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1. ABSTRACT

Reconstruction and regeneration of new tissues
are challenges facing scientists, technologists and
clinicians. This review describes strategies of selection and
design of biomaterials having significant impact on various
possible synthesis routes for scaffold fabrication. The
criteria for three-dimensional (3D) scaffold architectures
are explored in tandem with biomaterial properties such as
porosity, interconnectivity and mechanical integrity. The
cell-surface biointerface is outlined in terms of biomaterial
composition, target tissues and biological evaluation with
emphasis on bone tissue engineering. Comparative merits
and demerits of conventional and rapid prototyping (RP)
approaches of fabrication are discussed. The conventional
methods are often simple to design, inexpensive and
flexible to optimise or modulate physicochemical
properties. Despite being expensive and suffering from
certain drawbacks of choice of materials and capital costs
many generic RP techniques are extremely attractive in
their ability to mimic new tissue structures and possibility
of incorporating pharmaceutical agents. The future
directions include scaffold development using
nanobiomaterial based biosystems /biointerfaces where cell
biology including genetically modified tissue engineering
approaches can play a cross-disciplinary role for the
success of tissue augmentation.

2. INTRODUCTION

For the past decade, the field of tissue
engineering is in the process of evolution and is still
growing rapidly in order to formulate specific strategies to
offer alternative solutions to the replacement of diseased or
damaged/malfunctioned tissues. Traditionally, allograft and
autograft procedures are used for tissue grafting and organ
transplantation but with known associated problems of
morbidity and pathogen transmission (1). Thus,
biodegradable tissue engineered scaffold constructs for
clinical applications, either in-vitro or in-vivo, have
become an important focus of the multidisciplinary
biomedical research involving material science and
engineering, scaffold fabrication techniques, cell biology
and associated biointerfacial studies. These synthetic or
biologic scaffolds, amenable for tissue regeneration,
present an alternative approach to allograft and autograft
for regeneration of new tissue growth. The goal here is to
facilitate a clinically viable strategy to augment hard or soft
tissues (1, 2-5). It is imperative however that such an
engineered scaffold must successfully mimic the natural
tissue in terms of its structure, composition and function
with desired level of hierarchy, interconnectivity, porosity
and mechanical strength so as to allow cell attachment and
proliferation resulting in adequate level of integration with
surrounding tissues (3). In this review, we intend to focus
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Figure 1. Cross-disciplinary tissue engineering approach

Figure 2. Tissue engineering strategy for bioscaffolds

on the current status of the development of biomaterials,
synthesis, fabrication, processing methodologies and
applications of porous scaffolds for tissue engineering but
limited to particular emphasis on hard tissue replacement.

3. THE STRATEGY

The strategies relating to the cross-disciplinary
tissue generation approaches as well as concepts of bone
tissue engineering of a defect are schematically presented
in Figures 1 and 2, repectively. The protocol and an
approach similar to that shown in Figure 2 can also be
easily adpated to find solutions for soft tissue replacement.

4. SCAFFOLD SPECIFICATIONS/CRITERA

4.1. Design and Function of 3D Architecture
Human tissues are organized into 3D structures

as functional organs and organ systems. To engineer
functional tissues and organs successfully, the scaffolds
have to be designed to facilitate cell distribution and guide
tissue regeneration in three dimensions. The primary
function of a porous scaffold is to provide a suitable
substrate for cell mediated adhesion and growth, either by
seeding within the construct or allowing cells migrating
from surrounding tissue, differentiated function and

migration. Mammalian cell types are intrinsically
dependent on anchorage mechanisms and generally lysing
occurs if the adhesion is poor. The prerequisite
physicochemical properties of scaffolds are as follows: (i)
support, supply and delivery of cells (ii) induce,
differentiate and conduit tissue growth (iii) promote cell-
substrate adhesion and stimulate cellular response  by
surface conduction (v) elicit minimal immunogenicity (vi)
act as wound healing barrier (vii) good cytocompatibility,
hemocompatibility and bioresorbability to degrade at a
similar rate to new tissue generation and remodeling (viii)
easy to fabricate to desired shapes and hierarchy with
dimensional stability (ix) highly porous and permeable with
large surface/volume ratio to allow cell infiltration, nutrient
and metabolite diffusion (x) appropriate mechanical
properties to suit microstress environment for cell types (xi)
sterilizability (6, 7). These properties will vary from
material to material and can affect the overall cellular
response. Additionally, since successful design of scaffold
materials serves also as synthetic extracellular matrices
(ECMs) a thorough knowledge base and understanding of
molecular interaction that occur within the tissues and
between the cells and the ECM are required (8-10).

