)

Reduce any antiparkinsonian 
medication (reduce dopaminergic stimulation);
Use smaller single‑doses of L‑DOPA;
Add dopamine agonists and reduce 
L‑DOPA (change for a more continuous profile 
of dopaminergic stimulation);
Add anti‑dyskinetic drugs (amantadine, 
buspirone or clozapine);
Surgical treatment: pallidal deep brain 
stimulation (DBS) or pallidotomy;
Or consider the use of other strategies 
for providing continuous dopaminergic 
stimulation (subcutaneous infusions of 
apomorphine, intrajejunal infusion of L‑DOPA)

Diphasic dyskinesia Dyskinesias appear at the 
onset and at the end of 
L‑DOPA antiparkinsonian 
action, and cease or 
are reduced at the peak 
plasma levels of L‑DOPA

Dyskinesias predominate in the lower 
limbs;
Have a stereotypical characteristic with 
repetitive alternating movements;
Are predominantly dystonic (pattern DID: 
“Dyskinesia‑Improvement‑Dykinesia”)

Add dopamine agonists;
Increase L‑DOPA single‑dose;
Use of other strategies for 
providing continuous dopaminergic 
stimulation (subcutaneous infusions of 
apomorphine, intrajejunal infusion of L‑DOPA)

Square‑wave 
or continuous 
dyskinesia

Dyskinesias are present 
during all the time of the 
L‑DOPA cycle

In general predominantly choreic 
movements mixed or followed by 
dystonic movements

Treated case‑by‑case

Off‑dyskinesia Dyskinesias appear 
when plasma L‑DOPA 
concentrations are low in 
the early morning before 
the first L‑DOPA intake, or 
at the end of the L‑DOPA 
cycle (off state)

Painful, distressing and disabling 
dystonic posture or cramp;
Generally occurring in the lower limbs;
Present in the ¨off state¨

Take the first dose of L‑DOPA while in bed;
Add a controlled release L‑DOPA preparation 
at bedtime;
Add a dopamine agonist to the 
antiparkinsonian drug regimen

*Data was collected mostly from reference 21. Certain of these agents are approved or undergoing study in the United States or other 
countries
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Experimental models of PD have assisted 
in clarifying the anatomy and function of DAergic 
neurons as well as their relationship with the rest 
of the basal ganglia in the elaboration of motor 
responses (25,  26,  27). The neurotoxins 1-methyl-
4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and 
6-OHDA are the two tools widely used to induce 
death of DAergic cells in the SNc although other 
animal models are currently used to simulate the 
neuropathological conditions of PD. These models 
have been also used to investigate new drug targets 
and therapeutic strategies (26, 28, 29). As observed 
in PD patients, administration of therapeutic doses of 
L-DOPA to parkinsonian rodents improves akinesia 
performance (30) but the chronicity of the treatment 
can induce the appearance of abnormal involuntary 
movements (AIMs) with similarities to LIDs observed 
in humans (31). The occurrence of LIDs is highly 
dependent on the degree of striatal denervation (32) 
and the dose of L-DOPA given (33).

The chronic administration of L-DOPA to 
6-OHDA lesioned rodents causes the appearance 
of AIMs (31, 34, 35) that affect the axial, limb and 
orofacial muscles that can be rated on scales based 
on their topographical distribution, duration, and 
amplitude (32). In 1998, Cenci and collaborators (31) 
first published a rating scale to quantify L-DOPA-
induced dyskinetic-like behaviors in rats. The 
validity of the model is exemplified by the fact that 
drugs used in the clinic for the treatment of LIDs 
can reduce the severity of AIMs in L-DOPA-treated 
animals (36). Pre- and post-synaptic molecular 
changes in striatum contribute to the establishment 
of LIDs (37). Among the molecular changes that 
occur in the striatum of rodents presenting AIMS 
are postsynaptic changes associated with DA-D1 
receptors seem to be critical (38, 39) (see Figure 5). 
During PD progression, there is a gradual loss of 
DAergic neuronal loss and DA is no longer stored in 
presynaptic DAergic striatal terminals (40, 41).

The mechanisms behind LID are still not 
fully understood, but appear to involve maladaptive 
plasticity at striatal synapses. Down-regulation of 
DA autoreceptors (42) and DA release from non-
DAergic terminals (43) will result in increased 
extracellular concentration of DA following L-DOPA 
administration  (44). The association of all of these 
factors will result in a higher release of DA after 
L-DOPA administration leading to an increment of DA 
turnover (44, 45). Augmented DA turnover is thought 
to be one of the main precursors of LIDs (42). All these 
abnormal pre-synaptic-related alterations may induce 

altered stimulation of DA receptors and downstream 
post-synaptic changes. This idea is supported by the 
fact that continuous infusion of L-DOPA induces lower 
levels of dyskinesia (46). The increased density of DA 
receptors in striatum produces increments in second-
messenger expression and changes in receptor 
trafficking (47, 48). Some downstream alterations 
includes the overexpression of the transcription 
factor FosB/DeltaFosB (35, 40, 50, 51, 52, 53, 54), 
phosphorylation of DARPP-32 at Thr-34 (55), 
phosphorylation of GluR1 subunit of AMPA receptor 
et serine 845 specific target of the protein kinase A 
(PKA; 60) and phosphorylation extracellular signal-
regulated kinase (ERK) 1/2 (53) (see Figure 5).

More importantly, several pieces of 
evidence suggest that nitric oxide (NO)-cyclic 
guanosine monophosphate (cGMP) pathway is 
altered in PD (18). Herein, we summarize the 
current knowledge of the pharmacology of LIDs 
in PD. However, this article attempts to provide a 
comprehensive picture of the role of NO in PD and to 
highlight recent findings from our group and others 
showing its potential involvement in LIDs.

