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1. ABSTRACT 
 
         Eukaryotic cell development has been optimized by 
natural selection to obey maximal intracellular flux of 
messenger proteins. This, in turn, implies maximum Fisher 
information on angular position about a target nuclear pore 
complex (NPR). The cell is simply modeled as spherical, 
with cell membrane (CM) diameter 10 micrometer and 
concentric nuclear membrane (NM) diameter 6 micrometer. 
The NM contains approximately 3000 nuclear pore complexes 
(NPCs). Development requires messenger ligands to travel 
from the CM-NPC-DNA target binding sites. Ligands acquire 
negative charge by phosphorylation, passing through the 
cytoplasm over Newtonian trajectories toward positively 
charged NPCs (utilizing positive nuclear localization 
sequences). The CM-NPC channel obeys maximized mean 
protein flux F and Fisher information I at the NPC. Therefore 
the first-order change in I = 0. But also, the 2nd-order change 
in I is likewise close to zero, indicating significant stability to 
environmental perturbations. Many predictions are confirmed, 
including the dominance of protein pathways of from 1-4 
proteins, a 4 nm size for the EGFR protein and the flux value F 
approximately 1016 proteins/m2-s. After entering the nucleus, 
each protein ultimately delivers its ligand information to a 
DNA target site with maximum probability, i.e. maximum 
Kullback-Liebler entropy HKL. In a smoothness limit HKL  
IDNA/2, so that the total CM-NPC-DNA channel obeys 
maximum Fisher I. It is also shown that such maximum 
information  a cell state far from thermodynamic 
equilibrium, one condition for life. 
 
2. INTRODUCTION 
 
2.1. Role of ligands; on prescriptive information 

An essential step in cell development is when an 
extracellular messenger ligand arrives at a lateral angular 
position x0 on the cell membrane (CM) of a given cell. The 
ligand binds to a protein there (1). For simplicity, the CM is 
modeled as a sphere of diameter 10µm, containing a 
concentric nuclear membrane (NM) of diameter 6µm with 
multiple nuclear pore complexes (NPCs). The medium 
between CM and NM consists of cytoplasm. The latter, 
consisting of cytosol (70%), organelles, protein 
membranes, ions, lipid droplets, etc., is modeled, for the 
sake of calculation, as an approximately homogeneous 
medium, with the same mass density ρ, drag coefficient and 
scattering variance σ2 throughout. Some workers call the 
information that is carried by the ligand “prescriptive,” in 
the sense of providing biological instructions for a target 
DNA codon site to follow. These are conducive to overall 
cell development or maintenance. Such prescribed 
information (PI) is manifest in a particular arrangement of 
molecules to be carried by the ligand, e.g. an enzyme. We 
do not define the message contents any further. See, e.g., 
(2) for further definition. Although it can be argued that 
there is no evidence for attributing any prescriptive 
information to such ligands, i.e. they have zero biofunction, 
there are arguments to the contrary as well (3). 

2.2. A role of natural selection 
We assume that, by natural selection, the DNA 

has selected for ligand paths that deliver the information 
efficiently, that is spatially accurately and with minimal 
time to its intended DNA site.  For this purpose, the DNA 
has directed the creation of a strong enough electric field to 
efficiently direct each ligand to its target NPC site on the 
nuclear membrane as described below. 
 

To accomplish this, the ligand is first scaffolded 
for phosphorylation. Its resulting negative charge promotes 
motion toward the target DNA site through, first, Coulomb 
attraction toward an intermediary, positively charged NPC 
on the NM.  
 
2.3. The two information channels 

Thus the trajectory of the ligand is from CM-
NPC-DNA. This is analyzed in two steps: as a CM-NPC 
channel (Secs. 3-8), and then an NPC-DNA channel (Sec. 
9) Note that the vast majority of the analysis is of the CM-
NPC channel, i.e. exterior to the DNA content of the 
genome.  Our overall objective is to predict how accurately 
the ligand information can be delivered to its final 
destination the DNA, and also to determine if the 
predictions are confirmed by laboratory observation.   
 
2.4. Role of Fisher information 
              The role of Fisher information in all this is to 
force, with high probability, the messenger protein to enter 
its target NPC; and then, once it enters, to travel to and alter 
the DNA codon that the ligand message prescribes. 
Maximizing the Fisher information on angular position of 
the ligand will be seen to foster this effect.  See Sec. 4.1 
and Appendix B. 
 
2.5. Essential differences between two entropies S and H 
We shall often refer to the system ‘entropy,’ so at this point 
it is important to clarify the concept. There are two closely-
related entropies, the Shannon (or ‘information’) entropy H 
and the thermodynamic entropy S. The latter is the entropy 
referred to in the Second law of thermodynamics. The 
relation is that S = kH, where k = Boltzmann’s constant). 
Another comparison lies in their meanings: information H 
measures epistemological uncertainty in the occurrence of 
system events; whereas thermodynamic S is a 
physicodynamic measure, specifically of heat or some other 
system waste product.  

 
2.6. Basic differences between Fisher information I and 
entropy H 

There is also an important distinction to be made 
between the concepts of Fisher information and the 
Shannon entropy H.  Fisher information measures the level 
of structural order, or complexity, of a system; whereas 
both H and S (since they are proportional) measure the 
resulting amount of waste entropy given off as the price of 
forming the order. For example, the level of internal 
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structure of a horse is measured by its Fisher 
information, rather than by the amount of waste entropy 
it excretes in the process of growing that structure. You 
can’t reconstruct the horse by minute examination of its 
manure.  
 

A further indication is that Fisher information 
has physical units (since it is information about 
something real) whereas Shannon does not. These factors 
were anticipated in (4) That author points to the warning 
given by Brillouin, himself, that Shannon entropy H 
ignores the value or the meaning of the information 
which is quantified by the definition.  

 
3. INFORMATION IN CM-NPC CHANNEL 
 

Let the angular position of the input ligand on 
the CM be x0. It is reasonable that 4 billion years of 
natural selection, normal cell development delivers the 
ligand to the NM in minimal time. Minimal time is 
crucial when a cell suffers a sudden trauma such as a 
wound or incursion by a foreign body such as a virus. 
Note that this argument assumes that the ligand has 
specific biofunction, as mentioned above. We do not 
attempt to derive its biofunctional aspect here.  We 
implicitly assume that it has developed in parallel with 
the assumption here of efficient delivery of the 
information to the DNA site. As mentioned below, it is 
the ‘death’ aspect of evolution that tends to allow those 
cells that have such advantageous information properties 
that have higher fitness than, and therefore dominate in 
population over, those that do not.   
 

This permits, e.g., quick response to sudden 
trauma such as wounds. To accomplish minimal time, the 
ligand should travel radially, i.e. toward the center of the 
cell. (See Sec. 7.1 for further details.) Thus the ideal 
angular position on the NM is likewise x0. However, as 
with any real information channel, it suffers inevitable 
noise x of random angular displacement. Here the noise 
is diffusion due to random collisions with particles of the 
cytoplasm.  Hence the messenger protein arrives on the 
NM at a generally nonideal positional data value y = x0 
+x, with mean <x>=0. Denote the probability density 
function (pdf) on the noise from NPC position x0 as p(x). 
 
3.1 Fisher information          

The information I about ideal NPC position x0 
that is carried over this CM-NPC channel by the messenger 
protein is 
                                                  
  I = ∫ dx(dp/dx)2/p,    p = p(x),  with emin = I-1/2.         (1) 
 

Quantity I is called the ‘Fisher information’ (5).  
Fisher information is always information ‘about 
something.’  In this case that something is the ideal position 
x0 . Note also its significance in Eqs. (1) of fixing emin , the 
minimum possible mean-square error from ideal position x0 
at the over the many proteins transiting the channel x0 y.  
An example is t 400,000 molecules per protein type in a 

typical liver cell. The 3rd Eq. (1) shows the reasonable 
result that the higher the information is the lower is the 
minimum mean-square error.  
 

Aside from this significance as a measure of data 
quality, I also has the significance of defining the degree of 
order or complexity, Eq. (18), of a system (see also 
Appendix A) Thus Fisher information is a measure of both 
data quality and system quality. Such directed positioning 
could be considered another dimension of Prescriptive 
Information, in particular regarding the question of how the 
cell is able to position ligands for entropy into the target 
nuclear pore. Finally perturbations in I due to coarse 
graining events (see below Eq. (18)) define a biological 
arrow of time (Appendix A).  
 

In fact, how transport through the pore is 
achieved might be considered another informational 
question relevant to protocell or primordial cell formation. 
The formative mechanism was death: Those cells that did 
not consistently achieve efficient or near-efficient transport 
would have been eliminated by natural selection. 
 