4.2. Pore Morphology and Structure
3D architecture of the scaffold is very important

when attempting to mimic the structure and functions of the
natural ECM. One pre-requisite characteristic required for
bone tissue engineering is that the scaffolds must have a
porous and interconnected structure, enabling the migration
and infiltration of cells (11). There is no clear consensus in
the literature regarding the pore size that best promotes
osteoconduction. The established view is that bone growth
occurs when the pore is large enough to host cells and
facilitates vascularisation. A pore size larger than 100µm
and smaller than 400µm is usually considered optimal for
osteoconduction (15). However, there are conflicting
scientific reports demonstrating that bone growth can occur
in pores smaller than 100µm and larger than 500µm (3, 13-
16). The structural configuration of, for example,
hydroxyapatite (HAP) within the fabricated scaffold
including pore size, morphology and surface area has been
shown to be critical in allowing osteoconduction, growth
and migrations of tissue and transfer of nutrients through
the scaffold (3, 17). Macro and microporosity within the
scaffold facilitates the transfer of nutrients and encourages,
via biomolecular signals, the deposition of ECM by
promoting favourable cellular interactions. Apart from
porosity another important factor is to create optimal strut
dimension of interconnecting pores in order to maintain
scaffold mechanical strength, complete penetration of cells
and nutrients throughout the scaffold, thus preventing the
formation of necrotic tissue in the centre of the scaffold
(18).

4.3. Mechanical
Several authors have drawn attention to the need

of good mechanical properties in scaffolds intended to be
used in bone tissue engineering. Although not universally
agreed there is a view in the literature that supporting
mechanical forces is secondary as the main function of a
scaffold is to support bone growth (3, 11). All factors
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affecting the porosity must be considered and be balanced
with the mechanical strength of the tissue engineered
scaffolds that are designed for specific application since
bone density at different anatomical locations vary. The
compressive strength of compact bone is approximately
133MPa whereas cancellous bone ranges from 10-80MPa.
Engineering of porosity balanced with strength is
challenging. For example, highly porous (greater than 80%
porosity) HAP scaffolds suffer from a reduction in
mechanical strength and therefore can only be used in non-
load bearing application but can be supported by several
forms of fixation devices. The advantage here is that once
the process of tissue mineralisation has started the initial
weak mechanical strength of such highly porous HAP or
other biomaterials would increase and provide adequate
mechanical support. Microporosity can also compromise
the mechanical integrity of the struts within the scaffold. If
the scaffold is unable to provide a mechanical modulus in
the range of hard (10-1500MPa) (18) or soft tissues (0.4-
350MPa) any nascent tissue formation will probably fail
due to excessive deformation.

4.4. Cell Attachment
Cell adhesion to scaffolds is a prime requirement

for the success of scaffold based tissue engineering
strategy. Cell/scaffold biointerfaces play a prominent role
via cell adhesion molecules (CAMs). CAMs are
glycoproteins which act as receptors on the cell surface for
enhancing cell/cell and cell/ECM adhesions (8). Intergrins
are one such major class of CAMs that is known to regulate
many cellular functions such as cell adhesion,
differentiation, motility and growth (19). Although there
are many cell types that are routinely used in vivo and in-
vitro for a diverse range of tissue engineering applications
the regenerative medicine using stem cells is a rapidly
developing field in the treatment of tissue defects (20). The
platform technology is based on judicious selection of an
appropriate type of cell and a cytocompatible and
biodegradable scaffold matrix or carrier in order to develop
a regulatory biosystem that mimics the structure, function
or even composition of a specific type of tissue (21).

5. BIOMATERIALS FOR SCAFFOLD

Target tissues for regenerative therapies where
appropriate scaffolds include hard tissues such as bone
(various types) and teeth whereas cartilage, tendon,
ligament, skin, liver, muscles, nerve, vascular, neural and
others form the class of numerous soft tissues. Since the
dynamics of different tissues vary significantly, appropriate
materials need to be carefully selected to satisfy the
necessary psychochemical and biological properties. Over
the last decade, much scientific understanding in these
areas has led to the design and development of several
bioresorbable biomaterials to fabricate scaffolds for
engineering different tissue types (31). Table 1 summarizes
the different classes of biomaterials used to fabricate
scaffolds for a variety of indications for both structural and
non-structural augmentation. A number of materials have
been used for bone tissue engineering that include metallic,
polymeric either synthetic or biologic (natural), apatite
based bioceramics as well as bioglass and bioglass-

ceramics. Also, there is considerable research interest in the
bioinspired, biomimetic and bioactive biomaterials that
may be used as desirable tissue engineered scaffolds due
their ability to mimic natural environments of the
extracellular matrix (2).

5.1. Extracelluar Matrix (ECM)
The nature of the development of an ECM during

tissue generation is very complex.  However, its presence is
crucial for the success of any tissue engineering approach
as it plays a critical role in controlling or mimicking
specific cell function. The ECM glycoproteins develop an
interwoven network of fibers and fibrils. This matrix is
known to function as a structural as well as a signalling
scaffold for cells. The degree to which the spatial
arrangement, composition and immobilisation of ECM vary
is dependent on each tissue type. Bone ECM, for example,
consists mostly of collagen type I structural proteins,
apatite mineral and non-collagenous proteins such as
osteocalcin, fibronectin and vitronectin (6). When
designing exogenous synthetic ECM one approach might
be is to incorporate bioactivity in the scaffold by
introducing soluble bioactive agents e.g. growth factors or
plasmid DNA, which can trigger or modulate new tissue
formation. The second strategy is to incorporate analogues
of well known CAMs into the biomaterials. This is
achieved via physicochemical, photochemical or ionic
cross-linking methods. Integrins, a family of cell/surface
transmembrane receptors, play an important role in
mediating transmission of chemical and mechanical signals
from the ECM. Biomimetic scaffolding using specific
peptides or bioactive molecules is also attractive. In this
case, the ECM recapitulation via incorporation of adhesive
peptide sequences can be made bound to molecules that are
correspondingly bound to the scaffold material and growth
factors.