4. EMERGING TREATMENTS FOR L-DOPA- 
INDUCED DYSKINESIA: A BRIEFF SUMMARY

Once established, LIDs appear at every 
administration of L-DOPA and given that PD has still 
no cure, the search for new therapies that associated 
with L-DOPA prevent the onset of these motor 
complications are needed (56). The prevention and 
treatment of dyskinesia are a clinical unmet need and a 
great challenge for clinicians and basic scientists (57). 
Recently, some environmental changes such as 
physical exercise (53, 58) and pharmacological 
manipulation of non-dopaminergic neurotransmission 
systems have been showing great promise, such as 
glutamate, serotonin, adenosine and acetylcholine 
neurotransmission systems (19). Overall, these new 
agents seem to reduce the severity or extend the “on” 
time without LIDs (56). For most of the compounds 
promising results have been obtained in preclinical 
investigations and in initial clinical trials. However, 
long-term safety, tolerability and efficacy studies in 
patients are still required (19, 20,56, 57).

Multiple mechanisms underlying LIDs have 
been proposed but an efficient antidyskinetic therapy 
has not been developed thus far. Unfortunately, 
potential antidyskinetic effects observed in 
experimental models do not always translate into 
clinically useful effects (21, 58). Table 2 summarizes 
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Table 2. Drugs in clinical trials for the treatment of L‑DOPA‑induced dyskinesias in patients with 
Parkinson’s disease*

Pharmacological class Drug Clinical findings Reference

Glutamate NMDA 
antagonists

Amantadine Effective against LIDs, controversy concerning the duration of 
antidyskinetic effect

(67, 68)

Remacemide No antidyskinetic effects (19)

Dextromethorphan Reduced dyskinesia by 30‑40% (19)

Memantine Possibly effective against LIDs, good tolerability and safety (44)

Neu‑120 Currently in phase II for safety, tolerability, pharmacokinetic and 
pharmacodynamic study

(45)

Glutamate AMPA 
antagonists

Perampanel No antidyskinetic effects (80,19)

Talampanel No findings available (19, 20)

Glutamate mGluR 
antagonists

AFQ056 Reduced established LIDs, no negative effect on parkinsonian, 
safety and tolerability concerns

(76, 77, 19)

Dipraglurant (ADX‑48,621) Improved parkinsonian and dyskinesia (19)

alpha2‑adrenergic 
receptor antagonists

Idazoxan Controversial results concerning effectiveness and adverse‑effects 
profile

(82, 83)

Fipamezole Partially effective against LIDs (84)

Adenosine A2A receptor 
antagonists

Preladenant (Sch 420814) Increase in dyskinesia rates, improvement in parkinsonian symptoms (87)

Istradefylline Increase in dyskinesia rates, improvement in parkinsonian symptoms (88)

Tozadenant (SYN115) No effect in dyskinesia, improvement in parkinsonian symptoms (88)

Nicotine receptor 
agonists

Nicotine Antidyskinetic, Serious adverse effects (19, 20)

SIB‑1508Y Very low tolerability (19)

Monoamine oxidase‑B 
inhibitors

Selegiline Controversial results concerning effectiveness against LIDs (62)

Rasagiline Partially effective against LIDs (63)

Safinamide Improvement of LIDs (66)

Partial dopamine 
receptor agonists

Aripiprazole Effective against LIDs, well tolerated (59)

Pardoprunox Effective against LIDs, improvement in parkinsonian symptoms (60,61)

Aplindore No findings available (19, 20)

Serotonin receptor 
agonists

Tandospirone No effect in dyskinesia, worsening of parkinsonian symptoms (19)

Sarizotane Controversial results concerning effectiveness against LIDs (92, 19)

Piclozotan No findings available (19, 20)

Other treatments  Zonisamide Dose‑dependent effectiveness against LIDs (19)

Gabapentin No effect in dyskinesia (19)

Topiramate No findings available (19, 20)

Valproate No effect in dyskinesia (20)

Levetiracetam Mild antidyskinetic effects (20)

*LIDs: L‑DOPA‑induced dyskinesia; NMDA: N‑methyl‑d‑aspartate; mGluR: AMPA: α‑amino‑3‑hydroxy‑5‑methyl‑4‑isoxazolepropionic 
acid receptor; metabotropic glutamate receptors. For further information see (19, 20). The number between brackets correspond to the 
reference number
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the main agents in clinical trials for the treatment of 
LIDs in PD.

4.1. Other Dopaminergic components
The use of partial DA receptors agonists 

has presented good results in the control of LIDs. 
Aripiprazole is a novel antipsychotic medication 
characterized by partial agonist of DAergic-D2 
receptors and 5-HT1A receptors and by antagonism 
of 5-HT2A receptors (59). Aripiprazole, at very low 
doses, was well tolerated and reduced the severity 
of LIDs in PD patients (59). Pardoprunox (SLV308) 
is safe and improved clinical scores of PD patients, 
and improved the “on” time without troublesome 
LIDs (60, 61). The monoamine oxidase B (MAO‑B) 
inhibition has shown intriguing antidyskinetic outcome 
despite raising central DA levels. For example, 
selegiline worse LIDs (62), while rasagiline increased 
daily “on” time without troublesome dyskinesia when 
used as an add-on therapy in patients with PD 
and motor fluctuations  (63). Safinamide, a novel 
MAO-B and glutamate-release inhibitor, increased 
the duration of the antiparkinsonian response of 
L-DOPA  (64). In PD patients, safinamide improved 
motor fluctuations  (64) and “on” time without 
troublesome LIDs (65).

4.2. Glutamatergic component
The antidyskinetic effects of the low affinity 

N-Methyl-D-aspartate (NMDA) receptor antagonist 
amantadine aroused the interest of the role of 
glutamatergic neurotransmission in the development 
of LIDs. Amantadine is the best antidyskinetic 
drug indicated for the clinical management of 
LIDs (67, 68), and provides mild to moderate clinical 
benefits that usually decline with long-term therapy. 
The use of amantadine is limited due to its adverse 
effects (69). Amantadine is not universally effective 
can be poorly tolerated by some patients, and may 
elicit psychiatric complications. Although the exact 
antidyskinetic mechanism of amantadine is still 
not fully known, evidence has indicated a possible 
reduction of glutamatergic excitatory activity 
through the antagonism of NMDA receptors (70). 
Other glutamatergic antagonists advanced from 
experimental studies to clinical trials. Memantine 
showed no antidyskinetic effects in a double-blind 
crossover randomized study (71). Neu-120 is a 
potent selective and non-competitive NMDA receptor 
modulator currently in phase II for safety, tolerability, 
pharmacokinetic and pharmacodynamic study in 
patients with advanced PD and LIDs (72). Neu-120 
showed antidyskinetic effect without prejudice to 
the antiparkinsonian effects of L-DOPA  (72). The 