3.2. Principle of maximum Fisher information 

Since NM location errors x are departures from 
the minimum possible (radial) distance traveled by the 
protein from CM-NPC, by our working hypothesis of 
minimal CM-NPC travel time the error emin should be 
minimal (6b,8a,8b) . That is, by Eqs. (1), messenger 
proteins take intracellular paths that maximize their levels 
of spatial Fisher information I at the NM, 
 
I = max.                                                 (2) 

 
As we discuss in Sec. 5.1, due to Eq. (3) these 

also maximize the protein flux at the NM and also 
minimize the trajectory time, i.e. reaction time, to the DNA 
target as required after trauma.  

 
Eq. (2) is our working hypothesis. It was 

originally used in deriving laws of inanimate systems (6a), 
and from the fact that for a particular living system – 
cancer – the Fisher is found to be minimized (6a,b).  Since 
cancer it randomness personified then any normally 
developing system (as assumed here) is assumed to be 
developing in the opposite direction – toward maximum 
order or Fisher information.  

 
A final need for maximum positional information 

arises out of the needs of morphogenic signaling. In 
developmental biology, morphogenic gradients direct organ 
and tissue formation in fetal development. This requires 
normal cells to recognize and accurately measure a gradient 
of morphogens across its diameter; see Example section in 
(8b).  Information level (2) captured by a population also 
leads (7) to “Fisher’s fundamental theorem of natural 
selection:” Owing to natural selection, the rate of increase 
of the mean fitness of any organism at any time acting 
through changes in gene frequencies is exactly equal to its 
genetic variance in fitness at that time.  Hence the greater 
the genetic variability of the organism is the more “fit” it is. 



Cell development obeys maximum Fisher information 

1020 

Likewise, in protocell formation such accurate 
positioning would foster optimally morphogenic 
development, again with disease or death as the punishment 
for not accomplishing it well enough. As a consequence, 
the genetic code of such cells would dominate over the less 
able. Note that I is information about the environmental 
factors entering into the determination of the Debye-Huckel 
parameter k0 in Eq. (4).That is, the protein density ρ their 
charge q, the cytoplasm temperature T and its dielectric 
constant ε.   

 
We may note in passing that I = max. is likewise a 

property of inanimate matter. Again, this is for finite-sized 
systems – note the finite extension L in Eq. (18).  Also, despite 
the ubiquity of the 2nd law of thermodynamics, the 
condition I = max. does not violate it. The 2nd law 
requires order to decrease universally, but allows it to 
increase locally, i.e. within finite-sized systems. Thus, it 
is notable that principle (2) leads as well to derivation of 
the laws of inanimate, physical systems (6a). Thus the 
application of principle (2) to biological systems follows 
on the grounds that they are, ultimately, physical on the 
microlevel. It is undeniable that living systems, such as 
the DNA backbone, consist of chiral molecules that are 
the mirror images of those currently occurring naturally; 
but there is no principle stating that such enantiomers 
cannot occur under proper physical conditions. 
Undoubtedly, someday such conditions will be found.  

 
Nevertheless life has characteristics that uniquely 

differ from those of current non-life systems, e.g. the ability to 
reproduce by simple mitosis.  However, again, this does not 
mean that eventually such systems could not be artificially 
produced. 

 
Regarding why principle (2) has to be imposed for 

life to persist, it is because, as explained below, random 
diffusion by the molecules of the cytoplasm would otherwise 
widely divert the messenger proteins from their target NPCs.  
That is, the general randomness of the environment and its 
incursions into the living system have to be kept under control 
in order to achieve the target NPC and, then, target DNA site.  
Principle (2) promotes this by forcing directed motion upon 
the proteins toward their target NPCs.  This is via a 
strong electric field, the order of millions of volts/meter 
(as in a bolt of lightning).  Principle (2) also turns out to 
keep the whole system stable to 2nd order perturbation (as 
found below).    

 
As important checks, principle (2) makes 

predictions about cell biology that are confirmed by lab 
observation (8b): dominance of two-three component 
protein pathways (RAS, RAF, MEK, ERK, etc.), stability 
of cells, prediction of very high E-field strengths confirmed 
by the Kopelman group (9), the central role played by 
phosphorylation, a very fast protein response time, the 
order of 0.016s, and an optimal messenger protein size of 
about 4 nm. 

Regarding whether Fisher information is 
prescriptive or descriptive, it is both.  It is prescriptive 
since, in being forced to obey principle (2), it forces cell 
entropy to be minimal (see below), therefore as far as 

possible from ‘dead,’ while simultaneously forcing the cell 
to remain in equilibrium despite the presence of 
perturbations up to 2nd order size. It also is descriptive in 
giving rise to the above (and other) requirements on the 
performance of a cell. 

 
By the 3rd Eq. (1), attaining maximum 

information value (2) results in minimum root mean-square 
(rms) transverse positional error emin on the NM (thus, a 
minimum of a minimum value). Hence NM position x0 can, 
as in an optical system, be regarded as the geometrical 
conjugate position to its launch position on the CM.  
Accomplishing such (doubly) minimal error also results in 
a minimal travel time ta from CM to NM (our aim, stated in 
Sec. 3). This allows a version of “time gating,” to be 
accomplished by each NPC on the NM, with the aim of 
selectively allowing only required proteins to enter. “Time 
gating” is taken up in Sec. 7.3. 

 
This paper both summarizes the work (6b, 8a, 

8b) on cell development resulting from principle (2) and 
gives new results that follow from it. It is shown in 
Appendix D that this information is proportional to the 
mean flux F (number/area/time) of proteins within the cell 
cytoplasm (CM-NPC) channel, obeying Eq. (D2), 
 

                                                      (3) 
 

Area A = π a2 =28.3µm2 (since cell radius a=5 
µm) is the cross sectional area of the CM, and diffusion 
constant D = 5 ×10-11 m2/s of the cytoplasm. The flux F 
values have been calculated (8a), as taken up below, so Eq. 
(3) allows the information I to be quantified. 

 
3.3. Debye-Huckel constant 

A parameter of the cell that is key to determining 
its ability to transport proteins is the Debye-Huckel 
constant k0 of its cytoplasm. This obeys (8a) 

 

k=    ,                                        (4) 
 

where ρ is the mass density of proteins in the cytoplasm, q 
is the electric charge on each protein, and  ε,T are the 
dielectric constant and temperature, respectively, of the 
cytoplasm. 
 

Typical such transport proteins are those in the 
RAS, RAF, MEK or ERK protein channels. The approach 
would generally give a different answer for the flux F, 
information I and traversal time ta of each protein type. For 
example, the drag force on the protein depends upon its 
length. And the latter varies from one protein type to the 
other. Our aim is to find typical answers for a typical 
protein, as defined by the parameters in Table 1 below. 

 
However, there is a tendency for generality of the 

results, in that the acceleration term ma, with m = protein 
mass, a = acceleration, contributes negligibly to the total 
force on the protein. (See line preceding Eq. (B3) in
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Table 1. Cell parameters used in the calculation 
CM radius  r0                                  5 µm 
NM radius a                                    3 µm (Note: a/r0 ≈ 60% for 

mammalian cells) 
Cytoplasm dielectric const. ε = 60ε0   =    7.1×10-10 F/m 
Cytoplasm drag coefficient D 0.27×10-11m2/s 
Thermal energy kBT 4.14×10-21 J 
Charge on nucleus QNM 0.3×10-11 Coul 
Viscosity of cytoplasm ≈ 10-3 (water) 
Reynolds number 462×0.4nm 
Electron charge q  (magnitude) 1.6×10-19 Coul 

 
Appendix B.) Therefore proteins with different masses still 
obey the answer we obtained since, from the above, only 
their lengths matter. The physical reason for the mass drop-
out is that the acceleration term ma, a = acceleration, 
contributes negligibly to the total force on the protein. The 
biological reason is that it would be unreasonable to 
imagine such a large force of acceleration on the protein. 
So the solution is that it effectively travels at 
(instantaneous) “terminal velocity” from CM to NM, 
almost like a particle falling through space in free-fall. 
However, this velocity will depend upon the instantaneous 
drag force and, hence, the protein length. The latter affects 
the Reynolds number given in Table 1 immediately below. 
 

 Perturbations in the parameters ρ, q, ε and T 
defining k0 in Eq. (4) will be shown (below Eq. (10)) to 
have a remarkably small effect on perturbing F and 
therefore, by Eqs. (3) and (1), on perturbing I and error emin. 
The size of k0 defines the degree to which proteins in the 
cytoplasm are shielded from electric fields.  The model 
assumes the particular cell parameters in Table 1, meant to 
approximate those of a typical human myocite cell. The 
number 462 defining the Reynolds number is the number of 
amino acids comprising a typical human messenger protein. 
 