5.2. Natural and Synthetic Polymers
Many synthetic and naturally occurring (biologic)

macromolecular polymers are ECMs generally used as
scaffold biomaterials for tissue engineering applications.
The natural polymers are proteins, polysaccharides
collagens (gelatin), alginate, cellulose, starch, chitosan
(chitin), fibrins, albumin, gluten, elastin, fibroin, hyarulonic
acid, sclerolucan, elsinan, pectin (pectinic acid), galactan,
curdlan, gellan, levan, emulsan, dextran, pullulan, heparin,
silk, chondroitin 6-sulfate, small intestine submucosa (SIS),
acellular dermis, polyhydroxyalkanoates and others (23-
32). These relatively abundant natural polymers exhibit
notable biocompatibility and minimal adverse
immunogenic response. However, although commercially
available mainly due to ease of processing and
notwithstanding compositional variation that can occur
from batch-to-batch processing there are significant issues
that need to be addressed. Typically, these are expensive
and there exist shortages of some of these natural polymers.
There is also the likelihood of cross-contamination and
transmission of virus or disease during extraction and
enzymatic processing from plant, animal or human tissue
(33-35). In contrast, for the synthetically derived polymers,
various physicochemical properties, nature of the by-
products during polymerization, purity, batch weight,
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Table 1. Summary of biomaterial classes used for scaffold fabrication

Material
Class

Scaffold Composition Fabrication Technique
Pore Size/
Porosity
(µm/%)

Target
Tissue

In vitro/In-vivo Study Ref

Ceramic HAP Porous block sintering 90-600/ Bone
In-vivo: BMP-2 delivery,
ectopic bone formation in rats

168-
170

SFF and  image based
design

366,
444/38, 44

Bone
In-vivo: Mandible defects in
Yucatan minipigs

171

Porous sintering
200-
800/60-80

Bone

In-vitro and in-vivo: Goat bone
marrow stromal cells, femoral
defects in rabbits, ectopic bone
formation in goats, dogs and
mice

172

Sintering (solid, porous
particles and  porous coral
replication)

150,
230/66, 70

Bone
In-vivo: Ectopic bone
formation in rats

173

TCP cement Salt-leaching
0.2,
8.7/31, 62

Bone - 174

Calcium metaphosphate Porous sintering 200/ Bone

In-vitro and in-vivo: Rat bone
marrow stromal cells ex vivo
and ectopic bone formation in
mice

175

Natural coral Porous sintering
150-
220/36

Bone

In-vitro and in-vivo: Rabbit
marrow mesenchymal cells ex
vivo and ectopic bone
formation in mice

176

HAP-TCP Porous cylinder sintering
100-
150/36

Bone
In-vivo: Femoral defects in
dogs

177

Calcium phosphate Compaction - Drug delivery In-vitro 178
Glass and
Glass
Ceramic

Porous-glassy-carbon Porous pellet sintering
100-
200/40

Bone In-vivo: Tibia defects in rabbits 179

Na2O-CaO-SiO2-P2O5
Reaction sintering under
isostatic pressure

100-200/ - In-vitro: Simulated body fluid 180

Bioglass 45S5 Melt derived - Bone
In-vitro: Human osteoblasts in
vitro

181,
182

Foaming and porous
sintering

100-600/ Bone
In-vivo: Ectopic bone
formation in dogs

193

SiO2 based Sol-gel foams Foaming <10-500/ Bone In-vitro 182

Silica-calcium phosphate Phase transformation
10-
300/43-51

Bone
In-vivo: Femoral defects in
rabbits

184

Hyaluronic acid
Phase inversion, particulate
leaching

100-
600/80-90

Bone
In vitro: BMP-2 delivery and
C3H10T1/2 cells

185

Mesoporous bioactive glass

Polyurethane sponge
technique, immersion in
phosphate buffered saline
solution

0.002-
0.05/

Drug delivery In-vitro 186

Natural
Polymers

Collagen Freeze drying 11-134/ Bone In-vivo: Tibia defects in rats 187

Collagen/hyaluronate Cross linking 45.7, 35.4/ Bone
In-vitro and in-vivo: Cranial
defects in rats