modulation of metabotropic glutamate receptor 
subtype 5 (mGlu5) has been investigated as a 
promising novel approach for the treatment of 
LIDs (73, 74, 75). Metabotropic mGlu5 receptor 
synergistically interacts with NMDA receptor to 
counteract dopaminergic dopamine D2 receptor 
signaling. Selective mGlu5 antagonists both prevent 
development and suppress expression of established 
dyskinesia (74). For example, the selective mGlu5 
receptor antagonist AFQ056 has demonstrated 
antidyskinetic effects in experimental models of 
PD  (74, 75). Two recently randomized controlled 
trials demonstrated antidyskinetic efficacy of AFQ056 
in PD patients without changing the motor benefits 
of DAergic therapy (76, 77). However, PD patients 
treated with AFQ056 reported adverse effects such 
as dizziness, hallucination, fatigue, nasopharyngitis, 
diarrhea, and insomnia (76). Calcium-permeable 
AMPA receptors and splicing of AMPA receptors 
subunits were associated with LIDs phenotype in 
animal models (78). The selective AMPA receptor 
antagonist LY293558 reversed LIDs (79). The 
blockade of calcium entry with IEM 1460 showed 
similar antidyskinetic effects in animals (78, 79). Also 
there are few clinical trials testing AMPA receptor 
antagonists for the treatment of LIDs in patients 
with PD. Perampanel is a well-tolerated selective 
and noncompetitive AMPA receptor antagonist. But 
it was ineffective in improving motor symptoms of 
L-DOPA-treated patients with moderately advanced 
PD and motor fluctuations (80).

4.3. Adrenergic component
Many preclinical studies have demonstrated 

the role of alfa- and beta-adrenergic receptors in the 
development of LIDs. For instance, independent 
research groups have demonstrated antidyskinetic 
effects of adrenergic receptors antagonists such as 
idazoxan and fipamezole (JP-1730) in primates (81). 
Clinical results obtained so far are controversial. 
Manson et al. (82) showed the ineffectiveness of 
alfa2 receptor antagonist idazoxan against LIDs 
in PD patients. A single dose of idazoxan (20 mg) 
improved the severity of LIDs in a pilot randomized 
placebo-controlled study (83), without deterioration 
of the antiparkinsonian response to L-DOPA. 
Recently, a large double-blind randomized, placebo-
controlled clinical trial provided evidence that 
fipamezole, a selective alfa2-adrenergic receptor 
antagonist, is well tolerated and reduced LIDs in 
PD patients (84). These results suggest that the 
use of alfa2-adrenergic receptor antagonists for the 
treatment of LIDs in these patients need to be further 
explored in animal models.
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4.4. Adenosine component
Preclinical evaluation of A2A receptor 

antagonists was effective against LIDs (85,86). 
The well-known modulatory role of adenosine A2A 
receptors in the activity of DA-D2 receptors and mGlu5 
receptors in the basal ganglia was also observed in 
experimental models of LIDs (79). However, clinical 
results with adenosine A2A receptor antagonists 
have not confirmed their promising potential for 
LIDs. A phase II, double-blind, randomized trial 
showed that the selective adenosine A2A receptor 
antagonist preladenant (SCH420814) worsened 
motor symptoms and dyskinesia of PD patients (87). 
Tozadenant (SYN115) and istradefylline (KW6002) 
relieved the motor fluctuations in PD patients, but 
they were ineffective against the troublesome LIDs 
(88). Istradefylline actually worsened “on” time with 
dyskinesia in patients (88).

4.5. Serotonergic component
Some authors have demonstrated the 

sprouting of striatal serotonergic nerve terminals 
in parkinsonian animals with LIDs (89, 90). The 
administration of buspirone, an agonist for the 
5-HT1A autoreceptor, attenuates the development 
of LIDs (91). However, clinical studies have not 
obtained success in attenuating LIDs with the 
modulation of 5-HT1A autoreceptor; tandospirone 

a selective 5-HT1A receptor agonist did not show 
antidyskinetic effects in PD patients (120, 121). 
Sarizotan provided a significant reduction in 
troublesome dyskinesia when used as an adjunct 
to L-DOPA in PD patients (92). Eltoprazine, a 
drug that acts as an agonist on both 5-HT1A and 
5-HT1B receptors and as an antagonist on 5-HT2C 
receptors, demonstrated excellent antidyskinetic 
effects, but decreased the antiparkinsonian effects 
of L-DOPA in animal models (93). In PD patients, 
low doses of clozapine (a partial agonist of 5-HT1A 
receptors), improved tremors (94), also presented a 
good antidyskinetic efficacy.

Among the various strategies investigated 
recently, the nitric oxide (NO)-cGMP system 
emerged as a new promising target for the treatment 
and understanding of LIDs (45, 54, 95, 96). In 
the next sessions we will review recent studies 
addressing these questions focusing on NO in 
addition to NO, DA and glutamate interactions in 
the striatum of parkinsonian rodents. Also, we will 
discuss the possible role of NO-cGMP system as 
a target for understanding the molecular basis of 
LIDs and the development of novel antidyskinetic 
agents (95, 96).

5. NITRIC OXIDE: SIGNALING PATHWAYS 
IN STRIATAL CIRCUITRY AND 
PARKINSON’S DISEASE

Nitric oxide (NO) is a small and highly 
diffusible molecule abundant in the striatal 
interneurons, besides different regions of the human 
body. Although first described as endothelium-derived 
relaxing factor in blood vessels (97), NO can act as a 
retrograde neurotransmitter or a signaling molecule 
in the central nervous system (CNS) (Figure  1), 
as well as antimicrobial and antitumor agent (98). 
Nowadays, NO has been associated with a variety 
of physiological and pathological process through 
his action on different cell types from neurons and 
glia to fibroblasts, myocytes and blood cells  (99). 
As a neurotransmitter in the CNS, NO is known 
to work in an unorthodox way due to its biological 
characteristics: (i) it is synthesized postsynaptically 
in the cell bodies and dendrites, (ii) it is not stored 
in vesicles being a diffusible gas, (iii) it does not act 
at conventional receptors on the surface of adjacent 
neurons, (iv) it can act as a retrograde messenger 
diffusing to the presynaptic terminal.