This calculation, in Appendix B, follows a 
physical model, i.e. use of the laws of physics to model a 
given system.  It assumes that life, on the most fundamental 
level, is, like all other known effects, subject to the 
fundamental laws of physics. But, of course, this should be 
subject to verification by laboratory observation. In fact 
such verifications exist (see (8b)).Thus the approach is 
supported by the usual principles of science.   

 
The input ligand travels sequentially over two 

channels, from the CM-NPC and then from the NPC-DNA. 
The latter, containing the codons C,G,A,T/U, is the 
ultimate target, to be altered by the messenger protein. We 
consider these channels in turn. 
   
 3.4. Model assumptions for CM-NPC channel 

Within the CM-NPC channel of cytoplasm, the 
proteins follow trajectories (6b,8a,b) (summarized in 
Appendix B) obeying Newtonian mechanics subject to the 
principle (2) of maximum Fisher information I about each 
site x0 on the CM. It is found (Sec. 5.5) that a total 
instantaneous electric charge QNM  ≈ +0.3× 10-11 Coul. 
exists on the nucleus, due to import from the cytoplasm of 
+charged NLSs to a single NPC. This is in reaction to the 
presence of the messenger protein (ligand) located radially 
away from the NPC at position x0 on the CM, whose 

presence is signaled to the NPC either electrically or by a 
time gating effect (Sec. 7.3).  The result will be found to be 
cell stability, to 2nd order in perturbations, and at a state of 
both low entropy and maximum order. 

 
Each messenger protein has negative charge due 

to phosphorylation.  It results that the protein travels by 
Coulomb attraction toward the single, positively charged 
target nuclear pore complex (NPC) on the nuclear 
membrane. It is also subject to drag and random diffusion 
by molecules of the cytoplasm.  

 
We assume that the negative messenger protein 

is partially shielded from the positive NPC charge by 
negatively charged protein neighbors of the subject protein, 
but is not shielded by the often assumed ionic charges (8a). 
The latter are very tiny and readily pass through the NPCs 
(8a) before the Debye-Huckel equilibrium distribution of 
charges is attained. Under this condition the hypothesis of 
maximum Fisher information implies a shielding length lD 
≈ 0.63µm  (reciprocal of central value k0 =1.6 × 106m-1 

found at Eq. (6) below). This defines a Coulomb force field 
of tens of millions of volts/meter. Indeed this has been 
observed (9).  
 
3.5. NPCs independently and individually charged 

 A key proposal is that simultaneous with the 
charge-up of the target NPC the charge on nearly all other 
NPCs is momentarily turned off (Sec. 5.5).  This has two 
benefits: (a) The resulting Coulomb force field maximally 
directs the protein toward its target NPC. (b) Using figures 
for a yeast NPC gives a net NPC charge of QNPC = +0.29 × 
10-11 Coul.  This agrees well with our previously assumed 
(8a) charge value QNM  ≈ +0.3 × 10-11 Coul. Note the 
alternative:  Since a typical nucleus has thousands of NPCs, 
if these were all electrically charged simultaneously the 
resulting charge QNM would be thousands of times too 
large. 

 
Our working principle (a) I = maximum gives 

rise to an ordered, stable CM-NPC channel state that is (b) 
maximally far from thermodynamic equilibrium. We note 
in passing that Fisher information I is defined completely 
independently of the concept of entropy H.  

 
          It is interesting in this context to compare 

the growth processes of a crystal and a cell.  As the crystal 
grows its order R (which is proportional to I, see Eq. (18)) 
grows, as does its entropy H.  By comparison, as the cell 
grows its order R grows but its entropy level H decreases; 
the latter is proven in Eq. (17). In fact, there, H decreases 
because, by principle (2), I increases. That H is maximum 
for the crystal but minimum for the cell emphasizes that 
crystals are dead whereas cells are alive. One must keep in 
mind, however, that this is merely for one channel of the 
cell, namely its cytoplasmic volume.  Whether it holds as 
well within the nucleus is another question. 
 

It is interesting in this regard that crystals are 
deterministic structures whereas cells have a random 
component, namely the randomly scattering molecules of 
the cytoplasm.  Thus, somehow the randomness instantiates  
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Figure 1. Mean flux F (proteins/area/ time) at the NM as a 
function of k0 ( × 10^6 m^-1). 

 

                 
 
Figure 2. Close-up of region AB containing the maximum  
Fmax.  The abscissae are values k0 ( × 10^6 m^-1) as in 
Figure 1. The curve is close to flat over span AB, 
consisting of about 12 plotted points.    
 
 life.  This might likewise be the case for instantiation of PI, 
since PI evidently requires a medium with high uncertainty, 
i.e. high Shannon entropy (or H), like Prigogine’s 
dissipative structures. 
  
4. MEAN FLUX F VALUE WITHIN CM-NPC 
CHANNEL 
 

In general, flux F is the number of particles/area-
time reaching a surface. At time t0 = 0 each protein is 
located on the CM, at radial position r = r0 . Its final 
position in this CM-NPC channel is at radius r = a of the 
NM. The mean protein flux at the NM is F =  ρ<v>, where 
the mean velocity of each protein is <v> = (r0 – a)/ (ta – t0) 
= (r0 – a)/ta since t0 = 0 by hypothesis. Hence the mean F =  

ρ (r0 – a)/ta. This is a known, analytic function of the 
Debye-Huckel constant k0  of the cytoplasm, as derived in 
(8a) and Appendices B and D. The approach ignores the 
particular fold/structure of individual proteins, seeking an 
average answer. Thus it ignores the possible selective 
transport of only certain proteins. However, the resulting 
predictions turn out to be in line with lab observations, and 
to predict highly stable (to 2nd order) structure of the CM-
NPC channel. 
 
4.1. Mean flux curve, smoothness effects  

Figure 1 shows the logarithm of the mean protein 
flux F traveling from the CM to NM surface. This curve 
has two key observable properties: 

 
(1) It has a single region over which it 

is maximized.  Thus there is a 
definite value k0 = kmax for which 
logF= max. and, therefore, F = 
max. ≡ Fmax. The maximum is 
rather broad, of value  

 
Fmax = 1016.629  ≈ 1016.6 proteins/ (m2s),                  (5) 
 
and occurring on about value   
 
kmax  = 1.6 × 106 m-1.                (6) 
 

The value in Eq. (5) for Fmax compares well with 
laboratory measurements, which indicate that the NM is 
capable of accommodating a maximum flux rate ≈ 1016 
proteins/m2-s. This is shown next. 

 
With NM radius a = 3 µm, total surface area A = 

3.14×10-10m2. Each NPC can accommodate the passage of 
about 103 proteins/s (8a), and there are about 3000 NPCs in 
a mammalian cell. This allows a total flux F = (3000×103 
proteins/s) / (3.14×10-10m2) ≈ 1016 proteins/m2-s. 

  
This is less than an order of magnitude departure 

from the derived upper limit in Eq. (5) of 1016.6 -- fairly 
good agreement. The curve in Figure 1 also shows a strong 
decrease (by orders of magnitude) once k0 is greater than 
roughly 4.0 ×106 m-1.  
  
By definition of the maximum,  
 
dFmax/dk0

  ≈  0 at k0 = kmax                        (7) 
 

            (2)               However, the second derivative at k0 = 
kmax is also of interest. The maximum Fmax is attained over 
a relatively broad region of  k0  values. This is apparent by 
zooming in on Figure 1 to emphasize the region near its 
maximum Fmax; as shown in Figure 2. 
 

This shows that the region AB of values k0 = 
(1.1, 1.7) × 106 m-1 containing the maximum is close to flat.  
In fact, it is flat – at value log10 Fmax ≈ 16.63 -- within the 
thickness of the curve. This is over about 12 plotted points 
comprising the region AB centered on the maximum value 
Fmax. (Pixel width may be observed as the individual step 
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widths in the long tail of the curve to the right.) Thus its 2nd 
difference, and consequently 2nd derivative, about the 
central point k0 =1.6 × 106m-1 is close to zero,    
                      
d2Fmax/dk0

2 ≈ 0 at k0 = kmax =1.6 x 106m-1.                  (8) 
 
Eqs. (7) and (8) show important consequences of stability, 
as discussed next.  
             
