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Hsp10: anatomic distribution, functions, and involvement in human disease
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1. ABSTRACT

There is growing evidence that molecular
chaperones/heat shock proteins are involved in the
pathogenesis of a number of human diseases, known as
chaperonopathies. A better molecular understanding of the
pathogenetic mechanisms is essential for addressing new
strategies in diagnostics, therapeutics and clinical
management of chaperonopathies, including those in which
Hsp10 is involved. This chaperonin has been studied for a
long time as a member of the mitochondrial protein-folding
machine. However, although in normal cells Hsp10 is
mainly localized in the mitochondrial matrix, it has also
been found during and after stress in other subcellular
compartments, such as cytosol, vesicles and secretory
granules, alone or in combination with other proteins. In
these extramitochondrial locales, Hsp10 plays an active
role in cell signalling. For example, cancer cells often show
altered levels of Hsp10, compared to normal cells. Hsp10
may also be found in the extracellular space and in the
bloodstream, with a possible immunomodulatory activity.
This minireview focuses on some studies to date on the
involvement of Hsp10 in human disease pathogenesis.

2. MOLECULAR CHAPERONES, HEAT SHOCK
PROTEINS AND CHAPERONOPATHIES

Molecular chaperones, many of which are Heat
shock proteins (Hsps), are an important class of molecules,
highly conserved throughout evolution, with numerous
intracellular functions (Table 1). The best-known role of
these molecules is their involvement in the correct folding
of polypeptide chains and in the assembling of proteins into
functional higher order structures (1, 2). Prokaryotic and
eukaryotic cells have evolved special multimolecular
chaperone complexes that play a role in protein folding (3,
4). One of these is the Hsp60/Hsp10 molecular complex
that captures unfolded, partially folded and/or misfolded
proteins inside its central cavity, ensuring their correct
structural conformation (3, 5).

The malfunction of the chaperoning system due to
defective chaperones may lead to several diseases, now
described as chaperonopathies (4, 6, 7). Chaperonopathies
have been classified etiologically as genetic or acquired,
and pathogenetically as by defect, excess, or mistake. The
latter include various types of cancers in which chaperones
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Table 1. Main chaperones and their functions
Chaperone Subcellular localization Known function References
α-A crystallin Cytosol Structural protein of eye lens 62
α-B crystallin Cytosol Anti-apoptotic, thermoprotection 63
Calnexin Endoplasmic reticulum (ER) Folding of glycoproteins 64, 65
Calreticulin ER, cell surface Folding of glycoproteins. Facilitates peptide loading to the class I molecule of the

major histocompatibility complex
66-68

Gp96 ER, cell surface Controls protein homeostasis in the ER. Implicated in the activation of dendritic cells
and chaperoning of antigenic peptides in the process of antigen presentation

67, 69-71

Grp78 ER Protein (e.g., immunoglobulin) folding 72, 73
Grp170 ER Implicated in peptide transport in the ER 74
Hsp10 Mitochondria, cytosol,

zymogen granules
Protein folding; modulation of immune system 75,17,31,33,

16
Hsp22 Cytosol Cell protection; maintenance of muscle integrity 76
Hsp27, HspB2 Cytosol Anti-apoptotic; cytoprotection 77
Hsp40 Cytosol Folding and refolding of denatured proteins, together with Hsp70/Hsc70 78
Hsp47b ER Synthesis/assembly of various collagens 79
Hsp60 Mitochondria, cytosol, cell

membrane, vesicles, cell
surface

Cytoprotection; protein folding; macrophage activator possibly through Toll-like
receptors

80-82

Hsc70 Cytosol, nucleus Protein folding; clathrin uncoating; peptide binding 83
Hsp72 Cytosol, nucleus Cytoprotection and anti-apoptotic. Implicated in spermatogenesis 84
Hsc74 Mitochondria Antigen presentation; radioresistance 85-87
Hsp90α Cytosol Protein folding; cytoprotection; intracellular signalling (e.g., steroid receptor); cell-

cycle control
88, 89

Hsp90β Cytosol Protein folding; Cytoprotection; Intracellular signalling (e.g., steroid receptor); Cell-
cycle control