Cytoplasmic nitric oxide synthase (NOS) is 
the enzyme responsible by NO production from the 

Figure 1. High resolution confocal laser scanning microscopy of 
TH- (green) and nNOS- (red) positive immunoreactivity in the rat 
striatum. The nNOS neurons terminals/fibers presented surrounded 
by a dense TH-ir positive neurons terminals. There is an absence of 
complete co-localization between nNOS and TH immunoreactivity 
in the rat striatum (for details see 102).
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aminoacid L-arginine. Based on the first localization 
and signaling properties, three NOS isoforms can 
be recognized: endothelial NOS (eNOS), inducible 
NOS (iNOS) and neuronal NOS (nNOS). The 
activity of eNOS and nNOS are both trigged in a 
calcium-dependent pathway, whilst in iNOS activity 
is calcium-independent. nNOS was first identified 
in CNS; it is also expressed in other tissues. It is 
abundant in different regions of the rat brain as 
showed in preparations using NADPH-diaphorase 
histochemistry techniques (100).

NOS-positive striatal interneurons have a 
relevant role in controlling motor activity (101). In 
basal ganglia, nNOS protein is present in several 
structures such as striatum (interneurons), substantia 
nigra (Figures 1, 2) and subthalamic nucleus. 
A proximity analysis of the dual localization of 
immunoreactivity for NOS and tyrosine hydroxylase 
(TH), enzymes responsible for the synthesis of NO 
and DA, respectively, was examined in regions 
of the nigroestriatal pathway (102). Co-localized 
regions were identified with a Pearson correlation 
coefficient ≥0.7. A large proportion of NOS positive 
immunoreactive soma/axon/dendrite themselves 
were directly opposed by TH-positive immunoreactive 
ones, within a radius of 1 and 2 μm (102- Figure 3). 

These anatomical arrangements corroborate 
evidence of DA and NO being intertwined in the 
anatomy in addition to physiology and pathology of 
the nigrostriatal pathway (56, 101, 103,104).

The striatum is the main structure of the 
basal ganglia where excitatory cortical information 
entry. According to the classic view of basal ganglia 
circuitry information arising from corticostriatal 
projections is processed within the striatum and 
transmitted to the output basal ganglia nuclei 
through medium spiny projection neurons. The 
excitatory cortical input to medium spiny neurons is 
modulated by many inputs, including NO produced 
by nNOS-expressing interneurons (105) and DA, 
arising from the DAergic terminals derived from the 
SNc. Due to the proximity of nitrergic, glutamatergic 
and DAergic nerve endings in striatum, a growing 
body of evidence has consistently shown that NO 
has an important modulatory role in the integration 
of information arising from the corticostriatal and 
nigrostriatal pathways (101) (see Figure 4).

nNOS-expressing striatal interneurons 
are gamma-aminobutyric acid (GABA) positive 
neurons also expressing neuropeptide Y (NPY) 
and somatostatin (105). These cells are aspiny with 

Figure 2. Distribution pattern of axons/cells immunoreactive for nNOS (red) and TH (green) in the rat substantia nigra in a double-stained 
section. The SNc is characterized by a high density of DAergic somata (green fluorescent cells-B and C), and a dense network of overlapping 
DAergic dendrites. Some nNOS-is neurons (red labeled) are also shown (A and C).
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12-25 mm in diameter, with fusiform or polygonal 
soma and represent 1-2% of striatal neurons. 
The nNOS enzyme is located on interneurons 
present in the dorsal striatum and the nucleus 
accumbens (100). The main intracellular target for 
NO is the soluble isoform of the enzyme guanylate 
cyclase (sGC). The striatum contains the highest 

concentration of this enzyme, which is located 
mainly in medium spiny neurons (106). The sGC 
acts as an effector molecule for NO, increasing the 
synthesis of the second messenger cGMP (107). 
cGMP activates cGMP-dependent protein kinases 
(PKG), phosphodiesterases (PDEs) and cGMP-
regulated ion channels coupled to cGMP. PKG can 

Figure 3. High resolution confocal laser scanning microscopy TH-positive fibers (green) and nNOS-positive (red) in a double-immunostained 
section from the rat substantia nigra (A). Image analysis might be best performed in three dimensions providing individual high resolution 
morphology. Using commercially available software Imaris (BitPlane) 3D reconstruction of the fluorescent image allowed us to reconstruct 
the filled neuron and process. We could determine the distribution of contacts between TH- and nNOS-cell body/process with les than 2um 
distance (B). The yellow dots (arrows head) indicate the location of TH-positive processes within the 2μm periphery of the nNOS-positive cell 
(for details see 102). Neuron body positive for nNOS is indicate by the arrow.

Figure 4. Schematic illustration of the effects of glutamate and dopamine on NO-signaling pathway in the striatum. Glutamate released from 
corticostriatal pathway facilitates calcium influx through NMDA receptors onto nNOS-expressing interneurons and promotes the activation of 
the nNOS enzyme. NO can act retrogradelly onto glutamatergic corticostriatal terminals or post-synaptically in the medium spiny neurons. 
The activation of soluble guanylate cyclase (sGC) within medium spiny neurons results in generation of cGMP, activation of cGMP-dependent 
protein kinases (PKG) and further effects in many downstream molecular signaling pathways, including the state of phosphorylation of 
DARPP-32. Dopamine seems to have a facilitatory action on NO-signaling pathway (and also downstream pathways) through D1/5 receptors, 
whereas activation of D2 dopaminergic pathway has the opposite effect. DA=dopamine, Ca2+=calcium ion, D1=D1 dopamine receptor, D2=D2 
dopamine receptor, GLU=glutamate, NMDA=N-methyl-D-aspartate receptor, AMPA=α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
receptor, O2=molecular oxygen, BH4=tetrahydrobiopterin.
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also phosphorylate dopamine- and cAMP-regulated 
phosphoprotein of 32-kDa (DARPP-32) in the amino 
acid threonine 34 (Thr-34) (110,109) and interact 
with many molecular signaling pathways. DARPP-
32 is present in the cytoplasm and dendrites of 
medium spiny neurons (110) and is a potent inhibitor 
of protein phosphatase-1 (PP-1).