4.2. Resulting stability of flux to 2nd order 

The measured ratio of the plotted curve thickness 
to the plotted vertical distance between values 16 and 18 of 
log10F is about 1/34. Thus the curve thickness represents a 
change 
 
∆log10F = (1/34) (18-16)=0.0588         (9) 

 
in the log of the flux (log10 proteins/m2-s). Now the relative 
change dF/F in flux F obeys generally  
 
dF/F =d (lnF)= d (ln10)log10 F) =2.303d (log10 F).     (10) 
 
Therefore by Eq. (10), since the changes are small, the 
change Eq. (9) due to thickness of the curve translates into 
a relative uncertainty dF/F = 2.303 (0.0588)= 0.1354, or 
13%; relatively small. This is for the region AB on the 
curve, where the abscissa values k0 change from value 1.1 
to 1.7 (times 106 m-1).  This is a relative change in k0 of 
about (1.7 - 1.1)/1.1= 0.545 or 54%; relatively large.  
 

Hence, a large relative change in k0 of 54% gives 
rise to a small relative change of 13% in the flux F.  What 
changes in the cell parameters describe such a change 
scenario? The Debye-Huckel parameter obeys Eq. (4). By 
taking differentials of both sides of it, the 54% relative 
change in k0 translates into either a 27% change in ρ,ε or T, 
or a 54% change in q. These changes represent significantly 
large perturbations. Thus, the flux F in the vicinity AB of 
its maximum obeys relative insensitivity (of order 13%) to 
perturbations in these cell parameters. This has very 
important ramifications of stability for the system.  

  
By Taylor series, we may generally represent the 

resulting perturbation in Fmax as 
 

δFmax = (dFmax/dkmax)δkmax + (1/2) (d2Fmax /dk2
max) δkmax

2 + 
(1/6) (d3Fmax /dk3

max) δkmax
3    (11) 

 
By Eq. (7) the first right-hand term is zero.  Therefore for 
small changes δkmax the main contribution to δFmax is from 
the 2nd-order term in (11).  But we found that δFmax /Fmax ≈ 
13%, small. Therefore, assuming a smooth curve over 
region AB with a single maximum located about halfway, 
the 2nd-order term is likewise small. 
 

 Consequently, Fmax is approximately invariant 
through 2nd order in all system parameters that define kmax . 
As we saw above, these include perturbations δT in the 
temperature, δρ in the mass density of proteins, δq in their 
electric charge and δε the permittivity of the cytoplasmic 
medium.  Hence the cell state is stable through 2nd order 

in all such environmental changes. Although such stability 
may not be sufficient for generating life, it is certainly 
helpful. Note that this result is only for the limited channel 
under consideration.  We have yet to analyze the NPC-
DNA channel wherein the genome actually exists. 

 
4.3. Effective emergence of stability   

The flatness of the flux curve over region AB in 
Figure 2 is suggestive of the flat extremum that 
characterizes a double-well potential as the two potential 
sources approach one another.  A flat extremum emerges, 
for example, as the sum of a Gaussian well potential - exp 
(-x²) and its displaced version - exp (- (x-√2)²). Double-
well potentials are known to generate ‘emergent’ physical 
phenomena such as superconductivity. Hence the flat 
region AB of flux in Figure 2 suggests the emergence of a 
stable life phenomenon. (Again, this is only for the CM-
NPC channel under consideration here; see Sec. 9 for the 
NPC-DNA channel.) 
 
         As the development has shown, such emergence 
ultimately follows from the premise (2) of maximum Fisher 
information. See the paragraphs following Eq. (2) for 
supporting information. 
 
5. CONSEQUENCES 
 
5.1. Information I at NM 

Eqs. (8), (9) describing the flux likewise describe 
the information I.  First, since I = max by Eq. (2) it follows 
that if the system is perturbed the first-order perturbation of 
the information obeys δI = 0. Next, the Fisher information I 
about protein position at the NM is proportional to F, 
through Eq. (3).  Then the 2nd-order effect Eq. (8) implies 
that δ2I = 0.  In summary, the information obeys both 
 
δI = 0  and  δ2I ≈ 0.                          (12) 
 
at a Debye-Huckel shielding parameter value k0 =1.6 × 
106m-1.This describes stability to both first and second 
order environmental perturbations to the cell operating at 
point Fmax on the curve Figure 2. Second-order stability 
rarely occurs in physical systems, and might account for the 
impressive stability of living systems.  
 

In contrast with physical systems, living systems 
exist by virtue of 4 billion years of natural selection, where 
the fittest survive. At each generation there are tiny, 
random changes in the DNA. By natural evolution only 
those changes that are advantageous give fitness 
advantages, and so only these specimens ultimately survive 
and dominate. Over 4 billion years this can make for very 
large changes in population makeup. Basically, time acts as 
a slowly acting filter of the fit from the unfit, and one 
component of fitness is stability to environmental 
perturbation. 
 

It might clarify the picture to understand that the 
information I that is so stabilized is not a property of the 
environment but, rather, of the CM-NPC channel. To be 
precise, I is both maximized and stable to random 
perturbations of protein density ρ, the electric charge q on 
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each protein, the dielectric constant ε and temperature T. 
These are all properties of the cell cytoplasm and its 
proteins. However, these properties can be randomly 
perturbed by environmental influences such as a change of 
temperature, sudden influx of proteins, influx of ions of a 
different dielectric constant, etc. The analysis above 
predicts, at Eq. (12) that, nevertheless, the cytoplasmic 
level of information I will be stable to these environmental 
influences. 

 
There also are implications as to the number of 

different types of protein making up a pathway, the 
resulting Debye-Huckel length, the resulting total charge on 
an NPC and the charge on the nucleus per se. These are 
taken up next.  
 
5.2. Number of protein types per pathway 

Since the number of proteins n  ≈  k0
2 × 10-12 m2 

(by Appendix S2 of (8a)) the maximum flux value is 
accomplished by a pathway containing about n = (1.6 × 
106)2 × 10-12 ≈ 2 types of protein.  But given the 
abovementioned flatness of the uncertainties in the inputs 
to the calculation a more realistic figure is a range n = 2 ± 1 
protein, or n = 1,2,3. This accounts for the predominance 
of the RAF, RAS, MEK, etc., pathways of cell function. 
 
5.3 Debye-Huckel length   

The value of kmax = 1.6 ×106 m-1 gives a 
corresponding Debye-Huckel length 

l0 = 1/ kmax = 0.63µm.                       (13) 
Note that this assumes Coulomb screening only due to 
neighboring messenger proteins, in particular not inorganic 
ions as previously discussed in Sec. 3.4.   
 
5.4. Resulting NPC charge 

Adopting the development in (10), and using 
result Eq. (11) for the Debye-Huckel length l0, the charge 
on an NPC obeys 
QNPC = (8 × 13)/ (41962 nm3) × (2π/3) (0.63 × 103 nm)3 × 

14q 
≈ 0.29 ×10-11Coul.                                   (14) 
 
Note that q = electronic charge in Table 1.  
 
5.5. Resulting Charge on nucleus 

There is evidence (10-15) that NPCs act 
independently to attract specific NLS sequences and messenger 
proteins. We propose that each NPC turns ‘on’ the computed 
positive charge value (12) of QNPC = 0.29 x 10-11 Coul., while 
the charge on all (or nearly all) other NPCs are turned ‘off.’ 
Then the proteins travel in near straight-line fashion (save for 
minor diffusion in the cytoplasm) from CM to target NPC.  
This minimizes the traversal distance, and hence traversal time 
ta, from CM-NPC. 

 
The NPC attains the charge in the usual way, by 

absorbing an appropriate NLS from the cytoplasm.  After 
this protein enters the NPC a different NPC turns “on” so 
as to Coulomb-attract its target protein, with all other NPCs 
turned ‘off’; etc.  In this way the net nuclear charge at any 
time is 

QNM = QNPC = 0.29 ×10-11Coul.          (15) 

This is quite close to the value 0.3 ×10-11Coul previously 
assumed (8a) for the nuclear charge QNM. It is also 
confirmed by experimental work of Tyner et al. (9). These 
authors report position-dependent electric field E values in 
the cytoplasm – measured by use of a novel nano-voltmeter 
-- that are consistent with this QNM value. These are values 
of field strength E ~ tens of millions of V/m. Thus, works 
(8a) and (9) support the cell model proposed here, 
including the property that one NPC at a time admits 
proteins; see Sec. 8 for further laboratory verifications. 
 
5.6. Protein positional uncertainty at NPC 

The proposed model would only work if the 
uncertainty in position of proteins at the NM is 
significantly less than the functional opening. The latter is 
about 9 nm, although openings of 39 nm have been 
proposed. Use of the value Fmax from Eq. (5) in Eq. (3) and 
the parameter values listed below it give a numerical value 
of I=Imax=2.83×104 µm-2.  Then by the second Eq. (1), 
                                                                  emin =Imax

-1/2 = 
5.94nm.                             (16) 
This is roughly half the NPC opening so that, for the 
Gaussian pdf assumed, about 95% of all incident proteins 
will enter their targeted NPC (or of course much higher for 
the 39 nm-opening proposed). 
 