90, 91

Hsp110 Cytosol/nucleus Binds to Hsc70 to form high-molecular-weight complex; involved in protein folding;
thermotolerance; involved in embryogenesis

74, 92

Chaperonin II like
molecule (TRiC)

Cytosol Protein folding 93

PDIase Cytosol, ER Protein folding inside ER; involved in disulfide bond rearrangement catalysis 94
PPIase Cytosol, ER, mithocondria Protein folding; interconverts the cis and trans isomers of peptide bonds with amino

acid proline
95

Sacsin Cytosol Co-chaperone which acts as a regulator of the Hsp70 chaperone machinery and may
be involved in the processing of the other ataxia-linked proteins

96

SEC63 ER May perform post-translational protein translocation into ER 97

Modified  with permission from (60). For complete guidelines for the nomenclature of the human heat shock proteins, see ref. 61.
bMember of the serpin (serine protease inhibitor) superfamily.

benefit the tumors rather than the host (8). Some examples
of chaperonopathies are given in Tables 2 and 3.

3. Hsp10 MOLECULAR ANATOMY AND
FUNCTIONS

Most studies on chaperonin function have been
carried out using prokaryotic models, in particular the bacterial
GroEL and GroES, which are the homologous of eukaryotic
Hsp60 and Hsp10, respectively.

The GroEL chaperonin complex consists of two
rings arranged in a barrel-shaped structure with a central
cavity, the folding chamber. Likewise, GroES assembles into a
ring. GroEL captures the unfolded protein and the GroES ring
caps the cavity, initiating the folding process. After a few
seconds, the folded protein and GroES are released (9). In
eukaryotic cells, one or two ring-like structures (each with
seven Hsp60 subunits) capped by one ring of seven Hsp10
subunits, form a bell-shaped chaperonin structure (5, 10)

Hsp10 is encoded by a nuclear gene (GeneID, 3336;
gene map locus, 2q33.1) and transported into mitochondria
(11). The human genes of Hsp10 and Hsp60 have been
mapped to chromosome 2, placed head-to-head, and controlled
by a bidirectional promoter (11). The transcriptional activity of
the promoter in the Hsp60 direction is approximately twice of
that in the Hsp10 direction under normal growth conditions,
while, under heat stress the activity increases by approximately

12-fold in both directions, maintaining Hsp60 expression two-
fold higher than Hsp10 (11).

Interestingly, in a recent study in which a mutant
mouse line bearing an inactivating gene-trap insertion in the
HspD1 gene encoding Hsp60, it was found that the expression
of the nearby HspE1 gene, which encodes Hsp10, was
concomitantly downregulated and the protein levels were
reduced in many tissues (12). This mutation resulted in early
embryonic death.

Hsp10 does not contain the typical mitochondrial-
targeting sequence, but instead its N-terminal sequence forms
an amphipathic alpha helix, stabilized by acetylation of the first
Ala, which enables it to cross the mitochondrial membrane in
the absence of a signal peptide (13, 14).

Although in normal cells Hsp10 is generally
localized in the mitochondrial matrix, it has also been found in
other subcellular localizations, such as in cytosol and secretory
granules (15-17) (Figure 1). The mechanism by which Hsp10
accumulates in the cytoplasm is not known. Two possibilities
are: 1) Hsp10 accumulates in the cytoplasm directly, without
passing through the mitochondria; and 2) it enters into the
mitochondria and is then translocated back into the cytoplasm
(9).