188

Silk fibroin
Freeze drying, salt-leaching,
gas foaming

15-
100/84-99

- - 189

Salt leaching 202/84-98 Bone
In-vitro: Human bone marrow
stromal cells in-vitro

189,
190

Chemically
Synthesized
Polymers

PLA
Phase separation, emulsion-
solvent diffusion and
porogen leaching

50-800/ Bone - 191

PLA/PGA Melt processing 800 Bone - 191

PLDLA
Solution coating,  porogen
decomposition

/58-80 Bone - 192

PLGA
Sintered microsphere
method

83-300/35 Bone In-vitro 193

Consolidation by pressure
drop

100/60-66 Teeth implants - 194

Sintering 187/31 Bone In-vitro 195

Gas foaming 200/ Bone
In-vitro: Human mesenchymal
cells in-vitro

195

Electrospinning 2-465/92 - - 197
Chemically
Synthesized
Polymers

PLGA/PEG Porogen dissolving
300-
500/85

Articular
cartilage

In-vitro
198

PLGA/PVA
Melt molding particulate
leaching method

200-
300/90

Bone
In-vitro and in-vivo: Cranial
defects on rabbits

199

Poly(multifunctional lactic acid
based oligomer)

Salt leaching
45-150,
300-
600/80

Bone
In-vitro and in-vivo 200,

201

PPF Gas foaming with 50- Bone In-vivo: Tibia defects in rats 202
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effervescent reaction 1000/51
Porogen leaching and
photo-cross linking

300-
800/57-80

Hard and soft
tissue

In-vivo: Cranial defects in
rabbits

203,
204

Gas foaming with
effervescent reaction

100-500/ Bone In-vivo: Cortical defects in rats 205

PET Melt blowing /93-97 Bone
In vitro: Rat mesenchymal
stem cells in vitro

206

Polymeric foams
High internal phase
emulsion

40,
100/70-97

Bone In vitro: Rat osteoblasts in vitro 207

Poly(desaminotyrosl-tyrosine
ethyl ester carbonate)

Solid freeform
486/80-
87.5

Bone
In-vivo: Cranial defects in
rabbits

208

Composites

PLLA/collagen/chitosan
Solvent castings
Salt leaching

125-500/ Bone
In-vivo: Rat calvaria stromal
cells

209

PLGA/bioactive glass
microsphere

Microsphere
Heating mold

350-500/ Bone
In-vitro: Marrow stromal cells
(MSC)

210

PPF/PLGA-PEG microparticles Salt leaching - Bone In-vitro 211

PLA/calcium metaphosphate Porous sintering 100-400/ Bone
In-vitro and in-vivo: Mice
osteoblast cells

212

PLLA/nHAP/collagen/chitin
fibres

Ultrasonication, Lyophilised 200/ Bone In-vitro 213

PLGA/HAP
Gas forming
Particulate leaching

100-250/ Bone In-vitro 214

L-PLGA/TCP
D, L PLGA/L-PLA

TheriForm 3D printing
40-150/55,
90

Articular
cartilage

In-vitro 215

PGA fiber/fibrin
Freeze drying 300/ Skin In-vitro and in-vivo: Fibroblasts 216

PLGA mesh/collagen gel,
sponge

Knitted mesh -
Urinary
bladder

In-vitro: Urothelial and smooth
muscle cells

217

PLLA braid/collagen coating
Freeze drying 50-100/ Ligament

In-vitro and in-vivo:
Fibroblasts

218

PCL fiber/pHEMA hydrogel
Polymerisation, etched
acetone

100-
400/34-41

Neural TE - 219

PLGA/chitin Electrospinning - Skin In-vitro 220

PGA mesh/Bioglass 45S5
Bioglass particle in distilled
water
Immerses PGA mesh

- Soft tissue In-vitro and in-vivo 221

Composites PLGA/Bioglass® tubular foam
Dispersion
Freeze drying

10-50,
100/

Intestine,
trachea, blood
vessel

In-vitro: Mouse fibroblasts 222

PLA/nHAP/collagen Phase separation -
Periodontal
tissues

In-vitro
223

HAP/PCL Polymeric reticulate method
150-
200/87

Drug delivery
In-vitro

224

HAP/chitosan-gelatin Freeze drying
300-
500/91

Bone
In-vitro: Rat calvarial
osteoblasts

225

HAP/β-TCP/chitosan
Porogen leaching
Freeze drying

300-600/ Bone
In-vitro

226

Collagen/HAP Freeze drying 30-100/85 Bone In-vitro: Rabbit periosteal cells 227

CO3Ap/collagen
Freeze drying

50-300/49,
73, 79

Bone
In-vitro: MC3T3-E1
osteoblasts

228

Titanium alloy (Ti-6Al-4V)/CaP
sol-gel

Porous sintering 50-200/35 Bone
In-vivo: Femoral defects in
rabbits

229

Sintering (porous) 250/86 Bone
In-vivo: Ectopic bone
formation in rats

230

Titanium/nHAP Soaking - Bone
In vitro: Human osteoblasts,
canine bone-ingrowth chamber

231

Ti-TiBx, NiTi Self-propagating high /15-55 Bone - 232
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temperature synthesis
(porous)