6. MAXIMUM ORDER AS A SOURCE OF NON-
EQUILIBRIUM 
 

On their travel through the CM-NPC information 
channel, the messenger proteins randomly encounter 
molecules of the cytoplasm and, so, randomly diffuse from 
their otherwise straight-line Coulomb-enforced trajectories 
toward corresponding NPCs. The molecular interactions 
occur independently, so that the central limit theorem (5) 
predicts noise values x at the NPC that obey a normal law 
p(x). Let this have variance σ2.  
 
6.1. Dependence of entropy H upon information I 

For a normal law p(x), by Eq. (1) information  I 
= 1/σ2, but also (25) the entropy H = ½ + ln ( (√2π)σ).  
Eliminating the common parameter σ between these 
expressions gives  
 

H = 2-1 (1+ln(2π) – lnI).                               (17) 
 

This is a relation connecting the Shannon entropy 
with the Fisher structural information. Again, this is only 
descriptive of the CM-NPC channel, i.e. exterior to the 
nucleus. However, within this CM-NPC channel it gives a 
unique value of the entropy H for each value of I. It shows, 
e.g., that H is low when I is high. This makes intuitive 
sense as well, verifying that disorder H is low when order I 
is high. However, it should be kept in mind that I is the 
Fisher information. This is mathematically and physically 
well defined (Appendix A). In particular it is not 
“prescriptive information” PI of genetic selection (GS) 
theory.  Since also Eq. (17) holds exterior to the nuclear 
channel containing the genomic DNA information, Eq. (17) 
in no way infers a relationship between entropy H and PI.   
 

By Eq. (17), the entropy H of the CM-NPC 
channel drops ever more below the thermodynamic 
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Figure 3. PDF with n = 5 sine wave ripples in each of 2 
dimensions (x,y). Note the visually high level of complexity 
that accompanies the high level of order R. 

 
equilibrium state Hmax as information I increases. This 
gives rise to two beneficial effects: 
 
6.2. Entropy is minimized  

 Since, by Eq. (2), I = max., by (17) the CM-
NPC channel will operate at a level of H = min. By the 
connection S = kH Boltzmann entropy S and Shannon 
entropy H, this likewise means a small entropy S as well. 
There is only a small degree of randomness in fluctuations 
x. The system has increased order. This is indicated, as 
well, by S being, now, maximally far below its equilibrium 
value Smax , the latter defining death in fact.  

 
It is interesting to interpret these two results 

further. Achieving Hmax is equivalent to knowledge of 
maximum uncertainty. Likewise, achieving the 
corresponding Smax describes a scenario where all energy 
within the channel is waste heat, so that there is no 
thermodynamic free energy left to sustain motion or build 
life, so that heat death is reached. Moreover, the channel 
will be stable to up to second-order perturbation, as shown 
by Eq. (12).     
     
6.3. Order is maximized and stable: Prigogine’s goal 

The measure of order R appropriate to a system 
with a continuous coordinate x, as here, is (16)  

 
R = (1/8)L2I.                      (18) 

 
This measure was derived from the defining 

property that it decreases (or stays constant) when the 
system loses structural detail, by a random process called 
“coarse graining”. For example, the intrusion of a 
pathogen, such as a virus, into a system is random to the 
system (though perhaps not to the pathogen, which may be 
carrying through a growth program of its own). Thus it 
amounts to a random perturbation of the system. Eq. (18) 

has the property that it will decrease in this case (see below 
for further on coarse graining). 
 
6.3.1. Order R is not dependent on Shannon entropy 

So as not to lead to confusion, it should be 
emphasized that the measure Eq. (18) of order depends on 
the Fisher, not the Shannon, entropy. Thus it has nothing to 
do with ‘bits’ of information in the system either before or 
after the coarse graining event. Instead, it depends upon the 
Fisher information I, and hence, by Eq. (1), the level of 
local structural detail in the system defined by probability 
law p (x). By Eq. (1) this, in turn, measures its total amount 
of gradient content (dp/dx)2. Thus, it is the degree to which 
p(x) exhibits fast up-down structure that contributes to its 
value and hence, by Eq. (18), to the level of the order R.  
Thus, the latter is effectively a measure of the amount of 
‘local structure’ in the system p(x). The mathematics of the 
derivation equates this to the order. By comparison, the 
Shannon entropy is a ‘global measure,’ insensitive to local 
structural detail. 
 
6.3.2. Order R measures complexity as well as degree of 
order 

R also measures the degree of ‘complexity’ in the 
system. Consider, e.g., a two-dimensional probability law 
p(x,y) containing n sine wave ripples in each direction over 
a field 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Thus there are n× n = n2 total 
ripples in the field. See Figure 3, with n = 5 and therefore 
25 ripples in all.  

 
This particular law obeys p (x,y) = 4 sin2 (nπx) 

sin2 (nπy). Using this in definition (18) gives the value of 
the order as exactly R =2π 2n2. But we found above that the 
total number of ripples in the scene is exactly n2.  Or in this 
case it is 5 × 5 = 25, as can be easily counted in Figure  3. 
The ripples are the individual ‘details’ of the scene. Thus, 
from the above, the order R is 2π 2 times the number of 
details in the scene. Thus, it is proportional to the number 
of such details. 

 
This ‘number of details’ also agrees with a 

measure of complexity (rather than ‘order’) due to 
Kolmogoroff and Chaitin. This is called the Kolmogoroff-
Chaitin (K-C) complexity (17). The K-C complexity is 
likewise proportional to n2 in application to the Dijkstra 
(18) routing algorithm. The K-C measure also equals the 
total number n of statements in a computer program, the 
total number n of switches within a network; or the shortest 
description of a string in some fixed universal language. 
 
6.3.3. Effect of coarse graining is to decrease order R 

Thus, due to random coarse graining events 
alone, as time increases system order R (and, by (18), 
information I) tends to decrease. (This ignores order-
building effects due to energy inputs, described next.) The 
time increase defines an arrow of time (See Appendix A). 
In particular, for coarse grained living systems it is the oft-
discussed biological arrow of time.  It should be 
emphasized, however, that a cell whose proteins obey 
principle (2) of maximum I (or R) is not undergoing coarse 
graining. To the contrary, it is building information and 
order by the constructive use of energy inputs from the 
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environment (Sec. 6.4). These act as ‘functional 
information’ inputs.  
 
6.3.4 Attaining the converse of Prigogine’s goal 

In Eq. (18), length L is that of the largest straight 
line through the system. Then for the cell under study L = 
2a =10 µm. Since by Eq. (2) I = max, Eq. (18) shows that 
the CM-NPC channel will have maximum order R.  Thus, 
the headings 6.2 and 6.3 together literally state that, for this 
channel, the demand for maximum order R becomes a 
source of non-equilibrium (minimum entropy H) for the 
system. I. Prigogine’s goal (19) was to show the converse, 
that "non-equilibrium (H = min.) becomes a source of 
order" R (R = max.). In fact this directly follows from Eq. 
(17), since R is proportional to I by Eq. (18).   

  
    
          We also saw, below Eq. (10), that despite 

such operation at far from thermodynamic equilibrium, the 
maximized order level (18) is stable to second order 
environmental perturbations (in particular, over region AB 
in Figure 2). So, not only is the order maximal but it is 
stable as well. Comparisons with the corresponding growth 
of a crystal, in Sec. 3.5, are apt here. Thus, were it not for 
the random nature of the cell cytoplasm, like the crystal its 
level of entropy would be a maximum, its level of order a 
minimum (by Eqs. (17) and (18)), and it would be dead. 

 
          Finally, in Sec. 4.3, we saw that this 2nd-

order stability is suggestive of the flat extremum 
characterizing a double-well potential as the two potential 
sources approach one another. Double-well potentials are 
known to generate ‘emergent’ physical phenomena such as 
superconductivity. Here the emergent phenomenon is stable 
life. But again, this has limited validity since we are only 
addressing the CM-NPC channel, which does not contain 
the genomic DNA information. 
 
6.4. Key role of environmental energy inputs 

Our premise is (2), that information is 
maximized; then by (18) so, likewise, is the order R. On the 
other hand, Eq. (18) for R was derived on the premise that 
R must decrease after each coarse-graining event such as a 
cancer cell input. However, it should be kept in mind that 
the cancer follows its own ‘program’ of growth; as do other 
cell invaders such as the Plasmodium parasite. And in so 
succeeding these can ultimately kill their host, whose levels 
of order go to zero.  How does a cell cope with such a 
deteriorating situation, and instead gain order? 