In the cytosol, Hsp10 has further roles in addition to those
accepted to play inside the mitochondria as a co-
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Table 2. Examples of genetic and acquired chaperonopathies
Chaperones Genetic chaperonopathies Acquired chaperonopathies References
Hsp20, Hsp27, HspB2 Physical association of chaperones with precipitates of abnormal proteins in

neurodegenerative disorders Alzheimer's disease (AD).
98

Hsp22 and Hsp27 Neuropathies associated with
sHsp mutations

99

Hsp27 Alexander disease 100
Hsp40 (DnaJ3) Dilated cardiomyopathy 101
Hsp47 Fibrotic disorders 102
Hsp47, PDIase Posttranslational modification of PDIase and protein misfolding disease 103
Hsp70 Inactivation of chaperones by exogenous toxins 104
Hsp72 Failure of inducible chaperones and disease 105
PPIase (peptidyl–prolil cis–
trans isomerase)

Williams syndrome 106

Sacsin Ataxia of Charlevoix–Saguenay 107
SEC63 Pathology of protein transport

into the ER
108, 109

Modified  with permission from (7)

Table 3. Examples of chaperonopathies by excess, defect, or mistake
Chaperones Chaperonopathies by excess Chaperonopathies by

defect
Chaperonopathies by mistake References

Hsp10, EPF Cancer of large bowel, uterine exocervix, and prostate; mantle
cell lymphoma; serous ovarian cancer; gestational trophoblastic
tumor

31- 36, 9, 37

Hsp20,
HspB2, Hsp27

Alzheimer's disease
(AD)

98

Hsp60 Age-related diseases Cancer of large bowel, uterine exocervix, and prostate 31, 32, 110
Hsc70 and
Hsp70

Multiple system atrophy; age-
related diseases

111, 112

Hsp70 Breast cancer 113
Hsp90 Breast cancer 114

Modified  with permission from (8)

Table 4. Examples of roles of cytosolic Hsp10
Tissue Function References
Bone Osteoclast recruitment and bone resorption; bone collagen synthesis 115-118
Cardiac Suppression of ubiquitination of insulin-like growth factor-1 receptor and increase of insulin-like growth factor-1 receptor

signaling
119

Epithelia Inhibition of NF-κB–regulated gene expression; inhibition of the transcriptional activation mediated by WNT signalling; signal
transduction

120, 121

Lung Acetylation of polyamines and regulation of polyamine transport out of the cells 122, 123
Nervous, glia Neurite outgrowth 124
Nervous,
neurons

Nucleic acid metabolism 125

Testis Lipid synthesis and steroid biosynthesis 126

chaperonin for Hsp60. Some examples of these non-
canonical roles are given in Table 4.

Hsp10 localizes extracellularly during pregnancy.
Extracellular Hsp10 is often referred to as Early Pregnancy
Factor (EPF), because it has been found to be released
during the first stages of gestation and it is involved in the
establishment of pregnancy, in embryonic development,
and in cell proliferation and differentiation (18-22).
However, the mechanism by which Hsp10/EPF is released
into the extracellular environment is not yet fully
understood. We suspect that Hsp10 is released from cells
by nonconventional secretory pathways that involve lipid
rafts and/or exosomes, as observed for other Hsps (23-30).

4. Hsp10 AND CANCER

Higher than average Hsp10 levels have been
found in tumor cells in large bowel cancer (31, 32),
exocervical cancer (31), prostate cancer (33), mantle cell
lymphoma (34), and serous ovarian cancer (35). By
contrast, in bronchial carcinogenesis, decreased levels of

Hsp10 have been reported (36). It is not clear what
determines an increase or a decrease in the expression of
this protein in cancer cells. Table 5 shows a list of tumors,
studied using various techniques, in which Hsp10 levels
have been found to differ from those in the normal tissue
counterparts. Figure 2 shows Hsp10 immunopositivity in
normal (a) and tumor (b) cells from colon mucosa.