As illustrated in Figure 5, PP-1 enzyme 
regulates AMPA and NMDA receptors, the 
expression of transcription factors such as CREB 
(constitutive protein receptor binding to cAMP 
response element) and neural plasticity processes 
such as long-term depression (LTD) and long-term 
potentiation (LTP) (111). PDEs hydrolyze cyclic 
nucleotides (cAMP and cGMP), decreasing their 
availability. Isoforms of PDEs are present in medium 
spiny neurons; they consist of regulators of the 
signal transmitted by the NO-cGMP pathway (112).

Since NO is a gas, this molecule can 
influence the physiology of many others cells 
located at a relative distance (107). Under normal 
physiological conditions, activation of DA D1 or D2 
receptors in striatum have opposite effects onto 
NO-cGMP pathway: the stimulation of D1 receptors 

increases the production of NO via nNOS (113) and 
also elevates the levels of cGMP (112), whereas 
activation of D2 receptors produces the opposed 
effect (113, 114) (Figure 4). In striatum, nNOS 
can be activated following a transient elevation in 
intracellular Ca2+ levels mediated through glutamate-
induced activation of NMDA receptors (115). The 
interaction of nitrergic and glutamatergic system 
is complex and the role of NO-cGMP pathway in 
facilitating (116) or inhibiting (117) corticostriatal 
transmission is a debatable issue. Because NO 
interacts with DA (101) and glutamate in striatum 
(as well with other neurotransmitters), it is crucial to 
understand how the NO-cGMP pathway affects the 
transfer of information from the cortex to the basal 
ganglia through the striatum in neurodegenerative 
disorders such as PD.

Several pieces of evidence converging from 
different animal models of PD have suggested that 
alterations in NO-cGMP system may contribute to 
pathophysiological changes in basal ganglia following 
nigrostriatal DAergic pathway injury. Fully 6-OHDA-
lesioned rats (i.e. presenting >95% of DAergic cell 
depletion in SNc) presented an increment in the total 
amount of nNOS protein in the striatum as evaluated 

Figure 5. Impact of NOS inhibitors in NO-signaling and related pathways in L-DOPA-induced dyskinesia (LID) and possible role of NOS 
inhibitors as anti-dyskinetic compounds. (a) At the pre-synaptic sites, LID might be associated to the non-physiological release of DA from 
serotonergic terminals and increments the DA turnover. Several molecular markers of LID have been identified in medium spiny neurons. 
Some alterations include augmented phosphorylation events at GluR1 subunit of AMPA receptors at serine 845 and also at the amino acid 
threonine 34 (Thr-34) in DARPP-32 proteins. At the nuclei, there is an overexpression of the transcription factor FosB/DeltaFosB. The sum of 
these and other factors may be responsible for the appearance of unwanted abnormal involuntary movements. (b) Schematic representation 
of the anti-dyskinetic effects of NOS inhibitors in the molecular markers of LID, focusing on nNOS inhibition with 7-NI. The blockage of NOS 
enzyme with the nNOS inhibitor 7-NI reduces the augmented dopamine turnover, the abnormal phosphorylation of GluR1 subunit of AMPA 
receptors, the increased phosphorylation of DARPP-32 and FosB/DeltaFosB overexpression in the striatum. The precise mechanism of 
action of NOS inhibitors on these signaling pathways is not yet known. The role of these compounds on direct or indirect pathway is critical to 
the understanding the role of NO in LID. GTP=guanosine triphosphate, cGMP=cyclic guanosine monophosphate, PDE=phosphodiesterases, 
sGC=guanylate cyclase, PKG=cGMP-dependent protein kinase, PKA=protein kinase A, AC=adenylyl cyclase, 5-HT=serotonin, DA=dopamine, 
Ca2+=calcium ion, D1=D1 dopamine receptor, D2=D2 dopamine receptor, GLU=glutamate, NMDA=N-methyl-D-aspartate receptor, AMPA=α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, O2=molecular oxygen, BH4=tetrahydrobiopterin, ERK=extracellular signal-
regulated kinase
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by western blot (95). Similarly, partial 6-OHDA-
lesioned rats showed an increment in the number 
of NADPH-d/nNOS positive cells in the ipsilateral 
dorsal striatum (118, 119, 120). Similarly, MPTP 
administration to mice also induced up-regulation of 
nNOS-sGC-cGMP in the striatum (121). Moreover, 
the administration of rotenone (122) or manganese 
chloride (123) to rats significantly increased both the 
number of NADPH-d/nNOS-positive cells/fibers and 
the NOS activity in the striatum.

Taken together, the above observations 
strongly suggest that NO-cGMP pathway is altered 
in PD. Even though the exactly role of NO in PD 
remains unknown, some studies are now revealing 
that NO-cGMP pathway is an important modulator of 
plasticity in the parkinsonian striatum. Tseng et al. (124) 
demonstrated that the administration of the sGC 
inhibitor ODQ to 6-OHDA-lesioned rats attenuated 
the increments of cGMP levels in the striatum, the 
excessive abnormal firing of striatal medium spiny 
neurons and the increased metabolic activity of the 
subthalamic nucleus (STN). Furthermore, the authors 
also demonstrated that ODQ decreased akinesia in 
6-OHDA-lesioned rats and in MPTP-treated mice. 
These results suggest that sGC-cGMP is related to 
dysfunctional basal ganglia signaling and the targeting 
of these molecules with new drugs may modify the 
disorganized activity of the striatal output pathways 
observed in PD. At cellular level, Yuste et al. (120) 
demonstrated that phosphorylation of DARPP-32 
in Thr-34 (Thr-34-DARPP-32) was increased in the 
striatum of partially DA-depleted rats and correlated 
with the number of nNOS-positive interneurons. 
DARPP-32 plays an essential role in integrating 
signals from a number of behaviorally important 
neurotransmitters and neuromodulators that target 
the striatum (111). Interestingly, the administration of 
the preferential nNOS inhibitor 7-nitroindazole (7-NI) 
prevented the increase in the number of nNOS-
expressing interneurons and the phosphorylation of 
DARPP-32 at Thr-34, suggesting that the state of 
phosphorylation of DARPP-32 in the parkinsonian 
striatum can be dependent of nNOS (120).