 
To provide an answer requires introduction of the 

concept of ‘coarse graining’ (16). In general a system is 
coarse grained when its finest structural details are lost due 
to some physical process.  An example is replacing fine-
grained photographic film by, literally, ‘coarse grained’ 
film.  There is always a visually obvious loss of resolution 
(and, so, coarse graining).  
 

 The answer to the question of the 2nd preceding 
paragraph is that cells utilize imported environmental 
energy (20), such as photons to promote photosynthesis, 
and internal energy sources, e.g., ATP and GTP. These are 

used to create the binding energy required to form 
deterministic cell structure, and order. Until the cell 
approaches senescence, these counter the deteriorating 
effects of ‘lossy’ coarse graining events such as influx of 
cancer. For example, ATP and GTP power the import of 
positive NLS charges into each target NPC (Sec. 3.4), so as 
to form a sufficiently large electric field E to pull a 
maximum level of messenger protein flux F into their 

target NPCs. Then, since flux F   I = max. (by Eqs. (2) 

and (3)), and since the rms error of location emin = I-1/2 (Eq. 
(1)) at each NPC, the error must be minimized. As we saw 
(Sec. 5.6) it results that 95% of proteins successfully enter 
their target NPCs.  

 
Another use of the ATP and GTP energy 

resources is to power the chemical reactions necessary to 
move each required ligand along the DNA spiral to its 
target location (Sec. 9).   

 
7. TRAJECTORIES IN THE CM-NPC CHANNEL 
 
7.1. Charge effects 

Suppose that a ligand arrives at a specific 
position x0 on the inner surface of the CM? Which NPC on 
the NM should be its target?  By our minimal time 
requirement (above Sec. 3.1) the target NPC should be 
located radially inward from the ligand position x0 . This is 
by the following reasoning. 

 
          We have assumed a ligand that travels 

from CM to NPC to DNA. Therefore, here we consider 
what would make the negatively charged ligand enter the 
NPC. Elementary electrostatics suggests that this is 
accomplished if the NPC can somehow acquire a positive 
electric charge Eq. (15). Recent research (10) indicates it 
does so by importing NLS molecules from the cytoplasm. 
This charge on the NPC is strong enough that, aside from 
minor excursions due to diffusion by the cytosol, the ligand 
travels radially inward toward that NPC. Of course such a 
radial path is also the shortest possible distance from the 
NPC to any possible ligand position on the CM.  Hence the 
ligand travels to the NPC in the shortest possible time, 
which we called ta.  For the given spherical cell model, ta  = 
0.016 s (8a). Also, because of the minimal random spread 
Eq. (16) in position on the NM due to diffusion, the 
probability that the target ligand will enter the NPC is about 
95% (as derived below Eq. (16)).  Also, to discriminate 
against other, non-radially located ligands, the NPC 
maintains its charge for the limited time ta . Such non-
radially positioned NPCs would require more time to get to 
it.   This is why the targeted NPC should be the one located 
radially inward from ligand position x0 .  

 
 In this manner, all ligands take time ta to travel 

radially inward to their corresponding NPCs.  This constant 
time ta is built into the operation of each NPC --  It 
maintains its Coulomb charge, and keeps its central plug 
open, only during the time ta ± small tolerance time.   
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7.2. Use of possible signaling mechanism 
First, how does a given NPC know when to turn 

‘on’ its charge so as to acquire the target ligand? It would 
suffice, e.g., if the presence of the ligand at x0 were 
signaled to the nucleus by a nanosecond pulsed electric 
field originating on the CM (21). 
 
7.3. Alternative use of time gating mechanism  

But, what if such a pulsed electric signal does not 
exist? Now how can the NPC acquire its target ligand? 
First, how does a given NPC know when to turn ‘on’ its 
charge so as to acquire the target ligand? One possibility is 
that the NPC utilizes a time gating procedure.  As above, it 
turns on its charge for the fixed time ta.  If that type ligand 
was already present radially away on the CM when the 
NPC turned on its charge, then that ligand and only that 
ligand can enter the NPC.  However, if that ligand arrived 
on the CM at some time after the “on” phase of the NPC 
started, it wouldn’t get there in time.  The NPC would be 
plugged, and this would be a missed signaling opportunity.  
Meanwhile, there is also a chance that a nearby ligand in 
the cytoplasm from some other CM position could be 
pulled into this NPC. This would constitute an erroneous 
ligand input. However, the chance of this happening can be 
minimized if, sequentially in time, “on” state NPCs are 
widely separated angularly around the NM.  (For example, 
consecutively open NPCs are located at least 90o apart.) 
Then the chance of such an errant ligand being close 
enough to the target NPC to be pulled in would be minimal. 
In this way, there is effectively minimal probability that an 
oblique-motion (non-radial) ligand will enter the subject 
NPC. So the NPC plays a “waiting game,” sequentially 
over time intervals ta, until it gets the ligand it ‘wants.’  

 
This argument can be extended to non-spherical 

cells and nuclei as well.  All ligands entering NPCs will 
always originate on the CM the minimum distance from its 
target NPC. In this way, by selective “time gating,” a given 
NPC receives only ligands that are biologically “conjugate” 
to it, i.e. originate across the cytoplasm at a single 
corresponding point x0 on the CM.  But also, we have to 
consider that there are different types of ligands, and 
perhaps the NPC has incompatibility with the particular one 
that entered. That would require some subsequent rejection 
of the ligand within either the NPC or its chromatin region.  
These considerations are outside the scope of this paper. 
 
8. LABORATORY VERIFICATIONS 
 

The model gives results that have been 
experimentally verified (8a,8b) Note: In ref. (8b) see in 
particular the next-to-last section “Supporting Evidence: 
Summary”: 
 
 (i) Very high intracellular electric field strengths, typically 
tens of millions of volts/meter.   
 
 (ii) A central role for negative charges, added to proteins 
by phosphorylation, in promoting their Coulomb force-
dominated motion toward the positively charged nucleus;  
 

 (iii) The dominance of protein pathways consisting of from 
1-4 proteins, e.g. the RAF, RAS and MEK pathways;  
 
 (iv) A fast response (2,800 proteins/ms) of cells to sudden 
trauma such as wounds;  
 
 (v) A 4nm size for the EGFR protein, which has been 
observed to be of about size 3nm.  
 
9. INFORMATION FORMS FOR BOTH CM-NPC 
AND NPC-DNA CHANNELS 
 

In the foregoing we analyzed one information 
channel of the cell: the information carried by a protein 
in moving from the CM to an NPC on the NM through a 
channel of continuous (in coordinate x) cytoplasm. We 
found that Fisher information I characterizes the order R 
in this cytoplasm channel, via Eq. (18).  But this is only 
half the total information channel.  The rest consists of 
the protein that entered the NPC continuing on to a target 
appropriate DNA sequence; there it alters one of its 
codons.  Such a sequence is, of course, discrete.  
 
9.1. The NPC-DNA channel  

A DNA molecule consists of codons C,A,T,G, 
etc. in some discrete sequence that generates PI. However, 
Fisher information I is not definable for discrete sequences. 
Therefore Eq. (18) for R cannot be used to define its level 
of order. Then how can the order in this process be 
characterized?    

 
9.2. Model assumptions for NPC-DNA channel         
        The foregoing results followed from the principle that 
the Fisher I about ligand position on the CM for proteins 
traveling through the cell cytoplasm obeys I = maximum. 
But, what principle is followed inside the nucleus? A well-
defined statistical answer is to seek the maximum probable 
DNA binding site.     
     
9.3. Kullback-Liebler measure 

Many workers (e.g., (22), (23)) characterize the 
order in DNA sequences by their Kullback-Liebler (or 
“cross-“) entropy 
                                                                 

       (19) 
 
Here the probabilities Pn define the given system and the 
Qn are “reference” probabilities prescribed by the user. 
 

One use (22) of K-L form Eq. (19) is as an 
enzyme function predictor. There Eq. (19) is a distance 
measure for defining the “enzyme commission number” 
EC. This classifies an enzyme based on the chemical 
reactions it catalyzes. A second use of KL-form Eq. (19) is 
in identifying a DNA sequence’s function as either a 
regulatory protein or a restriction enzyme; see, e.g., Stormo 
(23). He gives 
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        (20) 
 
as the average binding energy at a given ligand binding site 
i on the DNA chain. (See further on this following Eq. 
(21).) Here Pbi is the probability of codon base b occurring 
at site i, and Qb is the total probability of base b occurring 
over the entire genome. The binding energy associated with 
a specific substrate-enzyme interaction significantly lowers 
the Gibbs free energy change required for the reaction.    
 