PPF/β-TCP Salt leaching
150-
300/69, 74

Bone In-vitro 233

PLLA/Bioglass Phase separation
<10,
>100/

Bone In-vitro 234

Silica-calium phosphate Sintering
10-
300/43-51

Bone
In-vitro and in-vivo: Femoral
defects in rabbits

184

PLGA/collagen/apatite Salt leaching
355-
425/87

Bone - 235

β-TCP/calcium phosphate invert
glass/chitosan

Thermally induced phase
separation, immersion in
phosphate buffed-saline
solution

- Drug delivery In-vitro 236

Bioactive glass/β-cyclodextrin Sol-gel - Drug delivery In-vivo 237

Starch/PLA
Supercritical phase
inversion

- Drug delivery In vitro 238

Metals Nickel/Titanium
Self-propagating high
temperature synthesis

229-
641/47-66

Bone In-vivo: Femoral defects in rats 239

Titanium fiber meshes Sintering 250/86 Bone
In-vivo: TGF-β1 delivery in
cranial defects in rabbits

240

Titanium Plasma-spraying
200-
400/50-60

Bone
In-vivo: Femoral defects in
dogs

241

Porous sintering 50-200/35 Dental - 242

Diffusion 350/45 Bone
In-vivo: Hip arthroplasty in
dogs

243

Laser-texture (Ti-6Al-4V)
100, 200,
300/

Bone
In-vivo: Femoral defects in
rabbits

244

Electrochemical oxidation 1-8/13-24 Bone In-vivo: Tibia defects in rabbits 245

Shot-blasting <10/44, 48 Bone
In-vivo: Mandible and femoral
defects in dogs

242,
246

Acid-etching 400/ Bone
In-vitro: Femoral defects in
rabbits

247

Deposition through
polystyrene latex beads

0.5, 16,
50/

Bone
In-vivo: Human bone derived
cells in vitro

248

compositional consistency and absence of immunogenicity
of synthetically derived polymers can be easily controlled.
Also, various processing methods are readily available that
are able to optimize the physical and mechanical properties,
molecular weight and molecular structure, for example, of
tissue engineered scaffolds designed for specific in-vivo
locations and clinical indications.

The materials in the category of synthetic
polymers as porous scaffold are numerous (36, 37). The
most commonly used formulations belong to a family of
linear aliphatic polyesters such as polyglycolic acid
(PGA), polylactic acid (PLA) and their copolymers
(PLGA) (38-40). The choice of these polymeric
scaffolds is dictated by the fact that degradation rate can
be tuned or controlled to the rate of new tissue in-
growth, with times ranging from two to twelve weeks
for PGA and for up to a year for PLA. This is due to
PGA being more hydrophilic than PLA resulting in its
relatively rapid rate of hydrolytic dissolution (41) in-
vivo. These polymers are also a family of few synthetic
polymers approved by the US Food and Drug
Administration (FDA) (42). The other examples include
polycaprolactone (PCL) used as long term implants and
drug release microcapsules (43), polyhydroxybtyrate
(PHB) for slow degradation rate (44), polypropylene
fumerate (PPF), α-hydroxyesters, polyanhydrides (45,
46), polyphosphazenes and polyphosphoesters (47-50).
The hydrogel character of the natural ECM has inspired
the development of several synthetic hydrogels for
tissue engineering applications such as artificial soft
tissues, ophthalmological and drug delivery devices (51-
56).

5.3. Bioceramics and Bioglasses
Of many hundreds of thousands of inorganic

compounds, bioceramics and bioglass derived ceramics are
the most widely used for hard tissue substitution due to
their chemical and crystallographic similarity to natural
mineral, bioactivity and good biocompatibility and ability
to form stable interface with the host tissue (57). This class
constitutes primary candidate biomaterial scaffolds for their
use in tissue engineering (58). The third generation
bioceramics is now focussed to provide suitable scaffolding
system in order for the bone cells to mimic
biomineralisation functionalities (59). Porous bioceramics
are a family of calcium phosphates and hydroxy or
fluroapatites (60-52) where Ca/P ratio can vary between 1.5
and 1.67 in HAP, α and β tricalcium phosphates (TCP) thus
offering the ability to control the rate of in-vivo
degradation. These are widely used in the fabrication for
the tissue engineering applications as porous scaffolds and
coatings. Synthetic HAP has been shown to stimulate
osteoconduction and can be integrated into bone without
triggering an immune reaction (63, 64). Bioglasses also fall
into this class (60) and are highly versatile when fabricating
3D scaffold constructs. They can be used as nonresorbable
(relatively inert), surface active (semi-inert) where
composition can be varied to suit the bioactivity and
biodegradability or resorbability (65). The advantages are
their well known properties of osteoconduction, and
osteoinduction with the ability to incorporate
pharmaceutical agents such as bone morphogenetic protein
(BMP) and growth factors such as TGFs to promote cell
growth. Bioactive glasses and glass ceramics interact well
with osteoblasts and chondrocytes; cells attach, spread,
proliferate, and synthesize extracellular matrix on the
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bioactive glass and glass-ceramic surface (66, 67).
Bioglass®, a bioactive glass, the first of its kind belonged
to the SiO2-Na2O-CaO-P2O5 system and now there are
many other derivative compositions in the silicate, borate,
and phosphate glass systems as well as compositions that
can be coverted to glass-ceramics. Many have been used to
produce porous 3D bone tissue engineered scaffolds. The
bioactivity mechanism in bioglass and glass-ceramics is
typified by the dissolution of surface moeties and formation
of hydroxylated calcium apatite (HCA) (68) layer similar to
chemical and crystallographic properties of bone (69).
Recent research has demonstrated that doping of certain
ions such as Zn, Mg and Sr can stimulate osteogenesis,
osteoblast proliferation, differentiation, and bone
mineralization (70-76).