Clinical studies have demonstrated that
circulating Hsp10 (EPF) can be found in a number of
tumors, such as malignant trophoblastic tumor (37),
invasive mole (38), choriocarcinoma (38), endodermal
sinus tumor of the ovary (39), rhabdomyosarcoma (39),
adrenal cortex carcinoma (39), ovarian carcinoma (40), and
germ-cell tumor of the testis (41). In these neoplasms,
Hsp10 measurement in sera may become a useful marker
for clinical follow-up.

The observation that Hsp10 levels are increased in some
conditions has prompted studies to elucidate the
significance of high levels of the chaperonin, focusing on
apoptosis, cell proliferation, and immune tolerance. Hsp10
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Table 5. Tumors in which Hsp10 levels have been found altered compared to normal tissue counterparts
System Tumor Methods Hsp10 levels (compared to normal tissues) References
Digestive Large bowel carcinoma IHC; WB Higher 31, 32
Female reproductive Ovarian cancer IHC;WB Higher 35

Exocervical carcinoma IHC; WB Higher 31
Hemolymphopoietic Mantle cell lymphoma Protein microarray; IHC; WB Higher 34
Male reproductive Prostate carcinoma IHC Higher 33

Testicular germ cell tumors RIA Higher (EPF-like) 41
Respiratory Bronchial adenocarcinoma IHC; WB Lower 36

Modified  with permission from (9) Abbreviations: IHC, immunohistochemistry; WB, Western blotting; RIT, Radio Immuno
Assay.

may act as either a pro- or an anti-apoptotic factor. In tumor
cells, Hsp10 may induce programmed cell death. It has
been reported that an interaction occurs between the
Hsp60/Hsp10 complex and procaspase-3 in the
mitochondria of Jurkat cells (42). When fragments of active
caspase reached the mitochondrial intermembrane space
after separating from the Hsp60/Hsp10 complex, these cells
died. Therefore, it can be inferred that Hsp60-Hsp10
determines acceleration of caspase-3 maturation. Along the
same lines, it has been demonstrated that Hsp10 knock-
down induces apoptosis in mouse ovarian GCs, whereas
overexpression of Hsp10 suppresses apoptosis (43).
However, other data do not support this finding (44). For
example, it has been reported that downregulation of Hsp10
could be one of the main causes of apoptosis in testis, while
Hsp10 overexpression may suppress apoptosis and result in
testis tumorigenesis (44).

Extracellular Hsp10 released from neoplastic
cells may affect tumor cell division via a paracrine
mechanism as suggested by a report showing that treatment
of tumor cells with anti-EPF (Hsp10) monoclonal
antibodies produced a significant decrease in cell growth
and viability rates (45).

A number of studies have investigated the
association between soluble Hsp10 and the immune system
(for a Review, see Ref. 9 and 46). Suppression of immune
function may be crucial for cancer progression. Indeed, the
suppression of CD3-zeta expression induced by EPF has
been shown to lead to inhibition of lymphocyte activation
via the TcR complex, in turn enhancing cancer progression
(40).

To the best of our knowledge, no studies have
investigated the role of Hsp10(EPF) in tumor
neoangiogenesis, which constitutes an interesting topic for
research.

5. Hsp10 AND AUTOIMMUNE DISEASES

A variety of experimental animal models have
been employed to assess the use of Hsp10 as a drug for
immune response suppression. For example, it was shown that
a reduction of lymphocyte infiltration after administration of
Mycobacterium tuberculosis Hsp10 occurs in an experimental
animal model (Lewis rat) of rheumatoid arthritis, known as
adjuvant arthritis (47). Amelioration of clinical signs was
accompanied by an increased titer of antibodies against M.
tuberculosis Hsp10. A randomized double-blind clinical trial
was carried out on patients with moderate-to-severe active