For Eq. (20) to represent the K-L entropy of the 
entire DNA molecule it should be summed over spatial 
positions i as well. Assume that the total entropy H(P,Q)  is 
simply the sum of energies Hi over the individual binding 
sites i. Then from Eq. (20) 
                                                                         

     (21) 
 
 (This assumption of additivity of energy is a limitation of 
the approach.) Note that H and S are proportional; see Sec. 
2.5. It results that Eq. (21) represents total energy (at 

constant T) as well. But note that  so that, 
expanding out the log2   
quotient in Eq. (21) gives a term  
 
                                                                    

 
 
The latter is the total mean energy of the codons, 
irrespective of their locations. Interestingly, some of the 
most intricate biological instructions require minimal 
energy expenditure. Since in Eq. (21) this subtracts from 
the total energy in all codons b at all sites i, the result is the 
total binding energy specific to the sites, i.e. the total 
binding energy as was desired.  
 

Eq. (21) is now in the form Eq. (19) of a K-L 
entropy, with Qb the reference function.  By elementary 
thermodynamic considerations, the probabilities  Pbi , Qb 
that mathematically maximize binding energy H(P,Q) are 
found (23) to form maximum probable binding sites.  
Hence, a principle  

 
H(P,Q) = maximum                    (22) 
 
is obeyed by the placement of codons in the DNA.  But of 
course DNA sequences are dynamic, not static. This 
dynamic nature is usually attributed to random mutations. 
Mutations either add, delete, or alter sequences of base 
pairs. Rarely, a mutation will benefit the fitness of the 
organism. This mutation then has a greater chance of being 
passed on to its offspring and perpetuated. This is a 
randomly driven creation of new information.   

By comparison, PI proponents state that natural 
selection is only eliminative, not creative. This would seem 
to say that a beneficial mutation will not be passed on to its 
offspring (denying one of the basic tenets of natural 
selection). 

 
Note also that proponents of PI question a 

connection between this entropy Eq. (22), or its 
approximating Fisher information Eq. (23), or even its level 
of order, to genome function. In reply, we can state that the 
pillars of scientific theory rest upon a foundation of 
laboratory verifications. And there have been many of 
these, as summarized in Sec. 8. 

 
9.4 Approximation by a Fisher measure 

Finally, it is interesting to consider whether this 
discrete measure, for use on the discrete DNA channel, 
could be consistent with the preceding use of Fisher 
information I for the continuous CM-NPC cytoplasm 
channel.  Suppose that the local codon probabilities  Pbi  do 
not strongly differ from the global value Qb independent of 
position, i.e. Pbi = Qb -  ∆Pbi where all ∆Pbi are small. Then 
from Eq. (21) the total binding energy over codons is 

 

 

 (23) 
 
This particular limiting answer is derived in 

Appendix C. The general derivation is in (6a), pgs. 37-38, and 
(24). Hence, in this case the total mean binding energy   
H(P,Q) is a discrete approximation to ½ the Fisher information 
IDNA of the DNA channel.  Then, serendipitously, by principle 
Eq. (22) of maximum probable (or MAP) (25) binding sites, 
principle (2) of maximum Fisher IDNA for the DNA channel 
actually derives here.   

 
A limitation of the approach is that the above 

assumption of independent binding site energies is 
mathematically equivalent to assuming that the codons act as 
independent sources of information.  

 
In summary, under these conditions the single 

extremum principle (2) of maximum Fisher information acts to 
effect and describe the overall cell development channel (CM-
NPC-DNA).  In Table 2, with time increasing to the right, the 
chief events of the particular channel (bottom row) are shown 
that result from operational effects (top row) upon them. 

 
                Use in this paper of the concept of Fisher information 
to quantify the development of life processes has also had 
success in quantifying the development of entire ecologies 
(26). 
 
10. DISCUSSION 
 

We have reviewed the information basis for the 
following aspects of normal cell growth: 
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Table 2. Chief events of the CM-NPC-DNA channel (bottom row), and their causative effects (top row) 

   Phosphorylation   Messengers  Medium    Max. Fisher I  Time gating    NLS   Max. binding energy ≈ Fisher I     
             ↓                         ↓                  ↓                   ↓                   ↓                ↓+                   ↓  
   ligand on CM   →  proteins → cytoplasm  →   NPC   →       NM    →   NPC     →      DNA     

 
 (1) Natural selection has produced ligand-

carrying proteins that travel from CM-NM in minimal time 
(Sec. 3). This permits, e.g., quick functional cellular 
response to sudden environmental trauma such as wounds 
or foreign bodies. 

 
 (2) As a consequence, cells obey maximum 

structural information I , subject to constraints of limited 
energy, passage through membrane barriers, etc. In this 
application of the principle, this resulted in minimal time ta of 
passage of messenger proteins from the CM to the NM. It also 
resulted in beneficial stability of the system to approximately 
2nd order (Secs. 4.2, 4.3, 5.1), a rare case in nature. Of course 
the cell did not know to evolve in this direction.  It was simply 
following the principle I = max. of having maximum up-down 
structure in p(x). In this case, it is a p(x) that has optimally high 
slopes because it is a Gaussian function with small variance σ². 
That this resulted in an advantage of survival is mere 
happenstance. Again, that is the nature of natural selection. 

 
Such optimal function is not limited to biotic 

systems. Inanimate system have long been known to obey 
extremum principles: minimum time of travel (for a light ray), 
extreme Lagrangian action, EPI, etc. (Sec. 3.2).  In our 
biological application, maximizing the average flux F (Sec. 4) 
in the cytoplasm was seen to result in stability, approximately 
through second-order, in both their protein flux rates and 
spatial information levels at the NM (Secs. 4.1-4.2).  

 
 (3) During protein acquisition by the NPCs each 

NPC individually acquires a positive charge via NLS 
acquisition, while nearly all other NPCs remain uncharged 
(Secs.3.5, 5.5). This results in efficient protein acquisition by 
allowing each such negatively charged molecule to be directly 
guided toward its (positive) target NPC on the NM.  Also, 
using newly understood NPC biology (10), we derive the 
experimentally observed charge QNM  ≈ +0.3 × 10-11 Coul that 
was assumed in past calculations of Fisher-based cell 
dynamics,.  

 
 (4) In the absence of a synchronizing field from 

the CM, each NPC utilizes a time gating procedure (Sec. 
7.3) to select its target protein from among all others in the 
cytoplasm.  

 
 (5) The principle Fisher I = maximum is obeyed 

by proteins moving within the cytoplasm (Sec. 3.2). It leads 
to a CM-NPC channel that has maximum order R (Sec. 6.3) 
and that is both highly stable (to 2nd order environmental 
perturbations; Secs. 4.2, 5.1) and maximally far from 
thermodynamic equilibrium (Sec. 6.2). This leads to the 
‘emergence’ of life (Sec. 6.3). 
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12. APPENDIX A: DERIVATIONS AND MEANINGS 
OF FISHER INFORMATION        
 

Fisher information arises, independently, as both 
as a measure of system order and a measure of the quality 
of its data. It also defines a distinct arrow of time (possibly 
the ‘biological’ one) and may be used as well to derive all 
laws of inanimate physics. Hence there are two 
independent derivations of Fisher information, depending 
upon the problem – whether system order or data quality -- 
that is addressed.  
 
12.1. Fisher information as a measure of the order in a 
system 

The first derives Fisher information I as a 
measure of order (or complexity). Let the system be 
defined by its probability amplitude law q(x), x = x1,…,xK. 
The corresponding probabilities are p(x) = q2 (x).  Order 
can only be a property of a finite system. This is in view of 
the 2nd law of thermodynamics, which requires disorder to 
increase over all space. Hence a system of finite extent can 
have increased order, providing a compensating level of 
disorder is shipped outside it. Thus, increased order can 
only exist in finite ‘pockets’ of space. 
 

Hence, the system q(x) must be of finite 
maximum extension. Let this be length L. Suppose that the 
system is randomly degraded such that it loses some (or all) 
of its fine structure.  This is called a process of ‘coarse 
graining,’ a term that dates from when in conventional 
photography a fine- grained film is replaced by a coarse-
grained one. The picture becomes ‘grainy,’ or ‘snowy’ in 
the case of television. One would then expect a coarse 
graining to cause a loss of system order.  Hence we 
quantify this by the statement that under any coarse 
graining perturbation δq(x) the resulting change in order δR 
(q (x)) ≤ 0. Expanding the latter in Taylor series and using 
a theorem of Cencov (28) gives the order as (16) 
 
R(q(x)) = (1/8)L2I,                (A1) 
 
where I is the Fisher information Eq. (1). 
 