The extensive use of Ca-apatites, bioglass and
bioglass-ceramics for load bearing applications are limited
by their inherent brittleness, poor elastic stiffness and
compressive strength compared to human bone. These
properties vary greatly from scaffold to scaffold but are
more evident for highly porous scaffolds. As new bone
grows into the scaffold the mechanical properties are likely
to continue to improve until tissue regenerates fully over a
period of time. Consequently, the apatite based bioceramics
are also used as non-structural biomedical applications such
as grafts, fillers and coatings (77). However, the composite
scaffolds using variations of bioceramic, bioglass and
polymers have successfully demonstrated to exhibit
excellent mechanical properties and support new tissue
growth (78-83).

5.4. Biocomposites
Much of the current research is devoted to the

development of composite scaffolds using natural or
synthetic polymers, bioactive ceramics, glasses and glass
ceramics. Increasing research efforts in this area (84, 85-93,
94-99) have demonstrated that biocomposite systems have
great advantages in combining various biomaterial
properties such as biodegradation, biocompatibility and
mechanical strength into one ideal structure for applications
in both hard and soft tissue engineering. The aims are
twofold: (1) to increase the mechanical stability and
formability of the scaffold and enhance tissue interaction
(85-90) (2) to incorporate biomolecules, and activate
surface functionalization and (3) design, fabricate and
characterize 3D scaffolds to find strategies for clinical
solutions. Stem cell impregnated scaffolds also promise
immense potential for next generation synthetic and
biomimetic composite biomaterials that can be tuned to the
biological environment.

Some of the most extensively studied polymers,
both synthetic and natural, in the fabrication of
interconnected 3D polymer-ceramic composites include
PLA, PGA and their co-polymers, polymethyl methacrylate
(PMMA), chitin, chitosan, collagen, gelatin, starch and
their derivatives (88, 100-104). The ceramics are normally
micro or nanocrystalline HAP and TCP and bioactive glass
and glass-ceramics. The filler ceramic constituents of
inorganic bioactive phases in the biopolymer matrix have
the dual purpose of mimicking the nanostructure of natural

bone and enhancing the mechanical properties (105).
Chitosan and its derivatives and collagen are particularly
attractive candidates in the scaffold composites due to their
minimal inflammatory reactions or toxic degradation and
good biodegradability coupled to excellent
osteoconductivity in the case of bone graft (106-109).
There are conflicting literature reports as to whether or not
the inclusion of the ceramic phase improves strength.
Whilst some studies suggest an increase (110) others report
either no change or decrease in strength (111-114).
Recently compiled data however concluded that
apatite/polymer composites could potentially improve both
biocompatibility and mechanical properties of load bearing
bone grafts particularly since  HAP and TCP scaffolds
overlap with cortical and most are at the upper limit of the
cancellous bone in either strength, porosity or both (115).
In this case, the challenging task would be to control the
kinetics of the simultaneous resorption of both constituent
phases so tuned to the rate of new tissue growth in order to
achieve the strength and porosity of native bone.

Since bioactive glasses exhibit good bonding
ability with both hard and soft tissues (116-119) and ability
to form apatite in the presence of bioactive glass particles it
is possible to control mineralization in the composite by
changing the glass content and also strengthen the porous
polymer matrix.  There are only a few studies on polymer-
bioglass composites. Porous bioresorbable composite
materials using PLGA containing bioactive glass particle
additions (up to 50 wt %) have been fabricated with good
interconnected porosity, in vitro bioactivity and the
degradability of the composite foams (120-122).
Asymmetric structures of porous composites comprising a
non-biodegradable polysulfone (or cellulose acetate)
polymer matrix and bioactive glass particulates and
successful in-vitro growth of  HAP crystals have
demonstrated their potential bone graft integration with
microstructural features (20-150μm pores) being strongly
dependent on the polymer type, the interaction between the
polymer and bioactive glass. Composite modulus and
failure strength increased with increasing glass content due
to the change in composition and pore content (123).