rheumatoid arthritis, who received various intravenous doses
of recombinant Hsp10 (twice a week for 12 weeks) and it was
found that besides being well tolerated, Hsp10 administration
improved clinical signs (48). These results suggest a possible
use for Hsp10 in the treatment of rheumatoid arthritis.
Similarly, experimental autoimmune encephalomyelitis, an
animal model of multiple sclerosis (49), was used in rats and
mice in order to evaluate the suppression of immune response
by Hsp10 (EPF) and improvement of clinical signs was also
reported, along with a reduced lymphocyte infiltration, which
is responsible of demyelination in the central nervous system
(50). In the same models, it was demonstrated a protective role
of Hsp10 as a survival factor for oligodendrocytes (51).
Likewise, an improvement of symptoms was observed in
women affected by multiple sclerosis during pregnancy (52). It
was also demonstrated that Hsp10 (EPF) can have an effect on
delayed type hypersensitivity reaction in mice as two soluble
factors (EPF-S1 and EPF-S2) (53).

On the basis of these findings, administration of
Hsp10 has been considered to have potential in the
treatment of autoimmune diseases. Some clinical trials have
already been performed, demonstrating the usefulness of
this protein in reducing inflammation in some autoimmune
processes, such as multiple sclerosis (54), severe plaque
psoriasis (55), and rheumatoid arthritis (56).

6. Hsp10 AND CHRONIC INFLAMMATORY
DISEASES

Increased Hsp10 levels have been detected during
chronic inflammatory processes, such as Ulcerative Colitis
and Crohn’s disease (57). Immunohistochemistry and
biochemical techniques showed increased levels of Hsp10
in mucosal biopsies from patients with both of the
aforementioned conditions compared to normal controls.
Hsp10 was localised in epithelial and lamina propria cells.
The presence of this protein in lamina propria is a hallmark
of inflammatory status (Figure 2c), in comparison with
normal mucosa in which positive cells in lamina propria are
rare (Figure 2a). Unpublished data from our group showed
positivity for Hsp10 also in mucosal biopsies from patients
with celiac disease and chronic obstructive pulmonary
disease. All these observations should encourage research
on the relationship between Hsp10 and chronic
inflammatory disease pathogenesis.

7. Hsp10 AND AGING
Aging of human tissues is associated with an

imbalance of Hsp levels and functions in a number of
organs. This may determine a scrambling of the
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Figure 1. Hsp10 is normally present in the mitochondria
(white arrows and inset). However, the chaperonin can also
be found in the cytosol (black arrows) of normal cells. Cell:
16HBE (human bronchial epithelium). Bar: 1 micron.

Figure 2. Hsp10 is commonly detectable by
immunohistochemical methods in normal and inflamed
tissues, as well as in tumors. A: normal colon mucosa. B:
Colon cancer. C: Nonspecific colitis. Hsp10 levels in
inflammation and cancer are commonly higher in the
affected than in the normal tissues. Bar: 50 micron.

interactions between Hsps and the immune system with age
(8). In what regards Hsp10, few studies have investigated its
variations in older people. In one of these studies,
overexpression of Hsp10 was found to prevent skeletal muscle
atrophy and weakness in old mice (58). These data would
seem to demonstrate that development of age-related muscle
weakness may be slowed down by Hsp10 overexpression,
suggesting that a mitochondrial dysfunction, particularly a
chaperoning machine defect, may be involved in the
development of age-related muscle deficits.

In another study, the amount of Hsp10 was found to
be increased in liver mitochondria after hyperthermic
challenge in young but not old rats (59). The authors
hypothesized that mitochondria in old animals are more
vulnerable to the oxidative damage that occurs in response to
heat stress since old-age mitochondria have compromised
selfrepair ability.

8. CONCLUSION

Although the number of experimental projects on
Hsp-chaperones involvement in human tissue homeostasis
and disease has been constantly growing in the last decade,
only a limited number of studies have investigated Hsp10.
Nonetheless, these works have presented promising results
for using this molecule as a diagnostic, prognostic, and
therapeutic tool in the management of some human
pathologies, such as cancer, autoimmune disorders, and
chronic inflammatory diseases.
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