In agreement with these findings, several 
studies conducted in rodents without DAergic 
lesions indicate that pharmacological manipulations 
of NO-cGMP result in molecular and behavioral 
changes (103). For example, both systemic and 
intrastriatal administration of NOS and sGC inhibitors 
induce catalepsy in rodents (124, 125), an effect that 
is correlated with the reductions in striatal nitrite/
nitrate levels (126).

Even thought, experimental data concerning 
striatal NO-cGMP levels in rodent models of PD are 
not univocal. Sancesario et al. (127) have described 
that the level of nNOS protein was decreased 
(42%) and the number of nNOS-immunopositive 
intrastriatal fibers (but not nNOS-immunopositive 
cell bodies) was markedly reduced in the striatum of 
6-OHDA-lesioned rats. It was also demonstrated in 
rats that 6-OHDA-lesions of the nigrostriatal DAergic 
pathway resulted in a 50% decrease in the activity 
of this enzyme in the ipsilateral striatum and the 
frontal cortex (128). Furthermore, it was reported 
that nNOS-immunoreactive cells were unchanged in 
MPTP-treated mice (129). Discrepancies in results 
are common and may occur due to differences in 
utilized experimental models of PD, techniques and 
regions selected for analysis, but also to the degree 
of striatal DAergic lesion.

6. NITRIC OXIDE IN L-DOPA-INDUCED 
DYSKINESIA

There is a critical need for functional 
characterization of striatal activity of the NO-cGMP 
pathway in PD and the better understanding of the 
role of NO-cGMP pathway in PD may contribute for 
the development of new therapies aiming to restore 
motor function. Although scarce and sometimes 
contradictory, a growing body of evidence has 
shown that the NO system plays an important role 
in the pathophysiology of PD (35, 145, 146, 130). 
Studies conducted in parkisonian patients reported 
increments in the concentration of NO metabolites 
nitrate (131) and nitrite (132) and also nNOS 
overexpression in neutrophils (133). Furthermore, 
increased cGMP concentration in plasma (134, 135) 
and in cerebrospinal fluid (136) was found in PD 
patients treated with L-DOPA. Even thought, other 
reports suggested an opposed effect. Post-mortem 
studies in PD patients revealed a decrease of 
dendritic processes of NADPH-d positive striatal 
neurons (137), of striatal NADPH-d-containing cell 
numbers (138), and of nNOS mRNA expression (139. 
Also, it was reported a reduction in the concentration 
of cGMP in plasma and cerebrospinal fluid (140). 
The cellular signaling pathway of NO-cGMP in the 
striatum is complex, and several factors can interfere 
with the expression of the components of this 
pathway, especially in human studies. For example, 
levels of cGMP may change with age (141) and they 
are also altered in cardiovascular diseases (143).

Few studies were conducted so far in animal 
models of PD to analyze the effects of L-DOPA on 
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NO-GMPc system. Chalimoniuk and Langfort (142) 
demonstrated that MPTP-treated mice with partial 
lesion (40%) of DAergic neurons of the SNc 
presented up-regulation of nNOS-GC-beta1-cGMP 
levels in the striatum and midbrain but the amount 
of these molecules remained unchanged after 
chronic treatment with low and high L-DOPA doses 
(10 and 100 mg/kg, for 11-14 days). Even though, 
studies conducted in our laboratory demonstrated 
that chronic administration of L-DOPA increased 
both the number of nNOS-expressing interneurons 
and the total amount of nNOS protein as measured 
by western blot in dorsal striatum of fully 6-OHDA-
lesioned rats, an effect that was additive to the lesion 
(unpublished results).

According to a nitrergic striatal dysfunction 
in LIDs, pioneering behavioral studies performed 
by our group demonstrated that NOS inhibitors 
are newly potential pharmacological approach for 
counteracting LIDs (54, 95, 96, 143). Combined 
therapies of L-DOPA and NOS inhibitors revealed 
interesting behavioral effects in rats and mice (101). 
Administration of an acute dyskinesiogenic dose 
of L-DOPA (100 mg/kg) to 6-OHDA-lesioned rats 
pre-treated with the non-selective NOS inhibitor 
NG-nitro-L-Arginine (L-NOARG) reduced abnormal 
involuntary movements, but impaired stepping 
test (95). Co-administration of the preferential nNOS 
inhibitor 7-NI and an acute dyskinesiogenic dose 
of L-DOPA (30 mg/kg) also reduced AIMs, with no 
observable motor impairment in rotarod performance 
and also in the stepping test (143).

In a different experimental paradigm, 
acute administration of NOS inhibitors after chronic 
L-DOPA treatment produced similar behavioral 
effects. Acute L-NOARG reduced pre-established 
LIDs in 6-OHDA-lesioned rats without interfering 
with stepping test performance (95, 96). The same 
effect was observed with 7-NI co-administration. 
7-NI administration reduced pre-established LIDs in 
a dose-response manner and did not affect L-DOPA-
induced motor improvement on the rotarod test (96).