6. SCAFFOLD FABRICATION METHODS

Over the last decade the development of
bioengineered porous scaffold structures for hard and soft
tissue augmentation is motivated to replicate the inherently
3D nature of functional tissues especially natural bone
(124, 125). Since there is an inherent lack of strength
associated with porosity much attention has been devoted
to fabrication of porous scaffolds that can meet the
engineering challenges in order to overcome the problem of
optimising strength and porosity.  Hence, the development
of 3D porous scaffolds has been hindered to non-load
bearing applications. To design and engineer functional
tissues and organs successfully, interconnected porous
structures using bioresorbable materials, fabrication
processes and technologies for tissue engineering must
meet certain critical criteria, as elucidated earlier, i.e. to
promote and guide tissue growth in three dimension by cell
attachment, proliferation and differentiation (126). There
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Figure 3. Microstructure of porous HAP samples parallel to the ice front (a) and detail (b), and perpendicular to the ice front (c)
and detail (d). (Reproduced with permission from ref 128)

Figure 4. SEM micrographs of freeze cast Bioglass® scaffolds sintered at 730ºC at -10ºC using solid loading of (a) General
microstructure, (b) 10 wt%, (c) 20 wt%, (d) 40 wt%, (d) 60 wt% and (e) 70 wt% [(a) bar = 1mm ; (b), (c), (d), (e) bar = 200μm].
(Reproduced with permission from ref 121).

are mainly two unique fabrication approaches to produce
3D porous scaffolds, namely conventional and rapid
prototyping. These are discussed in this section.

6.1. Conventional Methods
The many conventional methods available for

scaffold fabrication can be listed as freeze casting, solvent
casting and particulate leaching, phase separation, foam
reticulate method,  gel casting, conventional sintering with
fugitive phases, gas foaming, melt moulding, emulsion
freeze drying and electrophoretic deposition. Some
important methods are discussed here.

6.1.1. Freeze Casting
Freeze casting of biomaterial scaffolds is a

simple method originally used to produce complex porous
structures of ceramic or polymeric components (127). The
technique was subsequently adopted to produce a variety of
porous scaffolds for tissue engineering using HAP, TCP,
bioglasses and their composites using water, camphene and
glycerol as solvents.  The solvent vehicle acting as a binder
holding the slurry intact is then removed from the slurry by

sublimation by freeze drying leaving an interconnected
porous network. The green body is further sintered at
appropriate temperatures to provide improved mechanical
strength (121, 122, 128, 129). A wide range of compressive
strength (65-145MPa) and porosity (56-85%) for HAP,
bioglasses, composites of HAP-TCP and Bioglass-HAP
have been reported. These may point the ways to design
scaffolds for structural grafts. It is also possible to produce
anisotropic microstructures with control of the pore
alignment, orientation and morphology of the scaffolds by
controlling the growth direction of the solvents. Although
not having stiffness and strength the polymeric scaffolds
produced by this method for non-load bearing applications
include chitin (130-133), collagen (134), PLA, PDLA and
PLGA (135, 136) and poly(HEMA) (137) agarose (138)
sericin (139) and alginate (140-142). Figure 3 shows an
example of the formation of lamellar microstructure of
HAP with flat interconnecting macropores. Figure 4 shows
the coralline/dendritic nature of highly interconnected
porous Bioglass 45S5 scaffold structures.

(d), (e) bar = 200μm] (from Ref 121) Copyright © 2009
Wiley and Sons
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Figure 5. Pore structure and strut mmicrostructure of 45S5
Bioglass derived foams (Reproduced with permission from
ref 165).

Figure 6. Scanning electron micrograph of a poly (L-lactic
acid) (PLLA) foam fabricated using the salt-leaching
technique. (Reproduced with permission from ref 144).

6.1.2. Ceramic Powders with Fugitive Phases
Synthetic porous structures are produced by this

popular method where a mixture of bioceramic and beads
of polymer. Subsequent melting and vaporization of the
combustible pore forming fugitive phase results in the
creation of porous construct (114). Considerable difficulty
is encountered in the optimization of the size of the pore
forming feed that results in poor interpore connectivity and
combustion kinetics due to variable morphology of the
feed.

6.1.3. Foam reticulation and gel casting
Similar to slip casting, this method is extremely

versatile and is able to generate net shape and complex

scaffold profiles. Commercially available polymeric foams
(usually polystyrene) of desired pore sizes are infiltrated
with organic or aqueous slurry of ceramic, glass or
composite powders. The solvent is then removed using
drying as it sublimes. The process can be cost effective and
the negative issues are additive toxicity, control of the
drying process and the difficult polymerization reactions
where organic gel is used. Figure 5 shows an example of
Bioglass derived porous structure using this method. Using
this method, a variety of other variant composites such as
PLLA/Bioglass has been fabricated. The advantage of such
these scaffolds is in their ability to make the surface more
bioactive and controlling the resorption rate for accelerated
tissue growth.

6.1.4. Solvent Casting and Solute Leaching
These methods have been used with limited

success to fabricate scaffolds for tissue engineering
applications (144-147) and can be used separately or can be
combined to circumvent processing problems. The method
involves intimate mixing of salt or sugar in a polymeric
solution PLA, PGA, PCL, PMAA and others (Figure 6
shows an example). The mixture is then cast in a mould and
following evaporation of the solvent the water soluble
particulates are leached out to produce a porous structure.
Polymer-bioceramic constructs can also be fabricated but
the main disadvantages of this method are the likelihood of
retaining toxic solvent, trapped solute and denaturation of
the proteins and other molecules in the polymer by the
presence of solvents. The porosity can be controlled by
solute/polymer ratio and solute concentration. The porosity
up to 90% and pore sizes can exceed 100 micron with poor
mechanical properties.