12. 2. Fisher information as a measure of the quality of 
data from a system 

The second Eq. (1),  emin = I-1/2 ,  shows that the 
larger I is the smaller is the minimum possible root-mean 
squared error emin.  This derives from the following 
scenario (25). Suppose that data y = y1,…,yN are known as 
N independent measurements of an unknown system 
parameter a. The parameter is to be estimated from the 
data. For this purpose an estimation function a’(y) of a is 
formed from the data.  An example is the sample mean 
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a’(y) =N-1 ∑n  an  . What is the smallest possible root-mean 
square error emin that any estimation function can achieve? 
 

It is assumed that the likelihood law p(y|a) of the 
system is known (Note: The line | means “if”).  Assume 
that the estimation function is unbiased, i.e. incorrect for 
any one set of data, but the average such estimate over a 
large number of sets of data y is correct, i.e. value a. This 
may be expressed as the condition 

 
< a’(y)> = ∫ dy a’(y)p(y|a) = a                                        
(A2) 
 
Because the likelihood law p(y|a) has unit area under it, this 
can be rewritten as  
 
< a’(y) - a> =∫ dy[a’(y)– a]p(y|a) = 0.                                    
(A3) 
 
The rest is mere algebra. One differentiates both sides ∂/∂a, 
uses the identity relating the derivative of the lnp to the 
derivative of p itself, etc., and finally the Schwarz 
inequality, to give the result   
 

                                                    (A4) 
where 
                          e2 =∫ dy[a’(y)– a]2 p(y|a) and I = ∫ 
dy[∂lnp(y|a)/∂a]2p(y|a)            (A5) 
  

is defined to be the Fisher information. Eq. (A4) is called 
the "Cramer-Rao inequality" or, simply, the "error 
inequality". It shows that the mean-squared error and the 
Fisher information obey a complementary relation. If one is 
very small the other tends to be large. Or, taken another 
way, the minimum possible mean-squared error obeys  
 

emin = I-1/2   ,                                                 (A6) 
  

which we had set out to prove.  Finally, assume a case of N 
= 1 data value y, and where the system is shift invariant, 
obeying 
 

p(y|a) = pX(y – a),  x = y – a.            (A7) 
 

Then the 2nd Eq. (A5) becomes Eq. (1), 
 

I = ∫ dx(dp/dx)2/p,    p = p(x)           (A8) 
 

The Cramer-Rao inequality (A4) per se has many scientific 
applications, including giving rise to the Heisenberg 
uncertainty principle (6a).  
 
12.3. Fisher information and order R define arrows of 
time 

Suppose that a system is perturbed by being 
coarse-grained (Sec. 6.4). This ‘lossy’ process causes tiny 
losses δI and δR in Fisher I and order R (16) 

 
δI ≤ 0,   and δR ≤ 0 for dt > 0.                   (A9) 
 
That is, during any tiny passage dt of time both the information 
I and the order R must either suffer a decrease or stay the same 
if the system is coarse grained (i.e., loses structural detail).  
Thus, if the system is forced by some outside influence to lose 
structural detail it will tend to lose both order and information. 

12.4. Fisher information is used in a principle that 
generates the physical laws of inanimate systems 

The principle of Extreme physical information 
(EPI) has been used to derive most textbook physics and 
certain laws of biology and economics (6a).  This principle 
has two requirements: I – J = extreme value, and I = κJ, 
where κ ≤ 1.  In this principle, I always has the functional 
form Eq. (1). That is, I is regarded as generic information. 
By comparison, the new information quantity J is the 
physical expression of I within the given system. This 
requires some physical knowledge of the system (say, an 
equation of continuity). Since any observation is imperfect, 
incurring at least some loss of information, the maximum 
possible value of I is J, and this is why information 
efficiency κ ≤ 1 in the above.  Solution to the first 
requirement I – J = extreme value is by use of the calculus 
of variations for a continuous system, or by ordinary 
differential calculus for a discrete system.   

 
13. Appendix B: derivation of flux F curve in Figures 
1,2 
A messenger protein of mass m on its trajectory from CM 
to NPC is subjected to two forces (8a):  
 
 (1) A Coulomb force of attraction FC (r) = - zqE(r) toward 
the NPC, where electrostatic field 
 
                                                    

.            (B1) 
 
A specific charge of z=2 electron charges q is assumed. 
The Debye-Huckel constant k0 obeys Eq. (4) of the text.    
 (2) A drag force, away from the NPC, 
 

FD (r) = - Kdr/dt.                           (B2) 
 

 (All constants in these equations are defined in Table 1.) 
 

By Newton’s 2nd law the total force F = m(d2r/dt2)= FC (r) 
+ FD (r). Using Eqs. (B1) and (B2), and noting that the 
acceleration force m(d2r/dt2) is negligible compared to the 
other two, gives a net result 
 
zqE (r) + Kdr/dt = 0.                   (B3) 
 

This is in the familiar ‘terminal velocity’ dr/dt form, 
although here it varies with r according to the field E(r). 
Substituting in Eq. (B1) for E(r) gives a first-order 
differential equation 
 

             

   (B4) 
 
Both sides of the 1st equation may be analytically 
integrated, the left side from t = 0 to a general time t, the 
right side from initial position r0 to general position r. 
However, the latter integral over r is not in a form directly 
found in the tables. But the change of variable 1 + k0r = - x 
puts it in the form 
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                         (B5) 
 
This is the sum of 3 integrals, of which the first 2 are 
elementary. The last brings in the exponential integral 
function, as           E1(1 + E1 . 
(Note: E1 is denoted as Ei in some texts, e.g. as computed 
by Scientific Workplace to produce Figs. 1 and 2.) 
 

Integrating the left side of (B4) gives simply t as, 
now, a known function of r (right side).  Evaluating the 
latter at r=a defines the function t(a)= ta by definition. This 
function is then substituted into the relation  F = F(k0) =  ρ 
(r0 – a)/ta found above Sec. 4.1. Since both ρ (by Eq. (4)) 
and ta are now known functions of k0 this allows the 
function F(k0) to be computed. The time ta is found to be 
about 0.016s, surprisingly fast. However this, in fact, is 
consistent with clinical data, where cell response times of 
from 0.01s – 0.1s were required following trauma injury 
(8b). 
 
14. Appendix C : transition from K-L entropy to Fisher 
measure within nucleus 

The aim is to prove the transition  Eq. (23) from 
K-L entropy to Fisher information. Whereas Eq. (1) defines 
the Fisher I for a continuous variable x, within the DNA the 
variable is the discrete i. The definition for this case is (1,2) 

 
I = ∑bl (Pb,i+1 – Pbi)2/Pbi                   (C1) 

 
where  Pbi = Pb(xi) = Pb(i∆x) with i the location number 
along the DNA lattice. Factoring Pbi) in the numerator of 
(C1) gives 
 

                                                    (C2) 
 
 where  ν = [(Pb,i+1 / Pbi ) – 1].   Now assume that Pbi is a 
smooth function of i, so that Pb,i+1 = Pbi +∆Pbi with ∆Pbi  
0. Then ν in (C2) is close to zero. But by Taylor series ln(1 
+ ν) =  ν – ν2/2, or equivalently 
                                                          

                                   (C3) 
Then (C2) becomes 
    

.                      
(C4) 
 
The first right-hand term is identically zero since  

=  by normalization of 
probabilities Pbi.  This leaves 
     

                                  

           
(C5) 
by the first Eq. (23). QED 
 
15. Appendix D: deriving linear relation between 
information I and flux F 
           In general, the flux of particles is the number of 
particles per unit area per unit time. The average flux of 
proteins from CM to NPC obeys 
 
F = <N>/taA                                             (D1) 

 
This describes N proteins traversing the CM-NPC 

over time ta , where A is the cross sectional area of the NM.  
We assume that the protein positions y are processed by the 
NM so as to estimate the ideal position NPC x0 . The 
maximum likelihood estimate is then just the arithmetic 
mean of the total excursions y.  The mean-squared error in 
a single excursion is <x2>, and its information is I1 = 1/<x2> 
after use of defining Eq. (1) where p(x) is assumed to be 
Gaussian with variance <x2>. Then since the protein 
fluctuations x are independent, their informations add (25), 
so consequently the total I = N I1 = N/<x2>.  The molecules 
of the cytoplasm induce random walk in the proteins, so 
that their mean-squared position at the NPC <x2> = 2Dta 
with D the diffusion constant.  Thus the information in N 
readings deliver a total information I = N/<x2> = N/ 
(2Dta). Using this in Eq. (D1) gives 

 
  I = (A/2D)F.                                                        (D2) 
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