Furthermore, chronic administration of 7-NI 
(during 8 days, starting at 26 days after initiation of 
chronic L-DOPA treatment) was able to reduce pre-
established LIDs without interfering with rotarod 
and stepping test performance, indicating that 
chronic administration of 7-NI does not produce 
tolerance  (143). Consistent with this data, we 
(unpublished observations) observed that chronic 
administration of the nonselective NOS inhibitor 

L-NAME and also 7-NI (administered 30  min 
before L-DOPA since the first day of treatment) 
were able to reduce LIDs in 6-OHDA-lesioned rats. 
The association of the iNOS inhibitor aminoguanidine 
did not interfere with LIDs, suggesting that the two 
other isoforms of the NOS enzyme are more linked 
to the appearance of LIDs.

nNOS is coupled to NMDA receptors 
thought the postsynaptic density protein (PSD-
95) and activation of NMDA receptors is able to 
produce increments in striatal levels of NO thought 
nNOS (144, 145) (Figure 5). As mentioned before, 
overactivity of glutamatergic inputs in the basal 
ganglia has been suggested to be involved in 
the pathophysiology of LIDs. NMDA receptors 
antagonists such as amantadine, dextrorphan and 
dextromethorphan decrease LIDs in humans and in 
MPTP-treated primates (146, 147). Since activation 
of NMDA receptors augments neuronal calcium entry 
and stimulates nNOS, it is possible to speculate that 
one of the actions of NOS inhibitors is to reduce 
NMDA-induced increments of NO production. Even 
though, further studies addressing the specificity 
and targets of NOS inhibitors in LIDs are needed to 
understand their anti-dyskinetic effects.

Recently, some molecular changes related 
to NOS inhibitors are being revealed at both pre- 
and post-synaptic levels. Neurochemistry analysis 
performed by our group demonstrated that inhibition of 
pre-established AIMs with 7-NI (30 mg/kg) produces 
a markedly decrease in DA turnover in the striatum 
of dyskinetic rats (45). One possible explanation for 
the effects observed with 7-NI may be related to its 
ability to inhibit MAO-B. MAO-B is found attached to 
the membrane of the intraneuronal mitochondria and 
one of its functions is to convert DA in DOPAC (148). 
Thus, the antidyskinetic efficacy of 7-NI may also be 
associated with the inhibition of MAO-B (149, 150) 
since administration of 7-NI produces a significant 
increase in extracellular DA and a significant 
decrease in extracellular levels of DA metabolite 
dihydroxyphenylacetic acid (DOPAC)  (151). Even 
thought, 7-NI-induced reduction of DA turnover may 
not only be related to MAO-B inhibition since it was 
reported that lower (10 and 25 mg/kg) but not high 
doses of 7-NI (50 mg/kg) failed to affect total MAO-A 
and MAO-B activity in striatum (152).

At post-synaptic sites, the anti-dyskinetic 
effects of NOS inhibitors impact on the expression 
of molecular markers of LIDs (see Figure 5). The 
transcription factor FosB/DeltaFosB is increased 
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in the DA-depleted striatum (35, 50, 53, 54), with 
similar patterns of expression observed in MPTP-
treated monkeys (51) and PD patients  (52). 
Following chronic L-DOPA treatment, FosB/
DeltaFosB is selectively expressed in both 
dynorphinergic neurons (49, 50) and NADPH-d/
NOS-positive striatal interneurons  (35, 50). About 
8% of rats  (50) and 100% of mice (35) NADPH-d/
NOS-positive interneurons in the striatum become 
FosB/DeltaFosB positive. Remarkably, the 
transgenic overexpression of this transcription factor 
in the striatum of 6-OHDA-lesioned rats chronically 
treated with L-DOPA was able to produce LIDs, 
indicating that FosB/DeltaFosB plays a crucial role in 
the expression of LIDs (153). While the mechanism 
underlying FosB/DeltaFosB expression in NOS-
expressing interneurons during LIDs is unknown, it 
was observed that 7-NI-induced counteraction of pre-
established LIDs (acute injection) decreased FosB/
DeltaFosB overexpression in medial and lateral 
sectors of striatum (54). In agreement with that, the 
reduction of LIDs induced by chronic administration 
of 7-NI correlated with reduction of FosB/DeltaFosB 
overexpression in striatum as measured by western 
blot (154).

Increases in levels of DARPP-32 
phosphorylation are reported in DA-depleted 
rodents (47, 55) exhibiting LIDs. DARPP-32 knockout 
mice display significantly less dyskinetic behavior 
in comparison to wild type counterparts  (55). 
Overexpression of phosphorylated DARPP-32 
may be due to sensitization of DA D1 receptors on 
medium spiny neurons of direct pathway induced by 
increased G protein coupling efficiency (47). NO is 
suggested to play a role in the abnormal levels of 
phosphor-DARPP-32-Thr34 in LIDs since chronic 
administration of 7-NI prior to L-DOPA inhibited 
L-DOPA-induced increases in phosphor-DARPP-
32-Thr34 (110). In the striatum, PKG stimulates 
phosphorylation of DARPP-32 at Thr-34 (109). 
Thus, it is possible that the increased activity via 
NO-cGMP in dyskinetic animals produce increased 
phosphorylation of DARPP-32 at Thr-34.

Another possible postsynaptic target for 
NOS inhibitors could be the GluR1 AMPA receptor 
subunit. It was demonstrated that counteraction of 
LIDs by the NOS inhibitor 7-NI decreases the levels of 
phosphorylation of GluR1 subunit of AMPA receptors 
at Ser845 (110). The phosphorylation of GluR1 
subunit of AMPA receptors at Ser845 is mediated by 
PKA, which also phosphorylates DARPP-32 at Thr34. 
PKA-mediated phosphorylation of GluR1 modulates 

glutamatergic transmission and is intensified 
by phospho-Thr34–DARPP-32 via inhibition of 
PP-1 (155, 156). Functionally, phosphorylation at 
Ser845 increases open AMPA channel probability 
(157) and surface expression  (158) and may be 
related to long-term plasticity processes. Augmented 
AMPA receptor transmission may be involved in 
LIDs, as suggested by the ability of AMPA receptor 
agonists and antagonists to increase and decrease, 
respectively, LIDs in MPTP-treated monkeys (1591).

Striatal long-term plasticity such as LTP 
and LTD are altered in LIDs (87, 160) and can be 
influenced by the NO-cGMP pathway (117). LTD 
is absent following DA depletion in the striatum of 
rodent models of PD (161). It can be rescued by 
the administration of L-DOPA, but the induction of 
LTD is lost after the development of LIDs (160). The 
administration of PDEs inhibitors and exogenous 
cGMP were able to restore LTD in corticostriatal slices 
of dyskinetic rats but this effect that was blocked 
with intracellular inhibition of PKG (160), suggesting 
that the induction of LTD potentially occurs through 
cGMP-dependent mechanisms. In agreement with 
this hypothesis, biochemical analysis demonstrated 
that the peak of LIDs correlated with a bilateral 
decrease of cGMP in the cortico-striato-pallidal 
loop (162). Furthermore, subcutaneous  (162) or 
intrastriatal (160) administration of the PDE inhibitor 
NO attenuated LIDs. Taken together, these studies 
reveal that synaptic plasticity associated with LIDs 
may be regulated by cGMP-dependent mechanisms.