6.1.5. Phase separation
Phase separation techniques rely on inducing

thermodynamic instability during solvent removal from a
multicomponent polymeric solution that results in
separation of two phases and the solidification of the
polymer rich phase. There are many variants of this
technique but mainly two types are used, namely solid-
liquid phase separation (solid phase formation in a liquid
phase) and liquid-liquid phase separation. Solid-liquid
phase separation has been used to fabricate various types of
polymers and their composites (148-150). Although the
pore size ranges can be in the order of 15-120 micron with
porosity up to 95% the methods suffer from non-uniform
pore size distribution. Research has shown that this method
is capable of forming oriented tubular or fibrous
architecture with anisotropic mechanical properties and
may be suitable for soft tissue structures such as nerve,
muscle, tendon, ligament, or dentin (151). Controlled
thermally induced phase separation has also been
developed for scaffold fabrication (152, 153). During
liquid-liquid phase separation, temperature is lowered to
induce the liquid-liquid phase separation of a polymeric
solution with an upper critical solution temperature leading
to the formation of a bicontinuous open pore scaffold
structure. A mixture of dioxane and water has been used for
liquid-liquid phase separation to fabricate PLA and PLGA
scaffolds (154-156). Single phase or multicomponent
composite scaffolds with high porosity (90%) and well-
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Figure 7 SEM micrographs of NHAP/PLLA (30:70)
scaffolds fabricated using dioxane/water mixture solvents.
(a) Dioxane:water=95:5, ×500. (b,c) Dioxane:water=90:10,
×500, ×8000. (d,e,f) Dioxane:water=87:13, ×45, ×500,
×10000. (Reproduced with permission from ref 144).

controlled pore architectures have been fabricated using
thermally induced phase separation (TIPS) techniques. The
morphologies, mechanical properties and protein
adsorption capacities of the composite scaffolds can be
suitable for hard and soft tissue replacements. Figure 7
shows examples of different morphologies of 3D porous
PLLA and nanoHAP/PLLA composites.

6.2. Rapid Prototyping (RP)
In the past two decades over 20 RP systems have

been presented with respect to hard tissue engineering. The
notable methods are stereolithography, selective laser
sintering (SLS), 3-D printing, fused deposition modeling
(FDM), wax printing and bioplotter. A summary and the
literature exploring the advantages and disadvantages of the
most important systems have been extensively reviewed
(157). RP allows precise control of otherwise complex
scaffold architecture, size, shape, interconnectivity,
branching, geometry and orientation. Any design of 3D
pore architecture generated using hierarchical image based
or computer-assisted design and manufacture (CAD/CAM)
techniques cannot readily be built using conventional
techniques (158, 159). Scaffold architectures must therefore
be built using layer by layer manufacturing processes (160-
163). The processes are computer controlled and can be
integrated with medical imaging systems thus allowing
accurate patient specific geometries to be produced.  These
methods can produce scaffolds with anisotropic properties
allowing different areas of the scaffold to be optimised for
certain cells. Most RP processes do not use toxic organic
solvents and some allow cells and growth hormone to be
incorporated into the scaffold during manufacture.
However, RP can be capital intensive, low image

resolution, time consuming and very much dependant on
the availability of biomaterials with exact morphology and
curability in case of bioresorbable feedstock.

7. CONCLUSIONS AND FUTURE DIRECTIONS

Biological systems are hierarchical and spanning
about eight orders of magnitude in length scales from cells
to the biomaterial scaffolds. Synthesis of well optimised
properties of scaffolds that can successfully interact with
the physiological environment of the human body is critical
for tissue regeneration. The review presented here clearly
demonstrated the need for this dynamic process and a plethora
of synthesis routes and suitable biomaterial properties available
to the scientists, practitioners and clinicians alike. Although not
covered in this review gene mediated tissue engineering is
necessary to have a more unifying tissue engineering strategy
and some researchers are already engaged toward this effort.

Nanotechnological aspects of tissue engineering
have focussed on both the design and fabrication of structures
with control and manipulation of individual constituent
molecules. The importance of nanostructured scaffolds or
constructs that make use of nanobiomaterials cannot be more
emphasized. The developed ECM structures would act as ideal
scaffolds and be able to interact with cells and tissues at
subcellular level with a high degree of functional specificity.
Recent efforts in tissue engineered biomaterial development
have focused on ECM derived peptides or proteins into
biomaterials in order to mimic natural ECM (164). The
application of nanotechnology to tissue engineering has been
focusing on non-biochemical and nanotopographical aspects of
ECM (165-167). Hence design of synthetic scaffold at a
nanoscale is one of the exciting emerging areas in tissue
engineering particularly if biomolecules can be incorporated in
the scaffolds.
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