On the other hand, data from inflammatory 
changes into postmortem brain of parkinsonian 
patients have been brought a new concept on the 
progression of PD. Microglial activation in PD patient 
brain was first reported in 1988 by McGeer and 
cols. (163) and then in 1991 by Forno and cols (164) 
in addition to Langston and coworkers descriptions 
from humans intoxicated with MPTP (165). Since 
then, a role of neuroinflammation in the progressive 
loss of DA neurons has been suggested (for review 
see (166)). Expression of iNOS has been detected 
in SNc from post-mortem PD patients (167) as well 
as in animal models of PD, (168, 169, 170). Once 
induced, iNOS produces sustained high levels of 
NO, which leads to neurotoxicity via the production 
of the free radical peroxynitrite causing DNA damage 
in PD (171).

In concordance with this neuroinflammatory 
mechanism of LIDs (172) amantadine, the only 
approved antidyskinetic drug for clinical use (173) 
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has been shown to induce anti-inflammatory 
effects (174). It is due to its capacity, at least in vitro 
studies, to reduce the release of pro-inflammatory 
factors from activated microglia and increase the 
expression of glial cell-derived neurotrophic factor 
(GNDF) from astrocytes (184). Then, as suggested 
by Del Bel et al. (103), the 7-NI and amantadine 
may have a similar anti-inflammatory mechanism on 
LIDs.

7. CLINICAL CONSIDERATIONS

Translational research is the process 
of transforming such discoveries into human 
application. There is compelling basic science 
supporting a role for non-dopaminergic approaches 
to LID but at the moment the translational benefit 
to PD is not being achieved as predicted. Clinical 
trial failures might result from a number of factors 
including inherent limitations of the models, over-
interpretation of preclinical results and the complex 
nature of clinical trials for central nervous system 
disorders (for a recent review see 175). How in 
future, both experimental models of dyskinesia and 
clinical trial design could be optimized to ensure 
success?

Concerning NO system we would like to do 
several considerations.

The nNOS inhibitor 7-NI appears to more 
potently attenuate LIDs compared to L-NOARG, 
reducing up to 100% of LIDs in 6-OHDA-lesioned 
rats (96, 144). This difference may be due to the 
chemical structure of these compounds. L-NOARG 
is a guanidine-substituted analogue of L-arginine 
that preferentially inhibits eNOS/nNOS isoforms 
over iNOS (204).

The vascular effect of eNOS inhibition in 
the brain should not be neglected since angiogenic 
processes are affected in LIDs and may contribute to 
the establishment of motor complications (177, 178). 
The imidazole derivate 7-NI is more selective for 
nNOS when administered in vivo, having little or no 
effect on vasopressor activity in rat and mice (179) 
suggesting that the antidyskinetic effects induced by 
this compound are mainly related to the blockage of 
NO production via nNOS.

In addition, NO pathway plays a critical role 
in coordinating pre- and postsynaptic alterations 
underlying long-term synaptic plasticity and memory 
formation (180, 181). Inhibition of both nNOS and 

eNOS are necessary for the deterioration of memory 
processes. In neurodegenerative diseases this 
inconvenience should be taken into account when 
the effects of NOS inhibitors are evaluated.

8. CONCLUSION

Dyskinesia appears as a complex 
phenomenon, and several systems are involved 
in their pathophysiology. L-DOPA-induced AIMs 
in rodents resemble L-DOPA-induced motor 
abnormalities in PD patients, being involuntary and 
quite disabling. Although it is difficult to pinpoint 
a single factor leading to the development and 
expression of LIDs, at the moment, our understanding 
of dyskinesia revolves around DA and glutamate 
transmissions on the striatum. Due to the proximity 
of nitrergic, glutamatergic and DAergic nerve 
endings in striatum, a growing body of evidence 
has consistently shown that NO has an important 
modulatory role in the integration of information 
arising from the corticostriatal and nigrostriatal 
pathways. Moreover, there is converging evidence 
from studies conducted in PD patients and animal 
models of PD showing that the NO availability is 
increased in PD and that striatal neuroplasticity 
events associated with LIDs may be regulated by 
NO-cGMP-dependent mechanisms. In agreement 
with the hypothesis that the NO system plays an 
important role in the pathophysiology of LIDs, we 
reviewed pioneering behavioral studies performed 
by our group and others showing that NOS inhibitors 
are newly potential pharmacological approach for 
counteracting LIDs. Anti-dyskinetic effects of NOS 
inhibitors have been well characterized in preclinical 
investigations (rodent- 54, 95, 96, 101, 103,143,154; 
non-human primate-120). This processes in human 
remains to be proved.

The search for effective and selective NOS 
inhibitors is an important goal for pharmacotherapy. 
If we think that this could be transported to human 
there are several major issues that one should keep 
in mind when developing future clinical trials dealing 
with nitrergic system modulation. Localization 
of NOS neurons is widespread in human brain 
areas, including limbic and cortical areas that are 
implicated in memory and affective functions. Thus, 
the potential development of this NO modulation 
strategy against LIDs, especially for prolonged 
periods of treatment, would necessarily require 
a careful, detailed monitoring for cognitive and 
psychiatric problems in PD patients because most 
are already highly vulnerable to these nonmotor 
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alterations. Also, selective inhibition of nNOS or 
iNOS that not affect the endothelial isoform of NOS 
will be necessary in order to avoid the cardiovascular 
liabilities associated with endothelial NOS.

Future research will help to unravel the 
synaptic and molecular mechanisms underlying 
the modulation of NO system can protect against 
the development of LIDs. These findings may have 
clinical importance and inhibitors of the NO synthesis 
might correspond to a new therapeutic approach for 
controlling complications of drug treatment in PD.
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